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infections and deaths exceed 17.8 million and 680,000, respec-
tively. The first studies that analyzed the clinical complications 
associated with this disease were from China. In this area, 
many of the patients had mild to moderate symptoms (80%), 
about 14% had a severe disease course (dyspnea, O2 satura-
tion ≤93%, pulmonary infiltrates), and about 6% presented 
with critical progression characterized by respiratory failure, 
septic shock, and/or multiorgan failure (3). The data accumu-
lated so far from more than 10,000 patients in the European 
Union and in the New York City area show that among the 
confirmed cases, 30% required admission and 4% required 
care in intensive care units (ICUs) due to their critical condition 
(4,5). In turn, it was observed that mortality is particularly high 
in the subgroup of patients with advanced age and preexisting 
comorbidities, among which obesity, hypertension, and dia-
betes are frequently found (6). It is noteworthy that patients 
without these associated comorbidities can also present with 
a critical or severe course of the disease. Therefore, the search 
for early biomarkers to assess the severity of the pathology 
and its clinical progression is currently necessary to rationalize 
the use of hospital resources in ICUs and reduce the mortality 
associated with COVID-19.
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ABSTRACT
Background: COVID-19 causes high mortality and long hospitalization periods. The aim of this study was to search 
for new early prognostic strategies accessible to most health care centers.
Methods: Laboratory results, demographic and clinical data from 500 patients with positive SARS-CoV-2 infection 
were included in our study. The data set was split into training and test set prior to generating different multivari-
ate models considering the occurrence of death as the response variable. A final computational method called 
the BGM score was obtained by combining the previous models and is available as an interactive web application.
Results: The logistic regression model comprising age, creatinine (CREA), D-dimer (DD), C-reactive protein (CRP), 
platelet count (PLT), and troponin I (TNI) showed a sensitivity of 47.3%, a specificity of 98.7%, a kappa of 0.56, and 
a balanced accuracy of 0.73. The CART classification tree yielded TNI, age, DD, and CRP as the most potent early 
predictors of mortality (sensitivity = 68.4%, specificity = 92.5%, kappa = 0.61, and balanced accuracy = 0.80). The 
artificial neural network including age, CREA, DD, CRP, PLT, and TNI yielded a sensitivity of 66.7%, a specificity of 
92.3%, a kappa of 0.54, and a balanced accuracy of 0.79. Finally, the BGM score surpassed the prediction accu-
racy performance of the independent multivariate models, yielding a sensitivity of 73.7%, a specificity of 96.5%, 
a kappa of 0.74, and a balanced accuracy of 0.85.
Conclusions: The BGM score may support clinicians in managing COVID-19 patients and providing focused inter-
ventions to those with an increased risk of mortality.
Keywords: BGM score, Clinical biochemistry, COVID-19, Mortality prediction, Risk score, Serum biomarkers

Introduction

The SARS-CoV-2 virus emerged in the last quarter of 2019 
in Wuhan, the capital of Hubei province of China. The disease 
caused by SARS-CoV-2 virus, named COVID-19 by the World 
Health Organization, has spread rapidly and globally cau-
sing a pandemic with unprecedented clinical, humanitarian, 
and economic repercussions (1,2). In the absence of reliable 
data on worldwide seroprevalence, the number of confirmed 
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Several clinical laboratory markers, such as lymphocyte 
(LYMPH) count, lactate dehydrogenase (LDH), and D-dimer 
(DD), are altered in patients with COVID-19 (7). Other stu-
dies have shown significant differences in the concentration 
of cytokines in blood (interleukin [IL]-6, tumor necrosis fac-
tor [TNF]-γ, IL-8, IL-2R) among patients who have required 
ICU admission and patients who do not (8). In turn, infection 
biomarkers such as C-reactive protein (CRP), procalcitonin 
(PCT), and ferritin (FER) increased significantly with the seve-
rity of the disease (8). However, despite the research efforts 
made in the field of laboratory tests, reliable algorithms with 
early prognostic value have not yet been generated to esta-
blish the risk of future complications in patients infected with 
SARS-CoV-2.

The lack of accurate early prognostic algorithms based on 
central laboratory testing for COVID-19 has spurred resear-
chers to direct their efforts toward the use of omics tools in 
the search for potential biomarkers. In a first study published 
by Shen et al (9), the combination of proteomics and meta-
bolomics allowed the identification of a panel of 22 proteins 
and 7 metabolites with predictive power to differentiate mild 
vs. severe COVID-19 with 94% accuracy. A second study publi-
shed in Cell Systems (10) showed that European researchers 
identified 27 differentially expressed proteomics biomarkers 
associated with different grades of COVID-19 severity in 
hospitalized patients. Despite these positive advances, the 
technical complexity of these omics tools and their high cost 
limit their applicability in the clinical arena.

In the context of the vast scope of the SARS-CoV-2 crisis 
and until we achieve sufficient immunization coverage of the 
population, we believe that the search for new early progno-
stic strategies must prioritize their applicability and accessi-
bility to most health care centers. In this line, the objective 
of our study was to generate predictive algorithms for early 
stratification of patients with COVID-19 who may be at the 
risk of developing severe complications. To this aim, we desi-
gned a retrospective cross-sectional single-center study in 
which we evaluated different predictive algorithms for mor-
tality considering demographic factors, clinical factors, and 
standard laboratory tests usually present in most central cli-
nical laboratories.

Materials and methods

Patient population

Five hundred patients with COVID-19 confirmed by 
real-time reverse transcription polymerase chain reaction 
(RT-PCR) in nasopharyngeal exudates were included in this 
retrospective study. These patients required hospitalization 
in an ICU, internal medicine, or pneumology ward in our 
hospital between March and June 2020. The clinical and 
laboratory data that we collected in our database were the 
first information available within 48 hours after admission 
of the patient. Demographic and clinical data were obtained 
from our hospital information system (SAP Patient Mana-
gement). The variables included were: age, sex, smoking 
and drinking habits, asthma, chronic obstructive pulmonary 
disease (COPD), diabetes mellitus, dyslipidemia, obesity, 

hypertension, heart failure, ischemic heart disease, hospita-
lization days, ICU stay, and in-hospital death. This study was 
approved by the Ethical Committee of the Hospital Clinic of 
Barcelona and was conducted following the ethical princi-
ples of the 1975 Declaration of Helsinki. The data set is avai-
lable at the online repository figshare with DOI:10.6084/
m9.figshare.13252277.

Laboratory measurements

Blood samples were collected in lithium heparin-, 
ethylenediaminetetraacetic acid-, and citrate-coated blood 
collection tubes for biochemical, hematological, and coa-
gulation testing, respectively. After centrifugation at 3,000 
rpm for 15 minutes, plasma samples were immediately pro-
cessed. Alkaline phosphatase (ALP), alanine aminotransfe-
rase (ALT), aspartate aminotransferase (AST), total bilirubin 
(TBIL), creatinine (CREA), FER, gamma-glutamyl transfe-
rase (GGT), glucose (GLU), LDH, CRP, PCT, and troponin I 
(TNI) were measured using an Atellica Solution automa-
ted analyzer (Siemens Healthineers, Tarrytown, NY, USA). 
The intra-assay and inter-assay coefficient of variation was 
lower than 6% and 8%, respectively, in all cases. Hemato-
logical parameters (including hemoglobin [HB] and counts 
of white blood cells [WBC], neutrophils [NEU], LYMPH and 
platelets [PLT]) were analyzed without centrifugation using 
an Advia 2120 (Siemens Healthineers, Tarrytown, NY, USA). 
Finally, the Sysmex 5100 (Sysmex, Kobe, Japan) was used 
for DD, prothrombin time (PT), and partial thromboplastin 
time (PTT) analysis.

All the parameters were measured in the Core Laboratory 
of the Hospital Clinic of Barcelona according to the manufac-
turer’s instructions.

Statistical analysis

Categorical variables were expressed as numbers and 
percentages and compared using the Chi-square test. Conti-
nuous variables were expressed as median and interquartile  
range (IQR) and were compared by the Mann-Whitney- 
Wilcoxon test.

The strength of the relationship between the laboratory 
parameters was assessed using the Pearson or Spearman 
correlation coefficients. The multivariate statistical analyses 
conducted were logistic regression (LR) (11), classification 
tree (CT) through the CART algorithm (12), and artificial neu-
ral network (NNet) (13). Missing data were imputed via bag-
ged tree models (11), and the data set was then split into a 
training and test set. The optimal parameter for each model 
was determined in the training set, calculating the best ave-
raged predictive performance after 10-fold cross-validation. 
Additionally, to the previous multivariate models, we gene-
rated a computational method, called the BGM score, which 
provides the survival probability of a patient with COVID-19 
considering the variables age, CREA, DD, CRP, PLT, and TNI. 
We modulated the survival probability of the BGM score as 
a probabilistic event depending on the survival probability 
given by the LR (Ps(LR)), the CT (Ps(CT)), and the NNet (Ps(NNet)) 
models generated from our data set. Further, the Ps(LR), Ps(CT), 
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and Ps(NNet) were multiplied by their corresponding model 
accuracies (Ac(LR), Ac(CT), and Ac(NNet); respectively), giving the 
following equation for the BGM score survival probability: 
Ps(BGM) = (Ac(LR) × Ps(LR)) ∩ (Ac(CT) × Ps(CT)) ∩ (Ac(NNet) × Ps(NNet)). Addi-
tionally, the following constraints were applied to the Ps(BGM) 
to incorporate the best predictive features of the LR, CT, and 
NNet models:
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Sensitivity, specificity, positive predictive value, negative 
predictive value, kappa, total accuracy, and balanced accu-
racy ([sensitivity+specificity]/2) were calculated for each 
model considering only the test set (99 cases). All the statisti-
cal analyses were performed using public libraries from the 
Comprehensive R Archive Network (CRAN; http://CRAN.R-
project.org) rooted in the open-source statistical computing 

environment R, version 3.6 (http://www.R-project.org/).  
A p-value <0.05 was considered statistically significant. 

We wrote an interactive web application using the R Shiny 
package (14) that implements the four multivariate models 
that we generated in our study. This web application can be 
used to calculate the survival probability for a patient with 
COVID-19 and is freely available at the link “https://bgm-hoc.
shinyapps.io/Shiny_covid_clinic/.”

Results

Five hundred subjects with a confirmed diagnosis for 
COVID-19 formed the study population. Overall, the median 
age of the patients was 64 years, 42.6% were female, and 
patients were discharged within a median of 10 days. The 
most common comorbid conditions were hypertension 
(44.2%), dyslipidemia (31.2%), and diabetes mellitus (18.8%). 
Among the patients recruited, 23.4% required ICU, and 
19.4% died during follow-up. The demographic, clinical, and 
laboratory results of the patients corresponding to the first 
48 hours after admission are summarized in Tables I and II.

We evaluated a panel of 12 biochemical, 5 hematological, 
and 3 coagulation biomarkers for each patient. As shown in 
Figure 1, we detected the presence of high significant corre-
lations in AST-ALT (r = 0.9, p < 0.001) and WBC-NEU (r = 0.8, 
p < 0.001). To avoid the presence of multicollinearity bias in 
multivariate analysis, we excluded the variables AST and NEU 
for future calculations. We included the rest of the bioche-
mical, demographic, and clinical variables in the multivariate 
LR model that we designed considering the occurrence of 
death as a response variable and that we generated per-
forming 10-fold cross-validation. Among all the explanatory 

TABLE I - Demographic and clinical characteristics of the patients at the first 48 hours after admission

Total
n = 500

Nonsurvivors
n = 97 (19.4%)

Survivors
n = 403 (80.6%)

p-value

Female, n (%) 213 (42.6%) 42 (43.3%) 171 (42.4%) 0.96752

Age, median (IQR) 64 (54-76) 80 (72-86) 61 (50-72) 6.50e-25

Active smoker, n (%) 25 (5.0%) 6 (6.2%) 19 (4.7%) 0.73589

Active alcohol consumer, n (%) 15 (3.0%) 4 (4.1%) 11 (2.7%) 0.69568

Asthma, n (%) 25 (5.0%) 5 (5.2%) 20 (5.0%) 1.00000

COPD, n (%) 26 (5.2%) 8 (8.2%) 18 (4.5%) 0.21092

Diabetes, n (%) 94 (18.8%) 30 (30.9%) 64 (15.9%) 0.00111

Dyslipidemia, n (%) 156 (31.2%) 41 (42.3%) 115 (28.5%) 0.01247

Obesity, n (%) 33 (6.6%) 4 (4.1%) 29 (7.2%) 0.38628

Hypertension, n (%) 221 (44.2%) 64 (66.0%) 157 (39.0%) 2.63e-06

Atrial fibrillation, n (%) 37 (7.4%) 10 (10.3%) 27 (6.7%) 0.31576

Heart failure, n (%) 23 (4.6%) 11 (11.3%) 12 (3.0%) 0.00112

Ischemic heart disease, n (%) 31 (6.2%) 14 (14.4%) 17 (4.2%) 0.00045

ICU admission, n (%) 117 (23.4%) 30 (30.9%) 87 (21.6%) 0.06921

Hospitalization days, median (IQR) 10 (6-18) 6 (3-11) 12 (7-20) 9.86e-09

COPD = chronic obstructive pulmonary disease; ICU = intensive care unit; IQR = interquartile range.
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variables included initially in the model (variables shown in 
Tabs. I and II) only age, CREA, DD, CRP, PLT, and TNI were early 
independent predictors of mortality after admission (Tab. III), 
according to the model selection rule based on the Akaike 
information criterion (AIC). This multivariate model yielded 
a sensitivity of 47.3%, a specificity of 98.7%, a kappa of 0.56, 
and a balanced accuracy of 0.73 for identifying patients with 
a high risk of mortality. We obtained these performance 
characteristics using a validation set of 99 cases that were 
not used for training the model. Despite the high negative 
predictive value of the LR model (0.9), we observed a low 
sensitivity that suggests that the model was sensitive to class 
imbalance. 

To improve our classification performance without down-
sampling, we next generated two additional multivariate 
models based on a different paradigm of categorization, CTs 
with the CART algorithm (the implementation in R is called 
rpart) and NNets. Considering all the variables from Tables I 

and II, the CART CT yielded TNI (cutoff value of 44 ng/L), age 
(cutoff value of 79 years), DD (cutoff value of 700 ng/mL), and 
CRP (cutoff value of 15 mg/dL) as the most potent early pre-
dictors for stratifying patients with a high vs. low risk of morta-
lity (Fig. 2). These cutoff values were similar to their reference 
intervals implemented for clinical diagnosis (TNI < 45.2 ng/L, 
DD < 500 ng/mL, and CRP < 1 mg/dL). This model outperfor-
med the LR model with a sensitivity of 68.4%, a specificity of 
92.5%, a kappa of 0.61, and a balanced accuracy of 0.80 for 
identifying patients with a high risk of mortality in our valida-
tion set. Despite this performance comparison, one common 
characteristic in these models was that both yielded clinical 
laboratory measurements as the most powerful predictors of 
mortality in patients with COVID-19.

In general, the outputs of LR and CT are intuitive and easy 
to implement as predictive algorithms in the clinical setting. 
However, NNets are black boxes regarding the contribution 
of the explanatory variables to the output of the response 

TABLE II - Biochemical, hematological, and coagulation parameters determined within the first 48 hours after admission

Total (n = 500) Nonsurvivors (n = 97) Survivors (n = 403) p-value Normal 
range

n Median (IQR) n Median (IQR) n Median (IQR)

ALP, U/L 491 (98.2%) 68 (55-90) 94 (96.9%) 76 (58-108) 397 (98.5%) 68 (45-86) 0.00342 46-116

ALT, U/L 492 (98.4%) 29 (19-50) 95 (97.9%) 25 (18-48) 397 (98.5%) 29 (19-51) 0.30541 5-40

AST, U/L 487 (97.4%) 38 (27-60) 93 (95.9%) 49 (31-73) 394 (97.8%) 37 (26-56) 0.00974 5-40

TBIL, mg/dL 490 (98.0%) 0.5 (0.4-0.7) 93 (95.9%) 0.6 (0.4-0.9) 397 (98.5%) 0.5 (0.4-0.7) 0.01930 0.2-1.2

CREA, mg/dL 500 (100%) 0.89 (0.71-1.1) 97 (100%) 1.11 (0.87-1.83) 403 (100%) 0.86 (0.69-1.04) 4.60e-10 0.3-1.3

FER, ng/mL 383 (76.6%) 602 (266-1278) 71 (73.2%) 914 (376-1533) 312 (77.4%) 559 (240-1190) 0.00221 15-200

GGT, U/L 491 (98.2%) 39 (25-78) 94 (96.9%) 39 (27-92) 397 (98.5%) 40 (24-76) 0.43835 5-40

GLU, mg/dL 500 (100%) 107 (96-130) 97 (100%) 125 (104-160) 403 (100%) 105 (95-123) 9.95e-07 65-110

LDH, U/L 477 (95.4%) 316 (244-418) 87 (89.7%) 432 (276-583) 390 (96.8%) 301 (240-395) 6.99e-07 <234

CRP, mg/dL 499 (99.8%) 7.3 (3.4-15.1) 97 (100%) 14.3 (7.9-22.8) 402 (99.8%) 6.3 (2.8-11.9) 1.51e-12 <1

PCT, ng/mL 416 (83.2%) 0.11 (0.05-0.25) 77 (79.4%) 0.37 (0.17-1.05) 339 (84.1%) 0.09 (0.04-0.18) 2.40e-19 <0.5

TNI, ng/L 410 (82.0%) 8.5 (3.9-22.8) 77 (79.4%) 45.0 (20.1-112.1) 333 (82.6%) 6.8 (3.2-14.9) 1.05e-21 <45.2

HB, g/L 500 (100%) 137 (126-147) 97 (100%) 130 (114-143) 403 (100%) 139 (128-148) 0.00015 120-170

PLT, ×109/L 500 (100%) 180 (137-227) 97 (100%) 166 (112-220) 403 (100%) 182 (146-231) 0.00130 130-400

WBC, ×109/L 500 (100%) 6.0 (4.5-7.7) 97 (100%) 7.2 (5.4-9.8) 403 (100%) 5.8 (4.4-7.3) 1.89e-05 4-11

LYMPH, ×109/L 500 (100%) 0.8 (0.6-1.1) 97 (100%) 0.6 (0.4-0.9) 403 (100%) 0.9 (0.6-1.2) 5.10e-11 0.9-4.5

NEU, ×109/L 500 (100%) 4.6 (3.2-6.3) 97 (100%) 5.7 (4.5-8.3) 403 (100%) 4.2 (3.1-5.7) 5.17e-08 2-7

DD, ng/mL 450 (90.0%) 700 (400-1300) 79 (81.4%) 1500 (800-4350) 371 (92.1%) 600 (400-1000) 1.96e-11 <500

PT, sec 273 (54.6%) 12.8 (12.1-13.6) 57 (58.8%) 13.1 (12.3-14.3) 216 (53.6%) 12.8 (12.1-13.5) 0.02284 9.9-13.7

PTT, sec 225 (45.0%) 29.7 (27.4-31.8) 55 (56.7%) 29.1 (26.7-31.3) 170 (42.2%) 30.0 (27.9-32.0) 0.11795 23.5-32.5

ALP = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate aminotransferase; CREA = creatinine; CRP = C-reactive protein; DD = D-dimer;  
FER = ferritin; GLU = glucose; GGT = gamma-glutamyl transferase; HB = hemoglobin; LDH = lactate dehydrogenase; LYMPH = lymphocyte count;  
NEU = neutrophil count; PCT = procalcitonin; PLT = platelet count; PT = prothrombin time; PTT = partial thromboplastin time; TBIL = total bilirubin;  
TNI = troponin I; WBC = white blood cell count.
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variable. Therefore, we have to limit the selection of varia-
bles to generate manageable NNet models applicable to 
most clinical settings regardless of their limitations in their 
laboratory tests portfolio. In this context, and with the inten-
tion intending of improving our LR model, we generated an 
artificial NNet including only the variables that remained as 
early independent predictors of mortality in the LR model: 
age, CREA, DD, CRP, PLT, and TNI. Supplemental figure 1 

shows the optimal architecture of the neural model that was 
obtained after 10-fold cross-validation. The NNet model yiel-
ded a sensitivity of 66.7%, a specificity of 92.3%, a kappa of 
0.54, and a balanced accuracy of 0.79 for identifying patients 
with a high risk of mortality in our validation set. This perfor-
mance was comparable to that achieved by our previous CT 
algorithm.

The three algorithms we generated can be divided into 
two groups considering their sensitivity and specificity. The 
model with the highest specificity was LR, while the CT and 
NNet models presented lower specificity but a higher sen-
sitivity. These differences in predictive accuracy led to our 
developing a new hybrid model in combination with the LR, 
CT, and NNet models to incorporate the best predictive fea-
tures of each. As described in the Material and Methods, 
our model, called the BGM score, calculates a survival pro-
bability for patients with COVID-19 by multiplying the survi-
val probabilities of the three previous models corrected by 
their accuracies. We assessed the BGM score performance in 
terms of prediction accuracy over the validation set, yielding 
a sensitivity of 73.7%, a specificity of 96.5%, a kappa of 0.74, 
and a balanced accuracy of 0.85 for the prediction of COVID-
19 patients who died. Figure 3 shows the statistical compa-
rison of the accuracies of the four models, where it can be 

Fig. 1 - Correlation plot. The 
plot shows the correlation 
between all the clinical labo-
ratory results obtained within 
the first 48 hours after patient 
admission. The bar on the right 
depicts the equivalence betwe-
en the color code, and the value 
of the correlation coefficients 
shown for each pair of labora-
tory parameters.
ALP = alkaline phosphatase; 
ALT = alanine aminotransferase; 
AST = aspartate aminotransfe-
rase; CREA = creatinine; CRP =  
C-reactive protein; DD = D-dimer;  
FER = ferritin; GLU = glucose; 
GGT = gamma-glutamyl transfe-
rase; HB = hemoglobin; LDH = 
lactate dehydrogenase; LYM-
PH = lymphocyte count; NEU = 
neutrophil count; PCT = pro-
calcitonin; PLT = platelet count; 
TBIL = total bilirubin; TNI = tro-
ponin I; WBC = white blood cell 
count.

TABLE III - Logistic regression coefficients for predicting the  
response variable “survival vs. death” for patients with COVID-19

Odd ratio Std. error Z-statistic p-value

Age 2.012 1.281 5.665 1.47e-08

CREA 2.573 1.012 2.465 0.01370

DD 2.086 1.000 2.493 0.01266

CRP 2.012 1.828 4.942 7.71e-07

PLT 0.697 1.079 –3.025 0.00249

TNI 1.210 1.000 2.051 0.04031

CREA = creatinine; CRP = C-reactive protein; DD = D-dimer; PLT = platelet 
count; TNI = troponin I.
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seen that the BGM score model significantly outperformed 
all the other models. Our hybrid model corroborates the pro-
gnostic value of the clinical laboratory tests for patients with 
COVID-19. 

A web application with the implementation of the BGM 
score model is available at “https://bgm-hoc.shinyapps.io/
Shiny_covid_clinic/”.

Discussion

This retrospective study identified risk factors for death in 
hospitalized patients with COVID-19. Older age, lower LYMPH 
and PLT in addition to higher CREA, DD, CRP, and TNI were 
independent risk factors for death among patients. Taking 
this into account, we developed a predictive algorithm for 
mortality (BGM score) considering standard laboratory tests 
usually present in most central clinical laboratories.

Concerning biochemical, hematological, and coagulation 
parameters, our findings are in consonance with those pre-
viously described. For instance, a recent published work by 
Sisó-Almirall et al (15) revealed that LDH, DD, and CRP were the 
most important laboratory parameters significantly associated 
with adverse outcomes, evaluated as death or ICU admission.

Alterations in coagulation parameters, in particular high 
DD level and low PLT, have been linked with severe COVID-
19 patients (16,17). These disorders reflect the hypercoagu-
lable state present in poor prognosis, which could promote 
microthrombosis in the lungs, as well as in other organs (18). 

Elevated TNI levels are frequent in patients with COVID-19 
and have been significantly associated with fatal outcomes. 
Several mechanisms may explain this phenomenon: viral 
myocarditis, cytokine-driven myocardial damage, microan-
giopathy, and unmasked coronary artery disease. SARS-CoV-2 
uses angiotensin-converting enzyme 2 (ACE2) as its entry 
receptor and subsequently downregulates ACE2 expression. 
This mechanism may complicate the clinical course media-
ted through inflammatory response, endothelial dysfunction, 
and microvascular damage (19).

Early monitoring of immunological biomarkers is an impor-
tant basis to guide treatment strategies in COVID-19. In this 
study, CRP was the only immunological biomarker assessed 
significantly related to mortality. Recently, a meta-analysis 
including 16 independent studies highlighted the importance 
of CRP as a possible biomarker for mortality due to COVID-19 
infection (20). Furthermore, the study by Wang (21) showed 
that CRP levels were positively correlated with lung lesion 
and disease severity in the early stage of COVID-19.

Lymphopenia is a common feature in patients with 
COVID-19. Significant decreases in T-cell counts have been 
observed in patients with severe disease (22). Up to now, the 
underlying mechanisms leading to the observed lymphope-
nia are little known and better understanding will provide 
insight into better management of such patients (23).

A high serum CREA level is a frequently observed compli-
cation in nonsurvivor inpatients (24). It has been described 
that around 20% of patients admitted to an ICU require renal 
replacement therapy 15 days after illness onset (25). 

Previous studies reported comorbidities to be one of the 
most important risk factors associated with increased disease 
severity (6,7,26). Likewise, our study reported a significant 
association between mortality and some of the collected 
comorbidities, including diabetes, dyslipidemia, hyperten-
sion, heart failure, and ischemic heart disease. Despite these 
differences found between survivors and nonsurvivors, none 
of our prediction models did include any comorbidity since 
the clinical laboratory measurements were stronger predic-
tors of mortality in patients with COVID-19.

Fig. 2 - Multivariate classification tree analysis. Troponin I (TNI), 
age, D-dimer (DD), and C-reactive protein (CRP) were the most  
powerful predictors. The number 0 represents survival and 1 re-
presents death. For each square (leaves), survival and death pro-
babilities are represented with decimal numbers at the left and the 
right side, respectively, and the percentage represents the number 
of cases that is split between the leaves of tree partitions. 
Units: TNI, ng/mL; age, years; DD, ng/mL; CRP, mg/dL.

Fig. 3 - Comparison of the accuracy values of the different multiva-
riate models. Logistic regression (LR), decision tree (DTree), neural 
network (NNet), and the BGM models. The plot shows the accuracy 
value for each model (horizontal line) and their corresponding 95% 
confidence interval (vertical lines). *p < 0.05 vs. all the models, and 
#p < 0.05 vs. the logistic regression model.
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Age was the only nonlaboratory-related variable associa-
ted with symptom aggravation in our study. This is in accor-
dance with previous publications reporting age to be the 
most important predictor of death in patients with COVID-19 
(27). Immunosenescence is defined as the declined ability of 
elderly patients to react properly upon infection, to initiate 
and maintain an adequate protective immune response, and 
to develop immunological memory (28). Thus, the severity of 
viral infections (e.g., influenza, respiratory syncytial virus) is 
notably increased among older adults compared to younger 
individuals, and more acute and long-term sequelae often 
develop as a result (29,30). 

Other studies have been published using machine learning 
models to predict the mortality in COVID-19 patients, and 
some of them were included in systematic reviews and meta-
analysis (31). Our study presents some common points with 
these publications since the predictors used in the BGM score 
were also identified to be relevant predictors of mortality in 
other models, supporting their significant association with 
adverse patient outcomes. One of our study’s strengths is that 
we have used a relatively large sample size compared with 
the research items cited in the meta-analysis, including a sub-
stantial number of nonsurvivors. Also, our final algorithm, the 
BGM score, only includes a small number of simple laboratory 
measurements, which makes our model easy to implement 
in the routine clinical practice. It’s noteworthy that all the 
variables of our study were collected in the first 48 hours of 
admission. Hence, our model can provide an early detection 
of patients at high risk of death, favoring early interventions. 

Our study has several limitations. First, it was a retrospec-
tive single-center study, which may lead to biased results. 
Second, we recruited only patients with moderate or severe-
stage disease and not asymptomatic or mild-stage disease. 
Therefore, prospective multicenter studies including patients 
with various stages of disease are warranted to confirm the 
reliability of the BGM score model.

The effects the pandemic is causing on medical resources 
worldwide highlight the need to develop early predictor 
models capable of detecting which patients can be mana-
ged safely at district hospital or can benefit from domiciliary 
hospitalization programs and which ones will need intensive 
care. Therefore, identifying risk factors at presentation that 
predict the likelihood of disease progression will be useful to: 
(1) increase the therapeutic effect in patients with a risk of 
higher disease progression and (2) reduce the mean hospita-
lization time in patients not at risk.

To conclude, we have developed an easy-to-use model 
comprising biochemical, hematological, and coagulation 
parameters presented in most clinical laboratories able to 
predict the survival probability of a patient with COVID-19 
with high accuracy. This web tool may support clinicians in 
managing this infectious disease and providing focused inter-
ventions to patients with COVID-19 at a higher risk of death.
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