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Introduction

Epigenetics is defined as hereditary changes in gene 
expression without altering the deoxyribonucleic acid (DNA) 
sequence (1). Methylation of cytosine in the DNA sequence 
and the biochemical changes of histones are two critical 
mechanisms in the epigenetics that play an important role 
in gene regulation, differentiation, and carcinogenicity (2-5). 
Another mechanism that affects epigenetics and the gene 
expression is microribonucleic acids (miRNAs). miRNAs are 
non-coding endogenous RNAs with a length of 20 to 25 
nucleotides. These molecules can bind to untranslated 3′ 
regions (UTRs) and suppress the expression of messenger 
RNAs (mRNAs) at the posttranscriptional level by pairing a 
specific base sequence (6,7). miRNAs bind to their target 
mRNAs and regulate their stability and/or translation. If  
miRNAs bind completely to their target sequence on the 
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mRNA, they can lead to degradation; but in case of binding 
incorrectly, translational suppression of their target genes 
occurs by a mechanism that has not  yet been fully understood 
(8). Each miRNA is predicted to have multiple gene targets 
and each mRNA may be regulated by more than one miRNA  
(9,10). The miRNAs play a vital role in many important biolog-
ical processes, including cell proliferation (11), growth (12), 
differentiation (13), apoptosis (14), metabolism (15), aging 
(16), signal transduction (17), and viral infections (18). It is 
estimated that about one-third of genes and their pathways 
are regulated and controlled by miRNAs. Briefly, miRNAs 
have a remarkable effect on the genomic and epigenetic 
mechanisms (19,20).

The role of miRNAs in diseases focusing on lung diseases

The miRNAs involve in the development, progression, 
prognosis, diagnosis, and evaluation of therapeutic response 
in human diseases (21). In recent years, altered expression of 
the miRNAs has been identified in many human cancers (22), 

cardiac hypertrophy and failure (23), metabolic disorders 
(24), immune system–related diseases, and inflammation 
(9). Also, the miRNAs have been studied in lung homeosta-
sis, functional development, and various pulmonary diseases 
including asthma, chronic obstructive pulmonary disease 
(COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis 
(IPF), and lung cancer (25) (Tab. I). 

In recent years, an increasing amount of research has 
shown the impact of miRNAs in the progress of pulmonary 
diseases (43). Our knowledge of the role of miRNAs in lung 
diseases has developed step by step. The role of miRNAs 
in the unique pulmonary cells is thought to be essential in 
understanding the mechanism of lung function and disease 
pathogenesis (25). More recently, many studies have begun 
to report the effects of miRNA transfer via extracellular vesi-
cles. In lung diseases, this transfer was indicated to be facili-
tated via the intercellular communication between many 
types of cells in the respiratory system including endothelial 
cells (44), bronchial epithelial cells (45), mesenchymal stem 
cells, and others (46).

TABLE I - Relationship between miRNA types and their target genes in different lung diseases

RefMeasurement typeSampleExpression 
in diseaseGene targetmiRNADisease

(26,27)Quantitative PCRPBUpRUNX3miR-145

Asthma

(49)qRT-PCRSerumUpIL-12miR-21

(50)qRT-PCRhBSMCsDownRhoAmiR-133a

(28)RT-PCRBECUpTGFβR2mir-19a

(48)RT-PCRMacrophages—monocytesUpIL-13Ra1miR-155

(29)qRT-PCRLung UpSMAD7miR-15b

COPD
(30)RT-PCR/Northern BlotPLFDownCOX-2miR-146a

(31)RT-PCRLung DownBIMmiR-24-3p

(32)High-throughput microarrayPBMCsUpNFKBIAmiR-93-5

(33)RT-PCR LungDownTOM1miR-126

CF
(34)qRT-PCR Cell lineUpCFTRmiR-145

(61)Quantitative PCR Cell cultureDownSIN3AmiR-138

(35)RT-PCRBronchial tissuesUpANO1miR-9

(36)MicroarraysLung DownHMGA2let-7d

 IPF
(37)miRNA array/Northern blottingLung UpSmad, Smad7miR-21

(38)miR ArrayHLTDownTGF-β1miR-200c

(39)TaqMan miRNA assaySerumUpTGF-βmiR-199a-5p

(40)Bioinformatics analysis and 
luciferase reporter assayLungDownSLC22A18miR-137

Lung  
cancer

(41)qRT-PCR and Western blotTissuesDownTGFβR2mirRNA-34a

(42)RT-PCRLung cancer tissueDownE2F3miR-449a

(55)RT-PCRTissueDownZEB1miR-200

BEC = human bronchial epithelial cells; CF = cystic fibrosis; CFTR = Cystic Fibrosis Transmembrane Channel; COPD = chronic obstructive pulmonary disease;  
HLT = human lung tissue; IPF = idiopathic pulmonary fibrosis; miRNA = microribonucleic acid; PB = peripheral blood; PLF = primary lung fibroblast; qRT-PCR = 
quantitative reverse transcription polymerase chain reaction; PBMC = peripheral blood mononuclear cell; hBSMC = Human Bronchial Smooth Muscle Cells.
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The miRNAs in Asthma

Asthma is a chronic inflammatory disease of the lungs 
that is often associated with clinical features such as airway 
hyperresponsiveness (AHR), airflow obstruction, excessive 
mucus secretion, and airway wall structural changes (remod-
eling) (47). Interleukin (IL)-13 and transcription factor signal 
transducer-and-activation-of-transcription-6 (STAT6)-operated 
path ways have been shown to play a significant role in regu-
lating the prominent asthma features, for example, AHR and 
remodeling. miR-155 has been shown to be upregulated in 
order to target directly the transcription of the IL-13 recep-
tor a1 (IL13Ra1) in human macrophages, reducing the lev-
els of IL13Ra1 protein and decreasing the levels of activated 
STAT6, which is vital in regulating the IL-13 signaling pathway 
(48). Inhibition of miR-21 leads to a decrease in Th2 cytokine 
levels (IL-4, IL-5, and IL-13), the number of inflammatory air-
way leukocytes and AHR (49). Downregulation of miR-133a 
was followed by an increased expression of RhoA and subse-
quently increased bronchial hyperactivity in a murine model 
of asthma (50). Elevated expression of the miR-155 has also 
been indicated in murine models of asthma. Additionally, by 
using antagomir against miR-145, the mucus secretion, Th2 
cytokine production, and eosinophil infiltration in the air-
ways decreased (51).

The miRNAs in lung cancer

Dysfunction of miRNAs is often identified in malignan-
cies, including lung tumor. Lung cancer is the leading cause of  
cancer-related mortality worldwide and to date the roles of 
miRNAs in lung cancer have been specified and reviewed 
widely along with the other diseases. Histologically, lung can-
cer can be mostly divided into small cell (SCLC) and non–small 
cell lung cancer (NSCLC). The latter is more common and is 
subclassified into squamous, adenocarcinoma, and large-cell 
carcinoma (52). Recent sequencing studies have exposed 
a very large number of targets for each single miRNA. By 
regulating the posttranscriptional gene expression, miRNAs 
strongly involved in wide-ranging pathways with the main 
effect are on the progressive and carcinogenesis routes 
(53,54). Concisely, various miRNAs that are recognized as 
either oncogenes or tumor suppressors in lung cancer are 
also involved in the immune system response, for instance, 
the miR-200 family. The low expression of the miR-200 fam-
ily members in human early-stage lung adenocarcinomas has 
been correlated with upregulation of PD-L1 (55) and CD8+ 
T-cell immunosuppression and metastasis, which resulted in 
the reduction of tumor load. This finding greatly supported 
the role of  miR-200 as a tumor suppressor.

The miRNAs in COPD

COPD is an inflammatory progressive lung disease that is 
prompted by chronic inflammation exposure of the airways 
to stimuli including cigarette smoking and other noxious 
gases. An increasing number of studies have demonstrated 
that injured cells such as endothelial and epithelial cells 
participate seriously in the pathogenesis of COPD (56). The 

exposure of the respiratory epithelial cells to the harmful 
agents like cigarette smoke leads to the release of proinflam-
matory and inflammatory cytokines such as IL-1, IL-6, IL-8, 
and tumor necrosis factor (TNF)-α (57,58).

The miRNAs and CF

In the Caucasian community, CF is the most frequent deadly 
hereditary disease. It is caused by a recessive mutation in the 
CFTR (Cystic Fibrosis Transmembrane Channel) gene, which 
codes for a chloride channel (59).  miRNAs can target CFTR 
directly or indirectly for regulating CF. Several miRNAs can 
complementarily and directly regulate CFTR expression such 
as miR-145 (via SMAD3 and TGF-β), miR-223 (via CFTR mRNA), 
miR-9 (via Anoctamin 1), and miR-494 (via Solute Carrier 
family 12Member 2 (SLC12A2)), alone or together. However, 
miR-509-3p and miR-494 downregulate CFTR expression (60). 
Some miRNAs like miR-138 can also repress the biosynthesis 
intermediary actors, such as the transcription factor SIN3A 
(SIN3 transcription regulator family member A) and CFTR (61).

The miRNAs and infections

Recent advances in molecular mechanisms point to the 
importance of miRNAs in the lung and respiratory infections. 
Acute viral respiratory infections (AVRIs) are the most com-
mon causes of acute respiratory symptoms (62). Changes in 
the regulation of miRNA expression in the epithelial cells of 
human rhinovirus (hRV), influenza (IV), human metapneu-
movirus, human coronavirus, and respiratory syncytial virus 
infections are associated with the pathogenesis of acute 
respiratory diseases (63). For example, the expression of 
host miRNAs changes in response to IV stimulation. These 
miRNAs directly or indirectly target viral and host genes 
to regulate virus replication, stimulate or suppress innate 
immune responses and cell apoptosis during the viral infec-
tion (64,65). IV increases the expression of miR-4276 by 
upregulating two proteins involved in the apoptotic pathway, 
Cas9 and Cocx6c (74), and eventually leads to increased virus 
replication and apoptosis. Furthermore, a number of specific 
cellular miRNAs in IV-infected cells including miR-323, mir-
491, and miR-654 target the protected region of viral PB1 
gene to prevent the virus from replicating in MDCK cells (76).

Another mechanism in IV infection is the altered expres-
sion of cellular miRNAs and their effect on important signal-
ing pathways associated with the immune system (66). In hRV 
infections, miRNAs result in antiviral responses by modulating 
the immune response (miR-128 and miR-155) as well as con-
trolling virus entry into the infected lung cells (miR-23b) (67).

RSV causes viral respiratory disease in infants and young 
children (68), modulating the expression of host cell miRNAs 
for antiviral responses and virus replication similar to the 
miRNAs mentioned above (69,70). For instance, miR-125a 
regulates nuclear factor kappa B (NF-κB) signaling pathway 
by suppressing A20 inhibitor protein (CCL5) as an important 
cytokine in both innate and compatible immune systems (71). 
Coronaviruses cause a wide range of respiratory infections, 
from mild upper respiratory tract infections to severe lower 
respiratory tract infections (72). Table II shows the four major 
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TABLE II - Relationship between different types of miRNAs and their target genes in well-known viral lung infections

RefPathwaysEffects on  
gene  
regulation

Gene targetmiRNAViral disease

(74)–  Inhibits COX6C and caspase-9 
and promoting viral replication 

–  Up–  COX6C–  miRNA-4276

Influenza virus

(75)–  Inhibits replication of virus –  Up–  PB1–  miR-323, miR-491

(76)–  Reduces virus replication by 
degrading M1 mRNA 

–  Up–  M1–  let-7c

(77)–  Negatively regulates innate 
immune and inflammatory 
responses 

–  Up–  TRAF6–  miR-146a-5

(78)–  Regulates virus entry –  Down–  AP1G1–  miR-576-3p

(79)–  Suppresses IAV replication –  Down–  HDAC8–  miR-21-3p

(64)–  Regulates antiviral response –  Up–  MAPK3, 
IRAK1

–  miR-132, miR-200c

(80)–  Regulates the immune response 
against RV-1B and inhibits virus 
replication 

–  Up–  SMAD2, 
EGFR

–  miR-128 , miR-155

Rhinoviruses
(81)–  Prevents viral infection by 

decreasing the VLDLR 
–  Up–  VLDLR–  miR-23b

(82)–  Antiviral host response –  UpCCL7, SOCS3 let-7f

RSV

(83-85)–  Induces miRNAs to involve in 
the immune response pathways 
such as NF-kB and type I IFNs 

–  Up–  IL-13, TLR4, 
RUNX2

 miR-30, let-7i

(86)–  Promotes viral replication –  Down–  NGF, TrkA miR-221

(87)–  Inhibits NF-κB signaling 
pathway and results in reducing 
macrophage activation

–  Down–  TNFAIP3 miR-125a

(88)N protein of virus binds to miR-9 
and modulates NF-kB expression 

Up–  NF-kBmiR-9OC43

Coronavirus

(89,90)–  Suppresses viral replication 
that may aid evasion of immune 
surveillance until successful 
infection of other cells

Up–  Virulent 
proteins, 
including N, 
S, M, and E

miR-17, miR-574-5p, miR-214SARS

(91)–  miRNA-mRNA network 
significantly impacts MERS-CoV 
replication 

Up–  MAP3K9, 
MYO15B, 
SPOCK1

  miR-16-1-3p, miR-26a-1-
3p, miR-425-5p, miR-1275, 
miR-2277-5p , miR-500b-5p, 
miR627-5p, miR-1257, miR-1275

MERS

(92)–  These miRNAs may downregulate 
viral gene expression resulting in 
the inhibition of viral replication 

Up–  Viral mRNAmiR628-5p, miR-18a-3p,  
hsa-miR332-3p

MERS

(93)–  Acts as a negative regulator of 
NF-κB as the transcription factor 
of the IL-6 gene 

DownIL-6 miR-146a-5pSARS-
CoV2

 –  Overexpression of miR-200c 
induces downregulation of ACE2 
in human cells 

UpACE2 miR-200c

(94)–  Targets SARS-CoV2 genome UpSARS-CoV2 
ORF1a/b

 miR-1202

(95)–  Expression of let-7d-5p 
negatively correlates with 
TMPRSS2 expression 91

Up–  TMPRSS2let-7d-5p

IL = interleukin; MERS = Middle East respiratory syndrome; miRNA = microribonucleic acid; NF-κB = nuclear factor kappa B; RSV = respiratory syncytial virus; 
SARS-CoV = severe acute respiratory syndrome–related coronavirus; IAV = Influenza A viruses.
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categories of the pulmonary virus families and some of the 
most important miRNAs that change the expression of the 
genes involved in infections with these viruses. Severe acute 
respiratory syndrome coronaviruses (SARS-CoV) use host cell 
miRNAs to escape removal by the immune system (89).

In Middle East respiratory syndrome coronavirus (MERS-
CoV) infection, cellular miRNAs act as an antiviral thera-
peutic agent (92). The functional mechanisms of miRNAs in 
SARS-CoV2 as the causative agent of COVID-19 are diverse. 
For example, increased miR-200c expression in the disease 
downregulates the expression of angiotensin-converting 
enzyme (ACE2) protein that is the receptor essential for  the 
virus entry into the cell (73).

Association of miR-200c with the genes involved in  
inflammation (ACE2, IL-6)

miR-200c-3p is a member of the miR-200 family with 
two clusters miR-200a/b/429 and miR-200c/141. The miR-
200c-3p is one of the most important miRNAs of the second 
cluster. Studies on the miR-200 family have shown that it has 
a variety of roles in cancer progression, drug resistance, and 
oxidative stress (96,97). The results of various studies have 
revealed the crucial role of the miR-200c epithelial-mesen-
chymal transmission, proliferation, metastasis, apoptosis, 
autophagy, and therapeutic resistance in several types of 
cancer (98). The miR-200c is also measured as a biomarker 
to predict disease progression, diagnosis, and response to 
therapy in several cancers, both in tissues and in body fluids 
(blood, urine) (96).

 Studies using miRNAs can contribute not only to the 
understanding of virus-host interactions but also to the strati-
fication of the different severities of COVID-19. In this sense, 
miR-200c-3p, which has been associated with viral infec-
tions, including influenza A, offers itself as a candidate for the 
study of COVID-19. The analysis of its expression in groups of 
patients presenting different levels of disease aggressiveness 
could contribute to a better screening of patients affected by 
SARS-CoV2. Thus, in Pimenta’s study, which aimed to analyze 
the expression of miR-200c-3p in saliva samples from patients 
with COVID-19, the results showed that the expression pat-
tern of miR-200c-3p increased with disease severity (99).

Furthermore, the significant impact of miR-200c-3p in 
acute respiratory distress syndrome (ARDS) was discov-
ered, which proposes it as a potential factor in SARS-COV-2 
research and is considered as a potential diagnostic agent for 
SARS-COV-2 studies (100). In a study of the H5N1 avian influ-
enza virus (AIV) ACE, serum levels of miRNA-200c-3p were 
found to increase in the virus causing acute pulmonary injury 
and ARDS. This miRNA binds to the 3′-UTR locus of the ACE2 
gene, and inhibits the expression of this protein and thus 
exacerbates the disease (100-102).

The ACE2 gene was first identified from complementary 
DNA in the left ventricle of the human heart (102). ACE2 inac-
tivates angiotensin II (Ang II) by cleavage and produces Ang 
1-7 (103).

Ang II binds to type 1 and type 2 Ang II receptors with high 
affinity and is involved in regulating blood pressure, body 
fluid balance, inflammation, cell proliferation, hypertrophy, 
and fibrosis (104-106). ACE2 has been shown to neutralize 

the development of severe ARDS caused by AIV, coronavirus, 
and sepsis in mice (106). ACE2 has also been reported as a 
receptor for the SARS-CoV2 virus to enter the pneumocytes 
(107).

The role of miR-200c in lung inflammation and lung 
diseases

MiR-200c, alongside with miR-141, is placed in the intra-
genic zone of chromosome 12. MiR-200c family has beneficial 
effects on preventing drug resistance, cancer development, and 
oxidative stress. It consists of two clusters: (1) miR-200c/141 
cluster including miR-141-3p and miR-141-5p, miR-200c-3p, 
miR-200c-5p on chromosome 12p13.31; (2) miR-200a/ 
b/429 cluster including miR-200a-3p, miR-200a-5p, miR-
200b-3p, miR-200b-5p, and miR-429 on chromosome 
1p36.33 (108). 

miR-200, like ACE2, is greatly expressed in the epithelial 
cells of the pneumocytes, mainly in type II alveolar epithelial 
cells. The expression of miR-200 has a crucial role in the dif-
ferentiation of type II alveolar epithelial cells in fetal lungs, 
which are important components of the renin-angiotensin 
system signaling pathway all over the body. miR-200 displays 
several important effects in the body such as anti-remodel-
ing, anti-inflammatory, and anti-proliferative through reduc-
tion of angiotensin II levels (Fig. 1) (109). Remarkable points 
in this issue are about controlling COVID-19 patients’ mor-
tality rates and disease severity, by upregulating ACE2 levels 
with using angiotensin receptor blockers or ACE2 blockers 
(110). miR-200 is the exact and direct target of ACE2 at 3′-UTR 
of ACE2 mRNA which by binding to its locus results in the 
depression of ACE2 expression as a receptor responsible for 
ARDS incidence. Normally, ACE2 catalyzes the conversion of 
AgII to Ag1-7. Later, Ag1-7 binds to mitochondrial assembly 
(MAS) receptors resulting in Ag1-7 protective effects includ-
ing anti-proliferation, anti-necrotic and anti-hypertrophic as 
well as vasodilation and declining of proinflammatory cyto-
kine secretion. SARS-CoV2 inhibits this pathway and worsens 
AgII adverse effects on lung tissue during the acute phase 
of the disease. It was reported that SARS-CoV2 induces the 
secretion of IL-6, TNF-α, IL-1β (102,111-113). Activation of 
NF-κB pathway, an important factor in ARDS pathogenesis, 
is one of the noticeable pathways leading to the upregula-
tion of miR-200c-3p. Increased expression of miR-200c-3p 
occurred when the ACE2 expression decreased (100) (Fig. 1).

 These mechanisms include increased mir-200c expres-
sion, inhibition of ACE2 expression, by affecting ACE2 protein 
outside the cell, and by inhibition of other anti-inflammatory 
functions, all of which are shown in the figure. (1) increased 
miR-200c expression that SARs-CoV-2 inhibit ACE2 indirectly 
by regulating miR-200c and directly inhibiting ACE2 expres-
sion, (2) by affecting the ACE2 gene, (3) ACE2 protein outside 
the cell, and (4) by inhibiting other anti-inflammatory func-
tions, all of which are shown in the figure. In addition, miR-
200c can also reduce ace2 expression, thereby reducing ACE2 
expression and reducing its function. According to research 
results, the reduction in disease severity in COVID-19 patients 
associates with the correlation between low expression of 
ACE2 and high levels of miR-200c-3p in the lungs and the 
upper respiratory tract (114,115). 
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Recent studies about the entrance of SARS-CoV-2 to the 
host cells imply that some miRNAs can actually control the 
expression of ACE2 and TMPRSS2, which are potentially of 
high effect in SARS-COV-2 pathogenesis (116).

Several pathways have been studied about the effect of 
epigenetics on the regulation of ACE2/TMPRSS2 expression 
levels in respiratory diseases. The epigenetic repression of 
miRNA transcription can control their regulatory regions. For 
instance, Lysine-specific demethylase 5B (JARID1B, encoded 
by the KDM5B gene) was displayed to suppress the tran-
scription of miR-200 family including miR-141, miR-200a, 
miR-200b, miR-200c, and miR-429. Hsa-miR-125a/hsa-let-7e 
miRNAs inhibit the transcription of miR-200 family through 
stimulating H3K4me3 histone, which demethylases the 
miRNAs of this family. Therefore, hsa-miR-125a-5p via binding 
to miR-200 family pursues 3′-UTR of ACE2 mRNA and results 
in the enhancement of ACE2 gene expression while 3′-UTR 
of the TMPRSS2 is targeted by hsa-let-7e-5p. Concludingly, 
JARID1B epigenetic activity doesn’t directly regulate the 
expression of ACE2 and TMPRSS2 (116). Scientists have 
investigated if promoting H3K4me3 demethylation is caused 
by repression of the transcription of the let-7e and miR-125a 
via JARID1B gene (117); for example, the upregulation of 

JARID1B in lung cancer cell line A549 concluded threefold 
depression of miR-200a and miR-200c expression, while 
JARID1B knockdown enhanced 1.5-fold their conserved and 
stable levels (118).

The experimental data show the presence of control-
ling network containing miR-125a/let-7e/miR-200 families, 
ACE2/TMPRSS2 as well as histone demethylase JARID1B, 
and further point a new way for signaling pathway for ACE2 
expression. In one report, the single-cell RNA sequencing 
data analysis sharply indicated that in the majority of human 
cells ACE2 and TMPRSS2 are not expressed without JARID1B. 
So, for better understanding, the viral infection pathogenesis 
needs to be investigated in the regulatory network related 
to the expression of JARID1B, ACE2, and TMPRSS2 in human 
respiratory epithelial cells (116).

According to cellular ontologies research on 24 miRNAs, 
for evaluating the miRNAs targeting SARS-CoV-2 host cell 
receptor ACE2, it was revealed that miR-429, miR-200a-3p, 
miR-210-3p, miR-200b-3p, and miR-200c-3p were highly 
expressed in the respiratory epithelial cells and miR-200c-3p 
exists abundantly in the cells including endo-epithelial cell, 
epithelial cells, respiratory epithelial cells, leukocytes, hema-
topoietic cells, and myeloid leukocytes. Also, miR-200b 

Fig. 1 - MiR-200c and ACE2 
mechanism of function in the 
pathogenesis of COVID-19. 
SARS-CoV2 induces inflam-
mation and severe ARDS 
through four mechanisms: (1) 
virus indirectly leads to ACE2 
downregulation by enhan-
cing miR-200c expression. (2) 
Virus directly inhibits ACE2 
gene expression. (3) SARS-
CoV2 inhibits binding of ACE2 
protein to its receptor on the 
lung cells. (4) SARS-CoV2 inhi-
bits the anti-inflammatory ef-
fects of ACE2. ACE2 = angio-
tensin-converting enzyme-2; 
ARDS = acute respiratory di-
stress syndrome; COVID = co-
ronavirus; SARS-CoV = severe 
acute respiratory syndrome–
related coronavirus.
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and miR-200c were discovered to be extremely conserved  
(119). 

In clinical trials, miR-200 and its correlation with ACE2 can 
be used as early prognostic and diagnostic markers. Its loca-
tion on the upstream of ARDS signaling pathways may reduce 
the morbidity and mortality rates of COVID-19 via epigenetic 
procedures, which can be so beneficial for human survival.

Conclusion

At present, there is no exact treatment for COVID-19. Due 
to the importance of miRNAs in pulmonary diseases, mainly 
the infectious viral diseases as well as SARS-COV-2, they can 
be potential candidates of targeted therapy in SARS-COV-2 in 
order to reduce the morbidity and mortality rates of this dis-
ease as miR-200c and its correlation with ACE2 can be used 
as early prognostic and diagnostic markers. However, fur-
ther research must be carried out to reveal the exact effect 
of miR-200c in the pathogenesis of COVID-19 in order to be 
used clinically.
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