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Abstract 
The new coronavirus, which originally broke out in Wuhan, China, in December 2019, increase quickly 
around the world, causing a pandemic all over the world. The virus uses its spike protein to enter the 
human host cells. Protein S binds to the angiotensin-converting enzyme II (ACE2) receptor and enters 
the host cell. For the more successful binding, several proteases facilitate and optimize this binding, the 
most important of which are transmembrane protease serine 2 (TMPRSS2), furin, and cathepsin L 
proteases. After binding of protein S to the ACE2 receptor, cleavage of protein S is required for 
membrane fusion by protein S, which causes viral entry into host cells. This proteolytic activity may be 
cathepsin L-dependent and occurs with changes in pH in cell endosomes, or it may occur through serine 
proteases activity at the surface of the host cell membrane or within vesicles. Finally, the cell becomes 
infected with the virus. Several studies have tried to reduce the rate of viral infection by using inhibitors 
of these proteases.   
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1. Introduction 
The new coronavirus, which primary started in 

December 2019 in Wuhan, China, caused cases of 
pneumonia [1], so that by February 15, 2021, more 
than 108 million 400 thousand people worldwide 
infected with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), and about 2 million 
people died due to coronavirus disease (COVID-19) 
[2]. There are many diverse kinds of coronaviruses. 
Some of them can cause colds or other mild 
respiratory (nose, throat, and lung) sicknesses. 
Further coronaviruses can cause more severe diseases, 
as well as severe acute respiratory syndrome (SARS) 
and the Middle East respiratory syndrome (MERS).  
The name of Corona derives from the Latin name 
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crown meaning circular crown [3]. This virus belongs 
to the beta-coronavirus family based on Phylogenetic 
studies [1]. Investigation of the SARS-CoV-2 RNA 
sequence showed that it is most similar to the 
coronavirus isolated from bat species [4, 5]. Bats are 
natural reservoirs of coronaviruses, and human-to-
human transmission of the disease has been 
confirmed [6, 7]. This positive single-stranded virus 
structurally requires four vital proteins to form a whole 
viral particle: spike (S) protein, nucleocapsid (N) 
protein, membrane (M) protein, and envelope (E) 
protein [8]. This virus binds to its surface cell receptor 
through its spike protein, causing the virus to enter the 
host cell. This S protein has two domains, S1 and S2. 
Proteases cut the link between N terminal S1 and C 
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terminal S2 [9]. S1 subunit is the receptor-binding 
motif (RBM) located in the receptor-binding domain 
(RBD), which interacts straight with host cell receptor 
angiotensin-converting enzyme II (ACE2) and 
mediates virus binding to host cells. Sub-unit S2 exists 
membrane-terminal C-terminal and amphipathic 
heptad repeats that predict to be involved in coiled-coil 
formation in virus-cell binding [9]. SARS-CoV-2 
enters the cell by binding to the ACE2 cell receptors 
[10, 11]. The virus detects human ACE2 with high 
efficiency and therefore increases the ability of SARS-
CoV-2 to be transmitted from person to person [12]. 
ACE2 is a carboxypeptidase that converts angiotensin 
II to angiotensin-(1-7), anti-fibrosis, anti-hypertrophy, 
and vasodilation [11, 13, 14]. The ACE2 gene locates in 
the Xp22 chromosomal area with a length of 39.98 kb 
of genomic DNA. This gene produces two transcripts 
that finally form a protein with 805 amino acids. High 
levels of polymorphisms observed in this gene, several 
single nucleotide polymorphisms (SNPs) are 
associated with vulnerability to diseases such as type 2 
diabetes and hypertension [15, 16]. Figure 1 
(https://www.proteinatlas.org), shows ACE2 
expression in different tissues, suggesting that a lot of 
organs may be the host for viral attack due to their 
ACE2 receptor. Numerous host proteases can degrade 
S protein in SARS-CoV-2, including transmembrane 
protease serine 2 (TMPRSS2), cathepsins, and furin. 
Among these proteases, TMPRSS2 is necessary for 
viral entry and occurrence in the SARS-CoV2 infected 
host [1]. In this review, we will deal with the most 

important protease involved in the cleavage of protein 
S. 

 
2. TMPRSS2  
SARS-CoV-2 uses ACE2 to enter the cell, and 

TMPRRS2 is a serine protease involved in the cleavage 
of protein S [17]. Early preparation of S protein by 
TMPRSS2 is necessary for the entry and spread of the 
SARS-CoV-2 virus by its mediator with ACE2 [18]. The 
TMPRSS2 gene is located on human chromosome 
21q22.3, encodes a 492-amino acid polypeptide with 
five different domains: serine proteinase, scavenger 
receptor, low-density lipoprotein, transmembrane, 
and cytoplasmic [18]. The TMPRSS2 gene essentially 
expresses in the adult prostate [19]. Regulation of 
TMPRSS2 gene expression is affected by androgen 
signaling [20]. Androgen receptor activity required for 
transcription of the TMPRSS2 gene, no other 
regulatory element found for the TMPRSS2 promoter 
up till now [20, 21]. 

The human TMPRSS2 promoter has an androgen 
response. Also, TMPRSS2 mRNA expression is 
affected by androgen regulation in prostate cells [21]. 
ACE2 is involved in anchoring the SARS-CoV-2 virus 
to the cell surface, which is also affected by androgens 
and is more active in men [22]. One research reported 
that men were at higher risk for developing the disease 
with severe symptoms [23]. The TMPRSS2 gene is 
mostly expressed in the adult prostate but also 
expressed in other tissues, including the adult colon, 
small intestine, pancreas, kidney, lung, and liver [19]. 

 

Figure 1. The expression of ACE2 in different tissues in terms of Consensus Normalized expression (NX) 

levels, obtained from three transcriptomics datasets (HPA, GTEx, and FANTOM5) 
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As well, TMPRSS2 is express in the lungs, liver, and 
kidneys, which are target organs for COVID-19 [24]. 
Expression of TMPRSS2 in the small intestine 
facilitates virus binding and entry into host cells, which 
may contribute to the increase of the disease because it 
provides a potential site for virus replication in the 
small intestine enterocytes [25]. A study showed that 
genetic polymorphisms ACE2 and TMPRSS2 could be 
associated with genetic susceptibility to COVID-19. It 
is better to treatment directed to personal medicine 
[26]. TMPRSS2 can help SARS-CoV-2 to enter host 
cells [18]. 

TMPRSS2 is useful at neutral pH and loses its 
activity in acidic situations [27]. Therefore, TMPRSS2 
can play a critical function in the proteolysis of the S1 
subunit of the virus at the surface of the host cell, while 
membrane-bound or released cathepsin L (CatL) 
should also target the same substrate [28]. SARS-CoV 
viruses are pH-sensitive viruses, and their intracellular 
trafficking requires an acidic environment [29]. 
TMPRSS2 acts locally on the plasma membrane of the 
host cell and probably acts along with the endocytotic 
vesicle trafficking [30]. Also, mechanisms suggest for 
virus entry, including the breakdown of ACE2 by 
membrane-bound serine proteases, which leads to 
increased virus entry [30]. Regarding the role of serine 
proteinases, success in inhibiting serine proteinase 
may be efficient in virus entry to the cell in vitro [18]. 
SARS-CoV-2 requires TMPRSS2 and CatL to enter. 
Camostatmesylate, an inhibitor of TMPRSS2 
performs a critical role in reducing virus entry into the 
Calu-3 lung cell line [18]. Hoffman et al. have recently 
shown that the TMPRSS2 inhibitor blocks the entry of 
the virus and may be a treatment option [18]. They 
reported that Camostatmesylate a serine proteinase 
inhibitor accepted in Japan for the treatment of 
distinct diseases blocks the activity of TMPRSS2 [31, 
32]. 

 
3. Cathepsin L 
SARS-CoV-2 also enters the cells through 

endocytosis. Phosphatidylinositol 3-phosphate 5-
kinase and CatL are significant for endocytosis [33]. 
After binding, protein S cleavage, required for fusion 
membrane fusion with protein S, which causes the 
virus to enter host cells. This proteolytic activity may 
be CatL-dependent and occurs with pH changes in cell 
endosomes, or it may bind via serine proteases to the 
surface of the host cell membrane or within vesicles 

[33, 34]. After SARS-CoV-2 endocytosis, the S protein 
is cleaved by CatL, which permits the virus membrane 
to combine with the endosomal membrane. Following 
that, the viral genome is released into the host cell [35]. 

Endosomal proteases for instance cathepsins can 
cause viruses to enter the host cell through an 
endosomal pathway that occurs at low pH. As well, the 
virus can enter the cells through cell surface proteases, 
particularly TMPRSS2 [36-38]. Both endosomal and 
non-endosomal pathways are involved in the entry of 
the SARS-CoV-2 virus, and low pH is essential for 
virus activity within the cell [33]. CatL, with 220 amino 
acids, is an enzyme involved in other pathologies, 
including osteoporosis and periodontal disease. As a 
result, a host of CatL inhibitors are available [39]. This 
protein is a lysosomal cysteine peptidase and has a 
double chain (L and R) [40]. 

CatL is involved in protein turnover and cell 
apoptosis. Excessive expression of CatL in cancer cells 
has made it suitable as a target for anti-cancer 
strategies [41]. It has been found that in some food 
proteins and peptides naturally have the inhibitory 
activity of CatL, some peptides in food proteins may be 
able to inhibit CatL and therefore help prevent 
COVID-19 [42]. Inhibition of CatL may be practical in 
reducing infection by SARS-CoV-2. Many inhibitors of 
CatL, such as the Epoxydipeptide ketones used to 
suppress SARS-CoV, are fundamentally 
peptidomimetic [35]. 

By inhibiting the activation of protein S, 
teicoplanin prevents CatL in pseudoviruses [43]. 
SID26681509 is also a CatL inhibitor that reduces the 
entry of SARS-CoV-2-like viruses, demonstrating the 
importance of CatL in priming the SARS-CoV-2 
protein [33]. Chloroquine can prevent the activity of 
proteases and S protein, neutralize endolysosomal pH. 
Then reduce viral entry into the host. It can also trap 
ACE2 in nuclear vacuoles [44]. The anti-malarial drug 
chloroquine can efficiently block SARS-CoV-2 
infection in cultured cells [45]. But to date, there is no 
recorded clinical trial to support this inference. 
Chloroquine affects ACE2 terminal glycosylation [46]. 
While chloroquine may have short-term benefits for 
COVID-19 patients by inhibiting CatL activity, it can 
influence to cardiac arrhythmia [47]. The mechanism 
of chloroquine is related to the function of CatL, due to 
which its activity increases the endosomal pH [48]. 
Chloroquine prevents proteolysis of the S1 subunit in 
endosomes by raising endosomal pH and decrease the 
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release of viral genetic material [49]. Treatment with 
CatL inhibitors or protease inhibitor cocktails can have 
compensation over chloroquine. Patients or cells 
treated with specific CatL inhibitors without 
Camostatmesylate do not show a decrease in the 
optimal activity of further endosomal proteases, unlike 
those treated with chloroquine [50]. 

 
4. Furin 
In the SARS-CoV-2 genome, although it’s many 

similarities to the SARS-CoV genome, the furin 
protein cleavage site was not found in other SARS-like 
CoVs sequence, which may play a role in virus entry 
into the cell and pathogenicity [51]. The study of 
proteolytic activation of glycoproteins in enveloped 
viruses shows the relationship between viral infection 
and furin protein, which indicates the role of this 
protein in the activation of spike protein [52]. This 
protein can consider as a mediator in the processing 
and maturation of SARS-CoV-2 virus S protein [53]. 

Regarding the role of furin in the processing of 
essential surface proteins and its role in viral infectivity 
has been identified [52]. Coronaviruses attach to the 
host cell receptor to enter the cell through their S 
protein, and then fuse their envelope to the cell 
membrane to release its genome into the host cell 
cytoplasm and then replicate its genome inside the cell 
[54]. Observations indicate that the furin-cleavage site 
reduces the constancy of protein S in SARS-CoV-2 and 
provides the essential conformational for binding to 
the ACE2 receptor [55]. Furin is present in all 
vertebrates as well as many invertebrates and requires 
calcium for its enzymatic activity [56]. This enzyme is 
a type of serine protease that cleaves the amino acid 
sequence -Arg-X-X-Arg- consensus cleavage site R ‐ X 
‐ K / R ‐ R ↓, where X represents any amino acid except 
cysteine and rarely proline [56]. 

Seven distinct families from the family of 
proprotein convertases find out in mammalian 
species, furin is one of them. This family processes and 
activates essential biological functions. Furin is an 
endoprotease that expresses in all tissues. It is located 
in the trans-Golgi network, and some proprotein 
located between other parts of the cell and at the cell 
surface. Furin can cleave protein precursors labeled 
with specific sequences, including proteases of the 
blood-clotting, complement systems, matrix 
metalloproteinase, receptors, viral-envelope 
glycoproteins, and bacterial exotoxins [57]. This 

protein requires the activity of pathogens such as 
bacterial toxins, enveloped viruses such as the Human 
Immunodeficiency Virus (HIV), Ebola, and SARS-
Cov-2. Certainly, it is also involved in increasing the 
pathogenicity of the virus because cutting the target 
site, activates the virus functionally [58]. in vitro 
studies have shown that suppression of furin can 
decrease viral infections [59]. The use of furin 
suppressors has been shown to protect host cells 
against furin-dependent viral infections, providing a 
new basis for host cell-based treatment for acute 
diseases [60]. One study showed that the use of the 
MI-1851 inhibitor in Calu-3 epithelial cells strictly 
concealed SARS-CoV-2 replication, and the mixture of 
TMPRSS2 and furin inhibitors had a better result 
against the activity of this virus [61]. Consequently, 
furin inhibitors can use as a preventative and 
therapeutic agent against this virus [62]. 

 
5. Conclusion 
Various proteolytic enzymes either of the host or 

the virus act in a serious fashion to manage and 
organize definite steps of the viral replication and 
assembly, such as the entry of the virus, the maturation 
of the polyprotein, and the assembly of the secreted 
virions for further dispersal. So proteases are vital 
targets, envisaging that molecules that interfere with 
their activity are promising therapeutic compounds. 
These enzymes are thus exceptional targets for 
antiviral intervention. 
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