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Abstract Exosomes have recently been proposed as novel 
elements in the study of intercellular communication in 
normal and pathological conditions. The biomolecular 
composition of exosomes reflects the specialized 
functions of the original cells. Heat shock proteins 
(Hsps) are a group of chaperone proteins with diverse 
biological roles. In recent years, many studies have 
focused on the extracellular roles played by Hsps that 
appear to be involved in cancer development and 
immune system stimulation. Hsps localized on the 
surface of exosomes, secreted by normal and tumour 
cells, could be key players in intercellular cross-talk, 
particularly during the course of different diseases, such 
as cancer. Exosomal Hsps offer significant opportunities 
for clinical applications, including their use as potential 
novel biomarkers for the diagnoses or prognoses of 
different diseases, or for therapeutic applications and 
drug delivery.  
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1. Introduction  
 
1.1 Cell-to-cell communication 
 
Cellular communication is used by multicellular 
organisms to organize and coordinate the activities and 
the development of various organs and tissues [1]. In 
order to maintain cellular homeostasis or to respond to 
pathogens in the extracellular milieu, cells often exchange 
information through direct cell-to-cell contact or by 
secretion of soluble factors, either via ligand-receptor 
interactions or cellular ‘bridges’, such as nanotubes [2]. 
The cells interact with other cells through membrane 
surface molecules or by secreting several types of 
molecules such as soluble proteins, amino acids, fats, 
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steroids and gas. These molecules can activate the target 
cells by interacting with the cell surface receptors [1]. 
Recently, it has been shown that cells can also 
communicate through the direct exchange of nucleic 
acids. New evidence has shown that circulating miRNAs 
may be important in intercellular communication; in 
particular, they may induce gene silencing in the target 
cells [3, 4]. In addition to soluble molecules, cells can also 
send information through cell junctions and adhesion 
contacts, which can act within the same cell in which they 
are produced, in neighbouring cells, or even over long 
distances in an endocrine manner [5]. In the past two 
decades, another mechanism for intercellular 
communication has emerged involving the intercellular 
transfer of extracellular vesicles (EVs) [1]. Abundant 
evidence has validated a newly identified mechanism of 
intercellular interaction through lipid vesicles, in which 
phospholipid-enclosed vesicles are released into the 
extracellular environment that can bind the specific 
receptor to the target cells, and  vescicles are be 
internalized by recipient cells [6]. The release of EVs is a 
well-conserved evolutionarily mechanism that cells use to 
exchange bioactive proteins, lipids and nucleic acids. EVs 
released from cells are heterogeneous in origin and size, 
and include those derived from the endosomal 
membrane cell compartment, released by exocytosis after 
the fusion of multivesicular bodies with the plasma 
membrane, as well as those formed by direct budding of 
the plasma membrane [2, 7].  
 
EVs were first characterized in hematopoietic cells. In 
1967, Wolf observed these subcellular fractions 
(“microparticles”), which he described as “platelet dust” 
using electron microscopy [8]. Initially, it was thought 
that EVs were a mechanism of the depletion of the 
cytoplasm and a specific function of membrane 
reticulocytes. Indeed, EVs are rich in reticulocyte-specific 
proteins, transferrin receptor and devoid of some key 
plasma membrane proteins [9]. Increasing evidence 
supports the notion that each cytotype produces EVs 
(including T cells, B cells, dendritic cells, platelets, 
epithelial cells and cancer cells), which are essential 
players in intercellular communication and that they 
establish the ability of a cell to sense and adapt to 
environmental alterations [10, 13].  
 
EVs are composed of a lipid bi-layer and contain multiple 
functional molecules derived from the cytosol of the 
donor cell, such as proteins (both transmembrane and 
luminal), lipids, RNAs, non-coding RNAs, microRNAs 
and retrotransposon elements [14]. EVs constitute a 
heterogeneous population that differs in cellular origin, 
size, morphology, antigenic composition and functional 
properties. They are classified into various categories 
based on their size and composition, for example, 
exosomes (40–100 nm), apoptotic bodies (>800 nm) [15], 

microparticles (0.1–1 µm), prostasomes (50–500 nm) and 
tolerosomes (~40 nm), factors that create confusion in the 
nomenclature [16]. In addition, isolating them is 
extremely difficult. In fact, in recent years, researchers 
have tried to improve the various EV isolation protocols 
[1]. In many past studies, EVs were isolated by 
differential ultracentrifugation, depending on their size 
and density, but isolation protocols have not been 
definitively standardized. Following differential 
ultracentrifugation, a complementary characterization 
procedure using biochemical markers and electron 
microscopy imaging techniques is essential [13]. Among 
the large group of EVs, exosomes have been most studied 
to date, because of their involvement in both pathological 
and physiological events as mediators of cell-to cell 
communication [16]. 
 
2. Exosomes  
 
As described by Pan in 1983, it was initially thought that 
exosomes could be a mechanism for shedding the 
cytoplasm in maturing sheep reticulocytes [17]. In fact, 
exosomes are cell-derived vesicles that are secreted by all 
cell types and are also present in many body fluids such 
as blood, urine, cerebrospinal fluid, breast milk, saliva, 
bronchoalveolar lavage fluid, ascitic fluid and amniotic 
fluid [18]. Exosomes are released into the extracellular 
space after the merging of late endosomes with the cell 
membrane. Early endosomes become part of 
multivesicular bodies (MVBs), which undergo a maturing 
process that provides a gradual change in protein 
composition of the vesicles (intraluminal vesicles (ILVs). 
During this maturation process, the vesicles accumulated 
in the MVBs, can have three potential outcomes: 1) they 
may merge with the lysosomes, causing protein content 
degradation  (e.g., in the case of receptors); 2) they may 
constitute a temporary storage compartment; 3) they may 
blend with the plasma membrane, releasing exosomes. 
Therefore, exosomes correspond to the intraluminal 
vesicles of MVBs. MVBs merge with the plasma 
membrane, resulting in exocytosis of the vesicles 
contained in MVBs; as such, vesicles  maintain the same 
topological orientation as the plasma membrane [1, 19]. 
 
The endosomal sorting complexes required for transport 
machinery (ESCRT) are involved in exosome biogenesis 
and in their loading. Different evidence sources support 
the idea that ESCRT could assist in the sorting of 
ubiquitinated cargo proteins at the endosome 
membranes. The ESCRT-associated protein ALIX 
(apoptosis-linked gene 2-interacting protein X) can 
regulate this function [20]. Likewise, some evidence 
assumes that the sorting of proteolipid molecules to 
intraluminal vesicles functions independently of ESCRT. 
For example, in dendritic cells, during cognately antigen-
specific CD4+ T cell interaction, the sorting of MHC II to 
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exosomes occurs independently from MHC II 
ubiquitination and MHCII can be incorporated into 
detergent-resistant protein complexes of intraluminal 
vesicles, which are secreted as exosomes and transferred 
to the interacting T-cells [21]. Another alternative cargo 
selection, independent from the ESCRT mechanism, 
occurs through lipid affinity, which requires sphingolipid 
ceramide and depends on raft-based microdomains [22-
24]. 
 
Exosomes exhibit specific cell-type dependent content. It 
has been reported that their protein composition is 
similar to that of proteins found in plasma membranes, as 
well as in the endocytic or subcellular compartments of 
source cells and includes membrane proteins such as 
annexins [25]; cytoskeletal proteins (tubulin, actin) [26]; 
lysosomal markers (CD63, LAMP-1/2); enzymes [27]; 
death receptors (FasL, TRAIL) [28]; cytokines [29-31]; 
HLA class I/II [32] and some heat shock proteins (Hsps) 
[33, 34]. It has been demonstrated that exosomes derived 
from various cell types contain a wide variety of RNA, 
including mRNA, miRNA, rRNA and tRNA [35-41]. The 
RNA present in exosomes has been termed exosomal 
shuttle RNA (esRNA) [39] and can be transferred to 
recipient cells where they modulate cells' genetic 
expression [41]. Exosomes might constitute an exquisite 
mechanism for local and systemic intercellular transfer, 
not only of proteins, but also of genetic information in the 
form of RNA [39].  
 
Depending on the source cell, many different functions 
have been attributed to exosomes. They are involved in 
cell-to-cell information transfer [42], immune response 
[43], inflammation [44], coagulation [45], stem cell 
activation [46] and programmed cell death [47]. 
Exosomes can participate in cellular responses against 
stress. Clayton and colleagues [48] showed that exposing 
B-cell lines to heat stress results in a marked increase of 
Hsps expression by exosomes and in an increase in the 
quantity of exosomes produced. Given that exosomes can 
mediate the transfer of specific molecules, they may play 
a role in intercellular transmission in disease 
pathogenesis, including tumour development, viral 
infections and neurological diseases. For example, 
exosomes might carry viral proteins from the infected 
cells from which they are released, thereby playing a part 
in the intercellular dissemination of viral vectors, or in 
clearing viral proteins from infected cells [49, 50]. Most 
studies have that many tumour cells release a large 
amount of EVs and those tumour-derived vesicles can 
carry proteins, lipids and nucleic acid that contribute to 
cancer progression [51]. In the case of many tumours, 
such as ovarian carcinoma, prostate cancer and pancreatic 
cancer, high levels of exosomes have been reported and 
these data suggest that exosomes could be important 
diagnostic and therapeutic tools [52-55]. Furthermore, 

neuronal exosomes can mediate the transfer of misfolded 
proteins, causing a transmission mechanism of systemic 
amyloidoses in neurodegenerative diseases [56, 57]. All 
these data show that exosomes are important players in 
various physiological and pathological processes, and 
could be useful for both diagnostic and therapeutic 
applications. Some evidence obtained with exosomes 
released by human cancer cells support the existence of at 
least two entirely different mechanisms through which 
exosomes may interact with target cells. One is mediated 
by interaction of a ligand (often expressed on the 
exosome membrane) and its receptor (often expressed on 
the cell plasma membrane). This was clearly 
demonstrated for death-receptors/ligands interaction, 
which always led to the triggering of cell death [58-60]. 
However, exosomes may fuse with the plasma membrane 
of the target cells, in turn transferring their content to the 
cell cytoplasm and possibly fusing with internal vesicles, 
too [61]. The exosomes taken up by target cells may well 
have an effect, as it has been shown for NK cell-derived 
exosomes [60], suggesting that exosomes can be used as 
real effectors of the natural immune response against 
either tumours or foreign agents [62]. 
 
3. Hsps and exosomes  
 
Molecular chaperones are a group of proteins conserved 
during evolution and are involved in the maintenance of 
other "client" proteins in folded and active conformations 
in all cellular organisms [63-65]. These chaperones protect 
the proteome from the dangers of misfolding and 
aggregation by facilitating protein folding, complex 
assembly and refolding of partially denatured proteins; 
additionally, they also drive protein translocation across 
membranes and in the case of protein damage, toward 
degradation [58, 59]. Chaperonology is the science that 
studies molecular chaperones and pathological 
conditions in which chaperones become pathological 
factors, known as chaperonopathies. Chaperone therapy 
involves the use of chaperones in the treatment of 
chaperonopathies [63, 64]. Most Hsps are molecular 
chaperones with crucial functions in the biosynthesis, 
folding/unfolding, transport and assembly of other 
proteins [63-66]. They are classified into families by their 
molecular weights: Hsp100, 90, 70, 60, 40 and the ‘small 
Hsps’, which includes Hsp27 [65]. Hsps were initially 
described as a group of proteins that are induced by heat 
shock, as well as by other stressors [67]. The expression of 
Hsps is induced in response to a wide variety of stress 
conditions, such as hypoxia, ischemia, heavy metal or 
ethanol exposure and infections [68]. Interest in these 
molecules has increased in recent years due to many 
studies having indicated that these proteins are involved 
in many physiological mechanisms in normal cells, such 
as DNA replication and gene expression regulation [63]. 
Several mechanisms are responsible for the cytoprotective 
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effect of Hsps [69]. Additionally, it has been 
demonstrated that Hsps have other roles, such as 
participation in immune system regulation [70, 71], cell 
differentiation [72], apoptosis and carcinogenesis [73-75]. 
The levels of many Hsps are elevated in various types of 
cancer and Hsp overexpression suggests a poor prognosis 
in terms of survival and response to therapy in some 
types of cancer [65]. Numerous studies have shown that 
Hsps are involved in cell transformation, metastasis 
formation and multidrug-resistance development [65, 74, 
75]. Furthermore, several studies have reported that 
elevated levels of Hsps can protect malignant cells 
against therapy-induced apoptosis [65,69]. Hsps are 
traditionally considered intracellular molecules, but 
many studies have shown that they can also appear in 
extracellular locations or in the blood [76- 81. 
Extracellular or membrane-bound Hsps can mediate 
immunological functions and may act as a potent danger 
signal, activating the immune system response [82]. 
Several years ago, some researchers hypothesized that 
exosomes may provide a secretory pathway, allowing 
cells to actively release specific Hsps [48, 83]. Exosomes 
are important in cell-to-cell communication; on the other 
hand, they are also considered to be key players in 
intercellular cross-talk [82]. Recent studies have validated 
this hypothesis by demonstrating that specific members 
of the Hsp family, such as Hsp70, Hsp90 and Hsp60, can 

be secreted by cancerous cells via the exocytotic pathway 
(Table 1) [13, 33, 84, 85]. 
 
Hsp70 and Hsp90 are classic cytosolic chaperonins  and 
normally fulfil a cytoprotective role inside cells [89]. 
Hsp70 is actively secreted by different types of cells 
through non-classical protein secretory routes, including 
exosome pathways [84]. Extracellular Hsp70 exert 
immunomodulatory effects and play a key role in the 
immune response to cancer cells [85]. For example, 
microvesicles containing Hsp70 on their surface activate 
macrophages [90], or natural killer cells [86, 87] and play 
an important role in the regulation of vascular 
homeostasis [84]. Hsp90α is released by invasive cancer 
cells via exosomes and its release enhances cancer cell 
migration [88]. In recent years, new data has revealed 
new extracellular roles for Hsp60. Hsp60 is considered a 
mitochondrial protein that is, together with its co-
chaperone Hsp10, essential for mitochondrial protein 
folding [74]. There is increasing evidence localizing 
Hsp60 outside of the cells, where it mediates interaction 
between immune cells and other body tissues [91]. In 
addition, much recent experimental evidence has 
demonstrated that Hsp60 can be localized in 
extramitochondrial sites [65]. In particular, it has been 
detected in the cytosol [92], intracellular vesicles [88], on 
the surface of normal and tumour cells [33, 93] and in 
 

 

Tumoural Exosomal Hsps Tumoural Cells Origin Functions Ref.
Hsp70 Human Erythroleukemia 

cells 
 
Breast carcinoma cells 

Immunomodulatory 
functions 

[85] 
 
[85] 

Human pancreas 
carcinoma cells 
 
Human colon carcinoma 
cells 
Human hepatocellular 
carcinoma cells 

Stimulation of migration 
and cytolytic activity of 
natural killer cells 

[86] 
 
 
[86] 
[87] 

Hsp90 Human hepatocellular 
carcinoma cells 
 
Glioblastoma cells 
Fibrosarcoma cells 
Breast cancer cells 

Stimulation of migration 
and cytolytic activity of 
natural killer cells 
Cancer cells motility 

[87] 
 
 
[88] 
[88] 
[88] 

Hsp60 Human Erythroleukemia 
cells 
Human lung 
adenocarcinoma 
Human mucoepidermoid 
bronchial carcinoma 
Human hepatocellular 
carcinoma cells 
 

Immunomodulatory 
functions (?) 
 
 
 
 
Stimulation of migration 
and cytolytic activity of 
natural killer cells 

[13] 
[13] 
 
 
[13, 33]  
 
[87] 
 

Table 1. Origin and hypothetic functions of tumoural exosomal Hsps 
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blood [76]. In the cytosol, Hsps may play two distinct 
roles, given the numerous evidence implying that Hsps 
have pro-survival effects, while under different 
conditions they have been shown to have pro-apoptotic 
effects [92]. It is known that circulating Hsp can have 
immunosuppressing or immunostimulating effects, 
depending on the interaction between Hsps and cells or 
immune system components. For example, Hsp60 has 
been found in the blood of patients with Hashimoto’s 
Thyroiditis (HT) and its presence may be involved in HT 
pathogenesis via an antibody mediated immune 
mechanism [94]. Moreover, extracellular Hsp60 can 
interact with a variety of receptors present on the surface 
of plasma cells, such as TLR, CD14, CD40 and CD91 [59]. 
Furthermore, Hsp60 appears to be involved in the 
activation of macrophages and neutrophils in patients 
with chronic lung diseases [95]. Levels of Hsp60 are 
increased in many types of tumours and it has been 
hypothesized that Hsp60 overexpression has an 
important role in cancer development and progression 
[65]. The use of Hsp60 as a biomarker for disease has 
recently been proposed and some researchers are 
studying the use of potential Hsp60 inhibitor agents in 
the treatment of certain diseases, including cancer [64, 
96]. In heart failure, Hsp60 is released by cardiomyocytes 
and its presence in the serum may be correlated with the 
severity of the disease and cardiovascular risk [77, 97]. 
Moreover, Gupta and Knowlton [98] demonstrated that 
Hsp60 is released by adult cardiomyocytes through an 
exosome-mediated process in both the basal state and 
following mild stress. Another group of researchers 
demonstrated that fibrosarcoma cells release Hsp60 
through the conventional endoplasmic reticulum Golgi 
protein transport pathway [99]. More recently, our 
research group showed that Hsp60 is released by tumour 
cells and not by normal cells, and that the mechanism of 
release is mediated by an unconventional secretion 
mechanism, i.e., the lipid raft exosome pathway [13]. 
These findings suggest a new role for extracellular Hsp60 
in the cross-talk between tumour cells and the immune 
system [33, 99]. In fact, the expression of Hsp60 on the 
surface of exosomes released by tumour cells may be 
considered as a danger signal for the immune system 
[33]. Further studies are certainly needed to explain the 
unusual exosome membrane localization of Hsps [33, 
100]. Experimental data show that exosomal Hsps may 
have opposing roles, that is, immunosuppressing or 
immunostimulating effects. These different effects 
depend on the interaction between exosomal Hsps and 
cells or immune system components. For example, it has 
been demonstrated that the histone deacetylase inhibitor, 
MS-275, can significantly alter the immune molecule 
content and categories in exosomes of hepatocarcinoma 
cells; in particular, treatment with MS-275 increased the 
expression of Hsp70. Exosome modification by MS-275 
can significantly increase the cytotoxicity of NK cells and 

the proliferation of PBMC, determining a reduction in 
tumour growth [101-104]. On the other hand, designing 
inhibitors of Hsp-associated exosomes may be useful to 
hindering the dissemination of metastases [88]. Moreover, 
the presence of Hsps associated with circulating 
exosomes can be evaluated and monitored quantitatively 
in the blood of patients with tumours associated with 
over-expression of one or more Hsps.  
 

  

Figure 1. Pathways of secretion of heat shock proteins (Hsps) 
by tumour cells. Cytosolic Hsps can be released in free, soluble 
forms by Golgi transport vesicles or can be bound to 
exosomes. The latter is produced by multivesicular bodies 
(MVB) fusing with the plasma membrane of cells. Lipid 
rafts participate in Hsps release by exosomes, as they 
are internalized by endocytosis, which for various reasons that 
remain unknown reach the plasma membrane of tumour cells, 
and enter into MVB. Secreted Hsps may interact with other cells 
in the peritumoural environment or be released into the 
bloodstream. 
 
4. Conclusions  
 
Exosomes are currently considered to be bioactive 
vesicles that are useful in the study of normal biological 
functions, but also for understanding pathological 
conditions. The molecular composition of exosomes 
reflects the specialized functions of the original cells. 
Through exosomal ability to bind target cells and/or 
exchange molecules, they can modulate the activity of 
other cells. Hsps were originally described as intracellular 
molecular chaperones with a cytoprotective role. 
However, more novel functions have now been attributed 
to the Hsp proteins, depending on their localization. In 
particular, circulating Hsps (free or associated to 
exosomes) have immunological functions and may be 
involved in tumour progression [see Figure 1].  
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Hsps found on the surface of exosomes secreted by 
normal and tumour cells might be key players in 
intercellular cross-talk. There could be a novel and 
interesting link between Hsps and the immune system. 
Elsner et al. [101] demonstrated that Hsp70-positive 
exosomes released by tumour cells increase the NK cell 
activity against cell targets, resulting in reduced tumour 
growth. Therefore, exosomes can function as independent 
cell-to-cell carriers. Effectively, the immune response can 
be facilitated and enhanced by exosomes and their 
immunomodulatory molecules (such as Hsp70, 80, 90 and 
MHC class I molecules), released by the cell source into 
the blood [102]. Exosomes secreted by tumour cells and 
engineered to express specific Hsp molecules could 
improve antitumor immunity [105]. Therefore, 
engineered exosomes could be used as potential tumour 
vaccines or immunotherapeutic vesicles. Indeed, 
exosomes and their molecular cargo, including Hsps, are 
essential players in cell-to-cell communication and 
immunoregulation. There is significant potential for 
future clinical applications, including the use of Hsps as 
potential novel biomarkers for the diagnoses, prognoses 
and follow-up of different diseases, or for therapeutic 
applications and drug delivery. In particular, in  light of 
new technical approaches, the levels of exosomes in 
human body fluids can be detected and quantified [106], 
and it is clear that exosomes have the potential to become 
important circulating biomarkers in the vast majority of 
human diseases [107]. Moreover, their intriguing capacity 
to shuttle molecules of various origins may well become 
one of the most important available drug delivery 
systems; they may therefore be of paramount importance 
for the future of nanomedicine [108]. 
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