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Abstract

Exosomes are membrane vesicles with a diameter of 40-100
nm that are secreted by many cell types into the extracel‐
lular milieu. Exosomes are found in cell culture superna‐
tants and in different biological fluids and are known to be
secreted by most cell types under normal and pathological
conditions. Considerable research is focusing on the
exploitation of exosomes in biological fluids for biomarkers
in the diagnosis of disease. More recently, exosomes are
being exploited for their therapeutic potential. Exosomes
derived from dendritic cells, tumor cells, and malignant
effusions demonstrate immunomodulatory functions and
are able to present antigens to T-cells and stimulate antigen-
specific T-cell responses. Exosomes have also been exam‐
ined for their therapeutic potential in the treatment of
infections such as toxoplasmosis, diphtheria, tuberculosis
and atypical severe acute respiratory syndrome as well as
autoimmune diseases. Attempts to find practical applica‐
tions for exosomes continue to expand with the role of
exosomes as a drug delivery system for the treatment of
autoimmune/inflammatory diseases and cancers.
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1. Introduction

Exosomes are membrane vesicles with a diameter of 40-100
nm, a sub-fraction of extracellular vesicles that are secreted
by many cell types into the extracellular milieu [1, 2]. They
are equivalent to cytoplasm enclosed in a lipid bilayer with
the external domains of transmembrane proteins exposed
to the extracellular environment. Exosomes form in a
particular population of endosomes, called multivesicular
bodies (MVBs), by inward budding into the lumen of the
compartment. Upon fusion of MVBs with the plasma
membrane, these internal vesicles are secreted. While the
biological function of exosomes is still under investigation,
they can mediate communication between cells, provide a
protective effect against or induce intra-and extracellular
stress and are involved in the exchange of functional
genetic information [1-3].

Exosomes are found in cell culture supernatants and in
different biological fluids and are known to be secreted
by  most  cell  types  under  normal  and  pathological
conditions.  So  far,  exosomes  have  been  found  to  be
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released  by  all  cells  examined  today  such  as  B-cells,
dendritic  cells  (DCs),  T-cells,  mast  cells,  epithelial  cells,
and  platelets  and  have  been  found  to  be  present  in
physiological  fluids,  such  as  bronchoalveolar  lavage
(BAL) fluid, serum, urine, breast milk, cerebrospinal fluid,
saliva,  and  malignant  effusions  [4-14].  The  presence  of
exosomes  in  biological  fluids  could  be  exploited  for
biomarkers in the diagnosis of disease [12, 13, 15-20].

The protein composition of exosomes has been character‐
ized using immunoblotting [21], peptide mass spectrosco‐
py mapping [22], and affinity extraction into magnetic
beads, followed by phenotyping by flow cytometry [23].
Exosomes derived from dendritic cells [22, 24], B lympho‐
cytes [21], intestinal epithelial cells [25] and other cell types
[26-33] revealed the presence of common as well as cell type
specific proteins. Exosomes from different cellular origins
sequester a common set of molecules that are essential for
their biogenesis, structure and trafficking – as well as cell-
type specific components which, presumably, reflect the
biological function of the parent cell. Ubiquitous proteins
in exosomes include cytoplasmic proteins, such as tubulin,
actin and actin-binding proteins, the heat shock proteins
Hsp70 and Hsp90, and trimeric G proteins, as well as
membrane proteins, such as members of the tetraspanin
family (CD9, CD63, CD81, CD82) [37], which have been
suggested to be involved in cell adhesion, activation,
proliferation and antigen presentation. In addition to the
conserved set of proteins, exosome functionality seems to
be determined by cell-type specific proteins that reflect the
specialized function of the original cells. For example,
exosomes originated from dendritic cells are enriched with
major histocompatibility complex (MHC) class I and II and
express co-stimulatory molecules like CD54, CD80 and
CD86 (also known as ICAM-1, B7-1 and B7-2, respectively)
suggesting a T-cell stimulatory capacity [15, 22, 24, 32-34].
Exosomes from synovial fluid contain citrullinated pro‐
teins (eg. fibrin α-chain fragment, fibrin β-chain, fibrinogen
D fragment and Spα receptor) which might play an
important role in converting nonimmunogenic proteins
into autoimmunogenic proteins [35]. Exosomes collected in
the urine contain aquaporin-2 which might be used as a
biomarker for renal diseases [36].

Lipids found on exosomes are characteristic of the cell
origin, with most of the lipid analytical work being
performed on exosomes derived from cancer cells, reticu‐
locytes, mast cells, B lymphocyte cell lines and human DCs
[37-40]. The typical lipid composition of mast cell-derived
exosomes includes lysophosphatidylcholine, sphingomye‐
lin, phosphatidylcholine, phosphatidylserine, phosphati‐
dylethanolamine, cholesterol and diglyceride [40].
Although most of these lipids are also present on exosomes
isolated from other cell types, the ratios of these lipids vary.
For example, the ratio of cholesterol/phospholipid is lower
in exosomes derived from mast cells and reticulocytes
when compared with B-cell-derived exosomes [39].

2. Isolation techniques

Exosomes represent only a small fraction of all components
present in a culture medium, cytosol or body fluids.
Recognizing the fact that the exosomes have a size that
range between 40 to 100 nm, with density ranging between
1.13 and 1.21 g/mL, and contain cell type specific proteins,
isolation procedures have focused on techniques based on
size and density and biochemical properties. Usually,
exosomes have been isolated by serial centrifugation of
culture supernatant and body fluids to eliminate cells and
debris which consists of multiple steps: first, a low speed
spin (300 x g for 10 minutes) which eliminates dead cells
and bulky apoptotic debris, followed by higher speed
spins, which varies among different protocols, from 1000 x
g to 20,000 x g and eliminates larger vesicles and debris. A
final high speed spin at 60,000-100,000 x g for a period of
more than 1 hour precipitates a pellet, which consists of
extracellular vesicles including exosomes. Some protocols
integrate the usage of filtration steps (like 0.8 µM and 0.22
µM filters) and spinning to eliminate cell debris and other
contaminants. However, ultracentrifugation results in the
formation of a pellet that could aggregate exosomes with
other vesicles, particles, apoptotic bodies or other cell
debris and interfere with purification. Moreover, applying
excessive centrifugation force and time may lead to
rupturing the exosomes. Also, taking advantage the
density properties of exosomes, they can be purified from
protein aggregates, apoptotic bodies and nucleosomal
fragments by floatation into a sucrose density gradient.
This procedure can eliminate impurity with composition
different from that of exosomes. However, with these
procedures, we can only obtain exosomes heterogeneous
with microvesicles, because current methods could not
distinguish a 50-100nm “exosome” from a 50-200nm
“microvesicle”. These processes result in variable recovery
of the starting amount of exosomes [13, 41-44]. Although
this branch of science is growing so fast, the quality and
purity of these methods for exosomes preparation do not
fulfill the common good manufacturing practice (GMP)
criteria. Because exosomes prepared in this way are easily
contaminated with media proteins and contain only 5-25%
of starting concentration. Instead of differential centrifuga‐
tion, a newer method for purifying clinical grade (cGMP)
exosomes derived from antigen presenting cells employs
ultrafiltration cartridges and pumps and is especially
useful for purifying exosomes from large volumes (>1 liter)
of conditioned medium. More specifically, the ultrafiltra‐
tion process were incorporated through a 500-kDa NM
WCO hollow fiber cartridge that allowed the passage of
unaggregated media proteins through the pores of the
membrane, while retaining aggregate proteins in the
retentate without significant changes on the composition
and performance of the media [44]. As it is believed, the
protein aggregates are much more immunogenic than the
soluble form because of preferential capture by antigen
presenting cells [45]. Thus, the removal of co-purifying
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proteins such as human haptoglobin and albumin aggre‐
gates prevents their undesirable immune responses to
serum components [45-48]. Furthermore, during previous
co-purifying with exosomes, these proteins can reach a
higher concentration in the final product making it an
essential aspect for the purification of cGMP exosomes.

Another isolation method, which is based on biochemical
composition of exosomes utilizes magnetic beads coated
with monoclonal antibody specific for a protein known to
be present on the exosome membrane. For example, with
the use of antibody-coated magnetic beads, using antibod‐
ies against tumor-specific proteins, it has been possible to
collect HER2-expressing tumor exosomes from the culture
supernatant of breast adenocarcinoma cell lines and ascites
of an ovarian cancer patient [41, 43, 49].

3. Therapeutic use of Exosomes

In light of the fact that exosomes secreted by neoplastic cells
are close copies of the originating cells in terms of their
antigenicity, the use of exosomes in cancer immunotherapy
holds promise. For example, melanoma-derived exosomes
contain the highly immunogenic antigens MelanA/Mart-1
and gp100 and those released by colon carcinoma cells
express CEA and HER2. This antigenic content is not only
a feature of in vitro-released exosomes, but also can be
found in microvesicles (or fragments of plasma membrane
ranging from 50 nm to 1000 nm shed from almost all cell
types) isolated from plasma of cancer patients as well,
evidence that demonstrates the tumor origin of these
organelles [14, 50]. Exosomes containing tumor antigens
have been shown to stimulate CD4+and CD8+T cells and
exosomes from in vitro cultured antigen presenting cells
(APCs) administered in vivo can induce T-cell responses
resulting in inhibition of tumor growth [51-53]. Also,
dendritic cell-derived exosomes pulsed with tumor-
derived antigens elicit potent antitumor T-cell responses
and tumor regression in experimental animals [14].
However, while translating findings from mouse to
human, we should be cautious about the difference
between human and mouse immune systems. Despite
many features conserved between human and mouse
systems, there are substantial differences between them.
Although extensive conservation exists when comparing
activated immune T-cells, the pro-inflammatory response
of mice is distinct from humans. Importantly, canonical
Th17 differentiation signature (IL17A, F, IL23R, RORC,
BATF, and CCL20) is different in human either because of
an inherently higher responsiveness of the Th17 module in
human or presence of fast reactive memory T-cells in
human cells. In contrast, activation of CD24 or Lag3 seemed
exclusive to mouse cells. Moreover, after pre-stimulation in
similar conditions, mouse CD4 T cells activated slightly
weaker than humans.

Phase I clinical trials in human cancer evaluated the
effectiveness of patient-specific exosomes released by
dendritic cells and loaded with tumor antigen-derived

peptides (Dexosomes [Dex]) for melanoma and non-small
cell lung cancer and showed that dexosome immunother‐
apy was feasible, safe and led to the induction of both innate
and adaptive immune responses, disease stabilization and
long-term survival for several patients [54, 55]. Also,
ascites-derived exosomes derived from colorectal cancer
patients were shown to be safe, nontoxic, and tolerable
when used as a cancer vaccine, and in combination with
GM-CSF can efficiently induce potent carcinoembryonic
antigen (CEA)-specific antitumor immunity in advanced
colorectal cancer patients [56]. It should be noted however
that the potential antitumor effects of tumor-derived
exosomes is still unclear as evidenced by the fact that in
cancer patients with advanced disease, tumor-derived
exosomes do not exert any effective immune-stimulatory
or antitumor effects despite the abundant production of
tumor-derived exosomes [53]. Tumor-derived exosomes
have also been shown to be immunosuppressive with
direct administration of tumor-derived exosomes actually
resulting in promoted tumor growth [53, 54]. Tumor-
derived exosomes were shown to directly suppress the
activity of effector T cells or target myeloid cells to modu‐
late their differentiation and function such as in the case
where exosomes derived from human melanoma cell lines
and colorectal carcinoma cell lines were demonstrated to
skew monocyte differentiation into DCs toward the
generation of myeloid-derived suppressor cells (MDSCs)
and exert TGF-β1 mediated suppressive activity on T cells
in vitro [53-55]. A better characterization of tumor-derived
exosomes and understanding of their effects on cancer
pathogenesis are warranted to further improve their use in
cancer chemotherapy.

Exosomes are favorable as vaccine candidates in infections
such as toxoplasmosis, diphtheria, tuberculosis and
atypical severe acute respiratory syndrome. Toxoplasmo‐
sis is induced by the obligate intracellular parasite Toxo‐
plamsa gondii. It has been reported that transfer of DCs
pulsed with T. gondii antigens (TAg) to healthy mice
induced protection against a virulent oral challenge of T.
gondii but this approach is limited due to difficulty to obtain
high quantity of DCs suitable for vaccination [57-59]. An
alternative to DC-based vaccines being investigated is the
ability of exosomes, especially those derived from DCs, to
induce protective immune responses. Exosomes secreted
by SRDC (CD8α+CD4− DC cell line) pulsed in vitro with
Toxoplasma gondii-derived antigens (Exo-TAg) induced
protective responses against infection with the parasite in
both syngeneic and allogeneic mice. After oral infection,
syngeneic CBA/J mice exhibited significantly fewer cysts in
their brains and allogeneic C57BL/6 mice survived Immune
protection is associated with the induction of humoral and
cellular TAg-specific responses[60].

Exosomes have been examined for their therapeutic
potential in the treatment of other infectious diseases as
well. It has been shown that murine bone marrow-derived
DCs (BMDCs) pulsed in vitro with intact diphtheria toxin
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(DT)-released exosomes, which upon injection into mice
induce immunoglobulin G (IgG)2b and IgG2a responses
specific for DT [61]. Infection with M. tuberculosis primes
macrophages for the increased release of exosomes and
microvesicles bearing M. tuberculosis peptide-MHC-II
complexes that may generate antimicrobial T-cell respons‐
es [62, 63]. Exosomes as a vaccine has also been explored in
infection with the SARS-associated coronavirus (SARS-
CoV) known to induce an atypical pulmonary disease with
a high lethality rate. Studies by Kuate et al. demonstrated
that exosomes containing spike S protein of SARS-CoV
induced neutralizing antibody titres and this immune
response was further enhanced by priming with the SARS-
S exosomal vaccine and then boosting with the currently
used adenoviral vector vaccine [64].

Exosomes may be potential candidates as vaccines for
allergic diseases. Exosome-like vesicles isolated from the
bronchoalveolar lavage fluid of tolerized mice by respira‐
tory exposure to the olive pollen allergen Ole e 1 or found
to induce tolerance and protection against allergic sensiti‐
zation in mice [65]. Serum containing exosomes from OVA-
fed experimental animals can induce tolerance to OVA
when injected into naïve recipients [66, 67]. Exosomes
found in breast milk [68] contain molecules such as MUC-1,
MHC class I and II, CD86 and heat-shock proteins (Hsps)
and have an immune regulatory role as they inhibit IL-2
and IFN-γ production and induce Treg cells
(FoxP3+CD4+CD25+cells); however, the biological role of
exosomes in milk and their impact on allergy development
remains under investigation [15].

Exosomes  have  also  proved  useful  in  treatment  of
autoimmune  diseases  in  animal  models.  Kim  et  al.
showed  that  administration  of  exosomes  derived  from
DCs-expressing recombinant IL-4 was able to modulate
the activity of APC and T cells in vivo, partly through a
FasL/Fas-dependent  mechanism,  resulting  in  effective
treatment  against  collagen-induced  arthritis  through
suppression of the delayed-type hypersensitivity inflam‐
matory  response  [69].  Also,  vaccination  of  mice  with
exosomes from IL-10, FasL, and indoleamine 2,3-dioxyge‐
nase-modified DC reduced the clinical  manifestation of
mice  with  rheumatoid  arthritis  [70-75].  Exosomes  from
TGF-β1-modified  DCs  reduced  disease  activity  and
incidence  of  intestinal  bleeding  in  a  murine  model  of
inflammatory bowel disease (IBD)[75, 76].

More recently, exosomes have been seen as an alternative
to liposomes in the delivery of therapeutic agents [77-79].
Exosomes are comprised of natural non-synthetic compo‐
nents, and their small size and flexibility enables them to
cross major biological membranes, while their bi-lipid
structure protects the cargo from degradation, facilitating
delivery to its target [80, 81]. In addition, these naturally-
occurring secreted membrane vesicles are less toxic, and
better tolerated in the body as evidenced by their ubiqui‐
tous presence in biological fluids [80]. For example,

exosomes have been used to deliver anti-inflammatory
agents, such as curcumin, to activated myeloid cells in
vivo. Immune dysfunction is properly investigated during
various tumor growth and progression. CD8+cytotoxic T
lympocytes play a substantial role in antigen-specific
tumor destruction and CD4+T cells assists CD8+T-cells in
this scenario. Tumors frequently target and inhibit T-cell
function to evade from immune response. Curcumin has
been shown to inhibit the suppressive activity of T-cells via
down-regulation of the production of TGF-β and IL-10 in
T-cells as well as increasing the ability of effectors T-cell to
destroy cancer cells. Curcumin delivered by exosomes is
more stable and more highly concentrated in the blood [82].
Exosomes can be used therapeutically to target EGFR-
expressing cancerous tissues with nucleic acid drugs [83].
In this situation, targeting can be achieved by engineering
the donor cells to express the transmembrane domain of
platelet-derived growth factor receptor fused to the GE11
peptide. Intravenously injected exosomes delivered let-7a
miRNA to EGFR-expressing xenograft breast cancer tissue
in RAG2(-/-) mice [83].

Exosomes are natural carriers of RNA making them a
valuable tool for the delivery of RNA interference (siRNA)
and microRNA (miRNA) regulatory molecules in addition
to other single-stranded oligonucleotides [84]. It has been
demonstrated that exosomes can be used as vehicles for
delivering siRNA to suppress the growth of cancer cells
[85]. In addition, tumor-suppressive miRNAs delivered via
exosomes confer a gene silencing effect on recipient cells,
inhibiting cancer proliferation [86]. Dendritic cell (DC)-
derived exosomes have been exploited for targeted RNAi
delivery to the brain after systemic injection [87]. Similarly,
encapsulation of BACE (a therapeutic target in Alzheimer’s
disease) siRNA in exosomes derived from dendritic cells
expressing Lamp2b, an exosomal membrane protein that
reduces immunogenicity, fused to the neuron-specific RVG
peptide resulted in delivery of BACE siRNA to the brain
and decreased gene expression in neurons, microglia and
oligodendrocytes in the brain [88].

Exosomes are being considered as a potential therapeu‐
tic  tool  in modulating neovascularization.  Activation of
neovascularization  can  lead  to  healing  of  wounds  and
reconstruction  of  hypoxic  injury  while  hampering
neovascularization  delays  tumor  development  [89].
Exosomes  secreted  from  human  CD34(+)  cells  have
angiogenic  activity  in  isolated  endothelial  cells  and  in
murine models of vessel growth and have been postulat‐
ed to represent a significant component of the paracrine
effect  of  progenitor  cell  transplantation  for  therapeutic
angiogenesis  enhancing recovery from ischemic disease
or  injury  [90].  Endothelial-derived  exosomes  carrying
proteins such as Delta-like 4 (a transmembrane ligand for
Notch receptors that is expressed in arterial blood vessels
and sprouting endothelial cells) and matrix metalloprotei‐
nases lead to angiogenesis [66, 67, 89].
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In conclusion, investigation in exosome biology has been a
relatively new area of research and much work remains to
be done to ensure the safe and effective use of exosomes for
therapeutic applications. Exosomes appear to be non-
cytotoxic and well tolerated. As our understanding of the
biology of exosomes intensifies, so will the range of
principles for the design of exosomes and exosomal
conjugates used in the development of immunotherapeu‐
tics, vaccines, and angiogenesis modulators. The role of
exosomes as a next generation drug delivery system
appears to be advantageous over existing drug delivery
systems because of their small size, lack of toxicity and
target specificity although loading of exosomes without
compromising their biological properties remains a
challenge.
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