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Abstract In this work, we first deal with the modeling of game situations that reach one of possibly many Nash
equilibria. Before an instance of such a game starts, an external observer does not know, a priori, what is the exact
profile of actions – constituting an equilibrium – that will occur; thus, he assigns subjective probabilities to players’
actions. Such scenario is formalized as an observable game, which is a newly introduced structure for that purpose.
Then, we study the decision problem of determining if a given set of probabilistic constraints assigned a priori by
the observer to a given game is coherent, called the PCE-COHERENCE problem. We show several results concerning
algorithms and complexity for PCE-COHERENCE when pure Nash equilibria and specific classes of games, called
GNP-classes, are considered. In this context, we also study the computation of maximal and minimal probabilistic
constraints on actions that preserves coherence. Finally, we study these problems when mixed Nash equilibria are
allowed in GNP-classes of 2-player games.
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1 Introduction
In game theory, a Nash equilibrium represents a situation in
which each player’s strategy is a best response to other play-
ers’ strategies; thus no player can obtain gains by changing
alone his/her own strategy. Nash proved that every n-player,
finite, non-cooperative game has a mixed-strategy equilib-
rium point [Nash, 1950a,b, 1951]; however, more than one
equilibrium may exist and the number of equilibria can be
even exponentially large over some game parameters.

For an observer knowing that an equilibrium is to be
reached, there is an a priori uncertainty before an instance
of the game starts, concerning the exact kind of equilibrium
to be reached and also in knowing the players’ actions in that
instance. Due to the computational complexity in explicitly
producing the set of equilibrium states, the observer consid-
ers that set as hidden or latent. Therefore, it is most natural
to describe the observer’s uncertainty in terms of subjective
probabilities assigned to player’s actions, in which one pre-
supposes a probability distribution over the set of all possible
equilibria. In this way, our aim in this work is to study the
following model.

Observable game An observable game1 is a model of the
scenario comprehending a game and an observer that
assigns subjective probabilities to the possible actions to
be performed by the players in an instance of the game.

An actual scenario of this kind may be seen in the pricing
strategy of oligopolistic markets. So we introduce the fol-
lowing motivational example.

1Not to be confused with partially observable games, which are not
necessarily a related concept.

Motivational Example Assume that Madeira Beverages is
a local beverages company in Madeira island that sells as
its main product, beers. Two companies dominate the coun-
try beer market. They price their products from time to time
in light of competition aiming to conquer the largest market
share and make the most profit. Among the mechanisms of
sale strategies there are price promotions (short-term price
reductions), thus the price portfolio of a company in some
period is not of public knowledge in advance. However, it
is very reasonable to assume that the profits of the compa-
nies in the oligopoly reach an equilibrium during the sales
period under consideration. Oblivious to the oligopoly com-
petition, it is of great interest toMadeira Beverages to predict
the price portfolios of the big companies based on its expe-
rience in observing their competition and pricing strategies;
such prediction might help it to set up its own pricing strategy
and even his production process, which takes place in a small
and more limited industry. This information may be crucial,
for example, for deciding to limit the production of beers that
cannot be competitive with the oligopoly price portfolios of
that period and focus on the production of some other beers
with a more targeted niche or launch new non-beer products.
In this scenario, the big companies, their price portfolios,
and their profits (which may be inferred from their price port-
folios), are respectively the players, their actions, and their
utilities in a game; the local producer with predictions about
the oligopolistic market is the observer with subjective prob-
abilities over the player’s actions.

Such scenario with amarket in equilibrium and an external
agent who has some idea about that equilibrium but is uncer-
tain on the probabilistic distribution on the possible equilib-
ria, hence on the players’ actions, might be formalized as an
observable game. Of course, there may be aspects left out
as it is expected from any theoretical idealization of the real
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world.
We assume that the players involved in a game always react

to each other with a best response in such a way that, since the
game starts, its dynamics converge to an equilibrium. The in-
termediate steps where an equilibrium has not been achieved
yet are not covered by the model, since the observer is only
interested in the final stable outcome. In case there are only
two players and the first one to take an action does it smartly
so that he will not need to change it, the only source of ran-
domness ends up being who will be the first player to take an
action, unless such action puts the second player in a position
to choose among tied best responses. In any case, the pro-
posed model aggregates all the possibilities of randomness
concerning the actions to be taken.

A way for the external observer to assign subjective prob-
abilities to actions is looking at the past reactions of the play-
ers involved in a game situation that repeatedly happens. The
configuration of the repeating games may even change from
one instance to another regarding the allowed actions to each
player or the utility values associated with the action profiles,
however the observer may be able to grasp what kind of reac-
tion is more likely to each player by observing the outcomes
of the previous games.

Unfortunately, not every assignment on action probabili-
ties by an observer finds correspondence to an actual prob-
ability distribution on possible equilibria of a given game;
in fact, some actions may always co-occur at equilibrium, so
constraining their probabilities to distinct values does not cor-
respond to any underlying distribution on equilibria. In case
the observer assigns a set of probabilistic constraints on ac-
tions that correspond to a probability distribution on equilib-
ria, we say the observable game is coherent.

Lack of coherence can have important consequences
which are better seen in a betting scenario where an observer
knows the configuration of a game before one of its instances
is played, and also knows that this game reaches an equilib-
rium. The observer wants to place bets on the occurrence of
actions and an incoherent set of probabilities may lead to sure
loss. So detecting and avoiding such a disastrous assignment
of probabilities may have considerable cost to the observer.
This betting scenario corresponds to de Finetti’s interpreta-
tion of subjective probabilities [de Finetti, 1931, 2017] in
which incoherent probabilities have a one-to-one correspon-
dence to sure loss.

We study the following problems related to observable
games according to pure and mixed Nash equilibrium over
some different classes of games:

The Coherence Problem Given an observable game – a
game together with a set of probabilistic constraints on
its actions –, decide if it is coherent; that is, decide
if there exists an actual probability distribution on the
game equilibria that corresponds to those probabilistic
constraints.

The Extension (Inference) Problem Given a coherent ob-
servable game with probabilistic assignments on some
of the players’ actions, compute upper and lower bounds
on the probabilities of some other action that preserves
coherence.

We can divide the study of equilibrium problems in two

fundamental aspects. On the one hand, the model per se; in
this case, equilibrium concepts are often understood as mod-
els that explain (rational or not) agent behavior, e.g. in the
markets or in a biological system. On the other hand, algo-
rithms; such issues become relevant in the cases where it is
important to actually compute an equilibrium. Coherence of
observable games – or, coherence of probabilistic constraints
on equilibria – does not constitute a concept of equilibrium,
however we can make an analogy between their study and
the two aforementioned aspects. Indeed, the main goals of
this work are:

• Formalize the concept of coherent observable games
and deepen the discussion on the kind of phenomena
such concept models; and

• Solve the coherence and extension problems.

In the conclusions we propose an attempted explanation on
how the algorithmic aspects may affect the phenomena mod-
eled by (in)coherent observable games.

The combination of uncertainty and game equilibria is not
trivial, so in order to better understand it we initially concen-
trate on uncertainty over pure equilibria, a restricted form
of mixed-strategy equilibria in which each player chooses a
unique action strategy, and whose existence is not even guar-
anteed. That is, the observer knows a priori that a pure equi-
librium is to be reached in an instance of a game, but he does
not know exactly what actions make up that equilibrium.

We later consider uncertainty in mixed-strategy equilibria,
a doubly uncertain situation, that combines uncertainty on
the actions to be played in a specific instance of a game with
the probabilistic notion of mixed-strategy. It is important to
note that the notion of probability on equilibria is different
from that of mixed-strategy equilibrium; in fact, these two
notions are independent. The former deals with a probability
distribution on possible equilibria, and the latter allows for
probability distribution on an agent’s actions as part of the
player’s strategy.

The paper is organized as follows. In Section 2, we de-
fine the necessary game-theoretic preliminaries for this work.
The concept of observable game and the coherence and ex-
tension problems in the restricted setting of pure equilibria
are formally defined in Section 3. In Section 4, we show the
linear algebraic formulation of coherence and extension prob-
lems and some complexity and inapproximability results, and
propose solutions to the problems via reduction results; we
also discuss the relations between coherence and probabilis-
tic satisfiability problems. In Section 5, we generalize all the
concepts and problems to the setting which includes mixed
Nash equilibria; we discuss algorithms and show complex-
ity and inapproximability results. Finally, Section 6 has a
discussion on related work and our conclusions are drawn in
Section 7.

2 Preliminaries on games
A game is a triple G = ⟨P,A, u⟩, where P = {1, . . . , n}
lists the n players in the game, A = A1 × · · · × An is a set
of action profiles, in which each Ai is the set of all possible
actions for player i, and u = ⟨u1, . . . , un⟩ is a sequence of
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utility functions, in which ui : A → Q is the utility function
for player i. Assume that Ai ∩Aj = ∅ for player i ̸= j.

An action profile e = ⟨a1, . . . , ai, . . . , an⟩ is a pure
(Nash) equilibrium if, for every player i, ui(e) ≥
ui(a1, . . . , a

′
i, . . . , an) for every a′

i ∈ Ai. In an equilibrium,
no player has any advantage in switching actions. A gameG
may have zero or more pure equilibria.2 We write ai ∈ e to
express that ai is the ith component of e.

3 Formalizing the concept
In order to deal with the scenario where an equilibrium is
to be reached but its action profile is unknown, we assign
probabilities to equilibria:3 let EG = {e1, . . . , eM } be the
set of all equilibria associated with game G; we consider a
probability function over G-equilibria P : EG → [0, 1] ∩
Q such that

∑
ei∈EG

P (ei) = 1. We define the probability
P (ai) that ai ∈ e ∈ EG is executed in a game G as

P (ai) =
∑

j | ai∈ej

P (ej).

Given a game G and an equilibrium probability function
P , it is possible to compute the probability of any action;
however we face two problems. First, the number of equi-
libria may be exponentially large in the numbers of players
and of actions allowed for players. Second, we may not know
the equilibrium probability function P , which would be hard
to establish in the presence of a large amount of equilibria.
Instead we are presented with the situation where an equilib-
rium is to be reached in instance of a game G and subjective
probabilities are assigned to the actions in G by an external
observer. The observer is assumed to know the structure of
G and that its instance being playedwill reach an equilibrium,
however he ignores what exact equilibrium will be reached.

We formalize such situation by an observable game de-
fined as a pair G = ⟨G,Π⟩, where G is a game and Π is a
set of probabilistic constraints on equilibria (PCE), that is a
set of probability assignments on actions limiting the prob-
abilities of some actions occurring in an equilibrium. We
assume that a set of PCE has the following format:

Π =
{
P (αk) ▷◁k pk

∣∣∣ ▷◁k∈ {≤,≥,=}, 1 ≤ k ≤ K
}
,

where αk are actions in gameG, pk are probability values in
[0, 1] ∩ Q andK ∈ N∗ is the number of constraints in Π.

Then, given an observable gameG = ⟨G,Π⟩, we are asked
to decide the existence of an underlying probability function
P that satisfiesΠ; and, in case one exists, wewant to compute
the range of probabilities for an unconstrained action ai. The
former problem is the probabilistic coherence problem and
the second one is the probabilistic extension problem.

Definition 1 (Coherence Problem) Given an observable
game G = ⟨G,Π⟩, PCE-COHERENCE consists of deciding

2Only mixed-strategy equilibria are guaranteed to exist, not pure ones;
but every pure equilibrium is also a mixed-strategy equilibrium [Nash,
1951].

3N.B. Again, this probability function over equilibria should not be con-
fused with probabilities in mixed-strategies.

if it is coherent, that is if there exists a probability function
over the set ofG-equilibria that satisfies all constraints in the
set Π of PCE. PCE-COHERENCE rejects the instance if it is
not coherent or if there exists no equilibrium in G. 2

Definition 2 (Extension Problem) Let G be a coherent ob-
servable game. Given an action ai ∈ Ai, PCE-EXTENSION
consists in finding probability functions P and P that satisfy
Π such that P (ai) is minimal and P (ai) is maximal. 2

The coherence of an observable game models the interac-
tion that the uncertainty about the game should have with the
knowledge that such game reaches equilibrium. Thus, an in-
coherent observable game explains the inevitable failure of
the observer in taking advantage of his position of observer,
e.g. the sure loss of the better in de Finetti’s probability in-
terpretation or the poor management of the local beer pro-
ducer observing the oligopolistic market. However, it is im-
portant to notice that the observer’s subjective probability as-
signments may be coherent and still far from reality. In this
way, an incoherent observable game alone may be enough to
explain the failure of the observer, but a coherent observable
game is not enough to guarantee his success. All in all, the
sharpness of the observer’s probability assignments also de-
pends on how deep is his knowledge about the game and to
be coherent is only part of his enterprise in making a good
analysis of the game he observes.

Example 1 Suppose we have a game betweenAlice and Bob
in which Alice has three possible actions a1, a2 and a3, and
Bob also has three possible actions b1, b2 and b3, such that
the joint utilities are given by Table 1. This game has three
pure Nash equilibria: ⟨a1, b1⟩, ⟨a2, b3⟩, and ⟨a3, b3⟩, which
are stressed in bold. Suppose the game will reach a pure equi-

Table 1. Utility functions for Alice and Bob.
b1 b2 b3

a1 2,2 1, 1 1, 0
a2 1, 2 5, 4 1,5
a3 0, 1 2, 3 1,3

librium state, in which case Bob and Alice will have chosen
to play a single action; we now want to see through an ex-
ternal observer’s eyes who does not know which equilibrium
will be reached, however gives to the action a2 the probabil-
ity of 1

3 . Is this restriction coherent? And if it is, what is
the lower bound on the probability of Bob playing b3 this ob-
server should assign in order to remain coherent? Can it be,
say, 1

4?
Let us formalize such situation by G1 = ⟨G1,Π1⟩, where

G1 = ⟨P,A, u⟩, in which P = {a, b}, Aa = {a1, a2, a3},
Ab = {b1, b2, b3} and u is given by Table

A game instance known to reach an equilibrium may be
seen as a particular encoding of a propositional theory. Given
a game G, consider the propositional logic language LG

whose atomic formulas are related to the actions in G; each
action ai ∈ Ai is associated to the atomic formula ai. So
atomic formulas ai represent the occurrence of action ai at
the equilibrium reached in some instance of G. On the se-
mantic side, each pure equilibrium e defines a valuation ve

such that, for every action ai ∈ Ai, ve(ai) = 1 iff ai ∈ e. A
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formula φ ∈ LG describes a Boolean combination of such
statements at equilibrium; we say that a formulaφ is satisfied
at equilibrium e, and denote by φ ∈ e, if ve(φ) = 1. In this
way, the set of formulas φ ∈ LG satisfied at equilibrium, for
some equilibrium of G, constitutes a propositional theory.

Observable game G1 in above example seems to imply that
the formula a2 → b3 holds, which forces P (a2 → b3) = 1
and P (a2) ≤ P (b3). Thus, the propositional theory derived
from a game that will reach an equilibriummay offer a deeper
understanding of such game for an external observer and mo-
tivates the following generalization of our goal problems.

We can generalize the notion of a set of PCE concerning
a game G as a set Π = {φk ▷◁k pk, 1 ≤ k ≤ K}, where
φk ∈ LG. So instead of restricting the probabilities of ac-
tions at equilibrium, we can now describe the probabilities
of compound logical statements at equilibrium.

Definition 3 (Generalized Problems) An observable game
with a set Π of generalized PCE is coherent if there exists a
probability function over the set of equilibria that satisfies all
constraints in Π. And the generalized PCE extension prob-
lem for a coherent observable game with a generalized PCE
Π and a statement ψ ∈ LG consists of finding upper and
lower bounds for P (ψ) that satisfy Π. 2

4 Solving the problems
This section concerns the algorithmic aspects of coherence
of observable games. In this direction, in addition to the pro-
posal of deterministic algorithms, we prove the following re-
sults for reasonable classes of observable games – i.e. classes
where the games have a compact representation.

• If an observable game is coherent, then there is a proba-
bility distribution that assigns non-zero probability to a
“small” number of equilibria that satisfies the observer’s
constraints. By “small” we meanK+1, whereK is the
number of constraints assigned by the observer.

• The coherence problem is in NP.
• If the decision on the existence of pureNash equilibria is

NP-complete, then the coherence problem (considering
only pure equilibria) is also an NP-complete problem.

• There cannot exist polynomial time (additive) approx-
imation algorithms for solving the extension problem
with arbitrarily small precision ε > 0, unless P = NP .

• For a given precision ε > 0, the solution of the exten-
sion problem can be obtained withO(| log ε|) iterations
of the coherence problem.

4.1 Game representations
Wemay find in the literature several ways to represent games,
and this issue is directly related to the configuration of the
instances for our problems and, thus, to its complexity classi-
fication. This work focuses on classes of games whose sizes
are restricted and which possess equilibrium finding algo-
rithms whose computation complexity is also restricted; we
limit our attention to what we call GNP-classes, in which
the representation of the game takes polynomial space in the
numbers n of players and s of maximum actions allowed for

each player, and the computation of equilibria may be made
in non-deterministic polynomial time, also in terms of n and
s. Due to the time complexity restriction, the problem of de-
ciding the existence of equilibria in a given GNP-class has
complexity in NP.

We will always consider the problems PCE-COHERENCE
and PCE-EXTENSION with respect to a GNP-class. In other
words, an instance of an observable game will be a pair G =
⟨G,Π⟩ where G is a game in some GNP-class and Π is a set
of PCE or generalized PCE.

A natural way to represent games is by means of the stan-
dard normal form game, which is instantiated by explicitly
giving its utility functions in a table with an entry for each
action profile a ∈ A containing a list with player utilities
ui(a), for all i ∈ P , as in Example

It is an easy task to compute a pure Nash equilibrium
of a game when its player utility functions are given exten-
sively, as in standard normal form. In that case, we just need
to check, for each action profile e = ⟨a1, . . . , ai, . . . , an⟩,
whether it is a pure Nash equilibrium by comparing ui(e)
with ui(a1, . . . , a

′
i, . . . , an), for all i ∈ P and a′

i ∈ Ai. For
each of the |A| action profiles,

∑
i∈N |Ai| comparisons will

be needed. As the instance of the game is assumed to com-
prehend the utility function values for all players, the com-
putation can be done in polynomial time in the size of the
instance. However, in this explicit and complete format, the
instance is exponential in the number n of players, for if each
player has exactly s actions, each utility function has sn val-
ues and the game instance has nsn values to represent all
utility functions.

Therefore, a class of standard normal form games fails to
be a GNP-class since, despite equilibria being computable
in polynomial time, the utility function requires exponential
space to be explicitly represented.

More compact game representations, along with the com-
plexity issues on deciding the existence of pure equilibria on
them are described, for example, by Gottlob et al. [2005].
In the following, we introduce one of these compact rep-
resentations in order to establish GNP-classes. For that,
we first extend the definition of game to be a quadruple
G = ⟨P,N,A, u⟩, where P , A and u are as before and
N = ⟨N1, . . . , Nn⟩ is a sequence of player neighborhoods,
in which Ni ⊂ P \ {i} is the set of player i neighbors.
In this setting, we assume that ui(a1, . . . , a

′
j , . . . , an) =

ui(a1, . . . , a
′′
j , . . . , an), for j /∈ Ni ∪ {i}.

A graphical normal form game is such that utility func-
tions are extensively given in separate tables, for each
player i, with an entry for each element in ×j∈Ni∪{i}Aj

containing a correspondent utility value ui(a), where it is
enough to consider only the entries in a with indices in
Ni ∪ {i}, since, as defined above, ui(a1, . . . , a

′
j , . . . , an) =

ui(a1, . . . , a
′′
j , . . . , an) for j /∈ Ni ∪ {i}. Graphical normal

form games can be turned into a compact representation by
imposing the bounded neighborhood property: let k be a
constant, we say that a game has k-bounded neighborhood
if |Ni| ≤ k, for all i ∈ P .

Example 2 Let G2 = ⟨P,N,A, u⟩ be a game with P =
{a, b, c}, Aa = {a1, a2, a3}, Ab = {b1, b2, b3}, Ac =
{c1, c2, c3}, and utility functions given by Table 2, from
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which on can infer the set N . G2 is a game in graphical nor-
mal formwith k-bounded neighborhood for k ≥ 1, where for
each player utility, only the previous player’s action matters.
As k < n− 1, G2 has a more compact representation than it
would have in standard normal form. Note that this instance
of graphical normal form game has 27 utility values explic-
itly represented and the same game in standard normal form
would need 81 utility values. 2

It was shown that the problem of deciding whether a
graphical normal form game has pure Nash equilibria is NP-
complete [Gottlob et al., 2005], and that NP-hardness holds
even when the game has 2-bounded neighborhood, where
each player can choose from only 2 possible actions, and the
utility functions range among 2 values [Fischer et al., 2006].
It is trivial to establish a non-deterministic polynomial algo-
rithm for computing pure Nash equilibria on these games by
guessing and then verifying it [Gottlob et al., 2005; Fischer
et al., 2006].

Thus, we establish GNP-classes that contain the games in
graphical normal form with k-bounded neighborhood and at
most s actions allowed to each player, for fixed k ≥ 2 and
s ≥ 2; let GNPs

k represent these classes. Since at most nsk

values are needed to represent the utility functions, the repre-
sentation of the games uses polynomial space in the number
n of players. Also, GNPk=

⋃
s∈N GNPs

k are GNP-classes,
where the representation of the games uses polynomial space
in the number n of players and the number s of maximum ac-
tions allowed.4 Note that deciding the existence of pure equi-
libria in GNPs

k and GNPk are NP-complete problems; we
refer to the GNP-classes with this property as NP-complete
GNP-classes.

4.1.1 Computing Nash equilibria via satisfiability
The Cook-Levin Theorem [Cook, 1971] guarantees that there
exists a polynomial reduction from the problem of comput-
ing pure equilibria on GNP-classes to Boolean satisfiability
(SAT). Next, we are going to show such a reduction.

Given a game G with P = {1, . . . , n} and Ai =
{a1

i , . . . , a
si
i }, for i ∈ P , we build a CNF Boolean formula

φG with the variables xj
i meaning that player i chose action

aj
i . Let k be the maximal |Ni| and s be the maximal |Ai|,
si ≤ s. The formula φG is a set of clauses as follows:

1. For each player i, add a clause
∨

j=1,...,si
xj

i , represent-
ing that each player chooses one action. This set of
clauses is built in time O(ns).

2. For each player i and pair ap
i , a

q
i , with p ̸= q, add a

clause ¬xp
i ∨¬xq

i , representing that each player chooses
only one action. This set of clauses is built in time
O

(
n

(
s
2
))

.
3. For each player i and a =

⟨aq1
1 , . . . , a

qi−1
i−1 , a

qi+1
i+1 , . . . , a

qn
n ⟩, add the clause∨

j∈Ni
¬xqj

j ∨
∨

r∈R x
r
i , where R is the set of indices

r such that ui(aq1
1 , . . . , a

qi−1
i−1 , a

r
i , a

qi+1
i+1 , . . . , a

qn
n ) ≥

ui(aq1
1 , . . . , a

qi−1
i−1 , a

′
i, a

qi+1
i+1 , . . . , a

qn
n ), for all a′

i ∈ Ai,
representing each player chooses one of the best

4It is also necessary that the length of utility function value representa-
tion be bounded by a polynomial in n and s.

responses depending on his neighborhood choices;
there may be more than one best response all of which
have the same utility. This set of clauses is built in time
O(nsk).

For games in GNPs
k, φG is built in linear time in n, and

for games in GNPk, it is built in polynomial time in n and
s. A non-deterministic polynomial algorithm for computing
pure Nash equilibria consists of the aforementioned reduc-
tion from a game G to its corresponding Boolean formula
φG followed by an NP algorithm computing a satisfiable val-
uation for φG; the valuations satisfying φG naturally encode
action profiles that are pure Nash equilibria.

Example 3 For game G2 in Example 2, the CNF formula
φG2 contains the variables x1

a, x2
a, x3

a, x1
b , x2

b , x3
b , x1

c , x2
c , x3

c

and the clauses:

1. x1
a ∨ x2

a ∨ x3
a, x1

b ∨ x2
b ∨ x3

b , x1
c ∨ x2

c ∨ x3
c ;

2. ¬x1
a ∨ ¬x2

a, ¬x1
a ∨ ¬x3

a, ¬x2
a ∨ ¬x3

a, ¬x1
b ∨ ¬x2

b , ¬x1
b ∨

¬x3
b , ¬x2

b ∨ ¬x3
b , ¬x1

c ∨ ¬x2
c , ¬x1

c ∨ ¬x3
c , ¬x2

c ∨ ¬x3
c ;

3. ¬x1
c ∨ x1

a ∨ x2
a, ¬x2

c ∨ x2
a, ¬x3

c ∨ x3
a, ¬x1

a ∨ x1
b , ¬x2

a ∨
x1

b ∨ x2
b , ¬x3

a ∨ x3
b , ¬x1

b ∨ x1
c , ¬x2

b ∨ x1
c ∨ x2

c , ¬x3
b ∨ x3

c .
2

4.2 Complexity of PCE-Coherence
We start by formulating PCE-COHERENCE in linear algebraic
terms. Let G = ⟨G,Π⟩ be an observable game where G is
a game with M pure Nash equilibria and Π = {P (αi) ▷◁i

pi, 1 ≤ i ≤ K} is a set of PCE; consider a K × M matrix
A = [aij ] such that aij = 1 if αi ∈ e, where e is the j-th
pure Nash equilibrium of G, and aij = 0 otherwise. Then,
PCE-COHERENCE is to decide if there is a probability vector
π of dimensionM that obeys:

Aπ ▷◁ p∑
πj = 1 (1)
π ≥ 0

Note that if we were dealing with a generalized PCE Π =
{P (φi) ▷◁i pi, 1 ≤ i ≤ K}, the linear algebraic formulation
would be exactly the same. So from this point on, we do not
make any distinction between generalized PCE and its basic
version.

The observable game G = ⟨G,Π⟩ is coherent if there is
a vector π that satisfies (1). We join the first two conditions
in (1) in just one matrix A. Of course, it is not mandatory
for the PCE-COHERENCE instance to attach a constraint to
each action, in which case matrix A has fewer lines than the
number of actions involved. The next results establish com-
putational complexity for PCE-COHERENCE.

Theorem 1 PCE-COHERENCE over a GNP-class is a prob-
lem in NP. 2

PROOF Suppose the observable game G = ⟨G,Π⟩ is coher-
ent and |Π| = K. Therefore, there exists a probability distri-
bution over the set of all possible pureNash equilibria that sat-
isfy Π. Moreover, by the Carathéodory’s Theorem [Eckhoff,
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Table 2. Utility functions for players a, b, and c, respectively.
a1 a2 a3

c1 10 10 5
c2 5 10 0
c3 5 0 10

b1 b2 b3

a1 10 5 0
a2 10 10 5
a3 5 0 10

c1 c2 c3

b1 10 5 0
b2 10 10 5
b3 5 0 10

1993], there is a probability distributionπ assigning non-zero
probabilities to at most K + 1 equilibria. These equilibria
may be computed in non-deterministic polynomial time since
G is member of a GNP-class. Then, as guessing π and veri-
fying that constraints in Π are satisfied may also be done in
non-deterministic polynomial time, PCE-COHERENCE is in
NP. ■

Theorem 2 PCE-COHERENCE over an NP-complete GNP-
class is NP-complete. 2

PROOF Membership in NP follows from Theorem 1. For NP-
hardness, let us reduce the problem of deciding the existence
of pure Nash equilibria for games in the NP-complete GNP-
class at hand to PCE-COHERENCE over this same class. Given
a game G = ⟨P,N,A, u⟩, we consider the instance of ob-
servable game G = ⟨G, {P (ai) ≥ 0}⟩, for some arbitrary
ai ∈ Ai, for i ∈ P . The reduction from G to G may be
computed in linear time; and G is coherent if, and only if,
G has a pure Nash equilibrium. We have shown that PCE-
COHERENCE is NP-hard. ■

Corollary 1 PCE-COHERENCE over GNPs
k and GNPk are

NP-complete. 2

4.3 An algorithm for PCE-Coherence
We provide an algorithm for solving PCE-COHERENCE by
means of a reduction from this problem to the probabilistic
satisfiability problem (PSAT), which is a well studied prob-
lem for which there already are algorithms and implementa-
tions in the literature [Georgakopoulos et al., 1988; Hansen
and Jaumard, 2000; Finger and De Bona, 2011, 2015].

4.3.1 Probabilistic satisfiability
A PSAT instance is a set Σ = {P (αi) ▷◁i pi | 1 ≤ i ≤ K},
where α1, . . . , αk are classical propositional formulas de-
fined on n logical variables P = {x1, . . . , xn}, which are
restricted by probability assignments P (αi) ▷◁i pi, where
pi ∈ [0, 1] ∩ Q and ▷◁i∈ {=,≤,≥}, for 1 ≤ i ≤ K. Proba-
bilistic satisfiability consists in determining if that set of con-
straints is consistent, defined as follows.

Consider the 2n possible propositional valuations v over
the logical variables, v : P → {0, 1}; each such valuation
is extended, as usual, to all formulas, v : L → {0, 1}. A
probability function over propositional valuations π : V →
[0, 1] is a function that maps every propositional valuation to
a value in the real interval [0, 1] such that

∑2n

i=1 π(vi) = 1.
The probability of a formula α according to function π is
given by Pπ(α) =

∑
{π(vi) | vi(α) = 1}.

Nilsson [1986] provides a linear algebraic formulation of
PSAT, consisting of a K × 2n matrix A = [aij ] such that
aij = vj(αi). The probabilistic satisfiability problem is to

decide if there is a probability vector π of dimension 2n that
obeys the PSAT restriction:

Aπ ▷◁ p∑
πj = 1 (2)
π ≥ 0

If there is a probability function π that solves (2), we say
π satisfies Σ. In such a setting, we define a PSAT instance
Σ as satisfiable if (2) is such that there is a π that satisfies
it. Clearly, the conditions in (2) ensure π is a probability
function. Usually the first two conditions of (2) are joined,
A is a (k+ 1) × 2n matrix with 1’s at its first line, p1 = 1 in
vector p(k+1)×1, so ▷◁1-relation is “=”.

As a consequence of Carathéodory’s Theorem [Eckhoff,
1993], it is provable that any satisfiable PSAT instance has a
“small” witness.

Proposition 1 (Georgakopoulos et al. [1988]) If a PSAT
instance Σ = {P (αi) ▷◁i pi | 1 ≤ i ≤ K} has a solution
π satisfying (2), then there is a solution π′ also satisfying (2)
such that π′

j > 0 for at mostK + 1 elements; the remaining
elements of π′ are thus 0. 2

The existence of a small witness in Proposition 1 serves
as an NP-certificate for a satisfiable instance, so PSAT is in
NP. Furthermore, note that by making all probabilities 1 in
(2), the problem becomes a simple SAT instance, so PSAT is
NP-hard. It follows that PSAT is NP-complete.

4.3.2 Reducing PCE-Coherence to PSAT

The reduction proceeds as follows: consider an observable
game G = ⟨G,Π⟩ where G is member of a GNP-class and
Π = {P (αi) = pi, 1 ≤ i ≤ K} is a set of PCE. We
now construct a PSAT instance ΣG as follows. As G is in
a GNP-class, we have shown in Section 4.1 that there ex-
ists a classical propositional formula φG over a set of atoms
xi, . . . , xN , N ≤ ns, representing all possible actions in
G, such that if φG is satisfied by valuation v, v(φG) = 1,
then {xi | v(xi) = 1} is a set of atoms representing actions
in equilibrium. Furthermore, the actions αi that appear in
Π may also be considered as atoms in x1, . . . , xN . Make
ΣG = Π ∪ {P (φG) = 1}.

Theorem 3 Let G = ⟨G,Π⟩ be an observable game, where
G is a member of a GNP-class and Π is a set of PCE, and ΣG
be its associated PSAT instance constructed from G as above.
Then, G is coherent if, and only if, ΣG is satisfiable. 2

PROOF Suppose G coherent. There exists a probability distri-
bution P over the set of equilibria EG = {e1, . . . , eM } such
that

∑M
j=1 P (ej) = 1 and that satisfies Π. Since each equi-

librium is associated with a valuation that takes value 1 in the
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atoms xi within the equilibrium and 0 otherwise, we consider
the probability distribution over valuations as the probability
distribution over equilibria, taking probability 0 to those valu-
ations which are not associated to equilibria. This probability
distribution makes ΣG satisfiable.

Now, suppose ΣG satisfiable. As the probability distribu-
tion that satisfies ΣG makes P (φG) = 1, it has non-zero
value only on valuations related to equilibria. Since it also
satisfies Π, considering this distribution as a probability dis-
tribution over equilibria, we find G coherent. ■

Corollary 2 PCE-COHERENCE over a GNP-class is polyno-
mial time reducible to PSAT. 2

Remark 1 Since PSAT is in NP, the fact that PCE-
COHERENCE is also in NP follows from Theorem 3. In other
words, Theorem 1 can be seen as a corollary of Theorem 3.2

Example 4 We show the reduction of PCE-COHERENCE to
PSAT for the observable game G2 = ⟨G2,Π2⟩ with G2 in
Example 2 and Π2 a set of PCE consisting of vector p below.
We omit the columns of matrixA in PSAT restriction (2) that
represent valuations which do not satisfy φG2 , calculated in
Example 3. So, the columns in matrix A codify the five pure
Nash equilibria in G2; its first line represents

∑
πi = 1.

Aπ =

a1

a2

a3

b1

b2

b3

c1

c2

c3

φG2



1 1 1 1 1
1 0 0 0 0
0 1 0 1 1
0 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
1 0 0 1 1
0 1 0 0 0
0 0 1 0 0
1 1 1 1 1


·


π1
π2
π3
π4
π5

=



1
0.1
0.9
0

0.5
0.5
0

0.8
0.2
0
1


= p

This PSAT instance is satisfiable due to, for example, the
vector π = [0.1, 0.2, 0, 0.4, 0.3]T, so the PCE-COHERENCE
instance is coherent. 2

4.3.3 Phase transition phenomenon

The reduction from PCE-COHERENCE to PSAT is particu-
larly interesting due to the phenomenon of phase transition,
which is observed in the implementation of PSAT-solving al-
gorithms.

Phase transition is an empirically observable property of
practical solutions of a decision problem. It starts by impos-
ing a linear order on classes of instances of a given prob-
lem. For example, in 3-SAT, one may fix the number n
of propositional variables, so each class consists of 3-SAT
instances with m clauses; the ratio m

n is used as a control
parameter. A first-order phase transition occurs when one
moves frommostly positive decisions in a class tomostly neg-
ative decisions; in 3-SAT this can be verified, as one moves
from problems with very few constraints (clauses), so that al-
most any valuation satisfies an instance in the class, to prob-
lems with too many constraints, mostly unsatisfiable ones,
as illustrated by the blue curve in Figure 1. A second-order

phase transition occurs when one observes the average time
taken to solve an instance; it is reasonably small both for un-
constrained or very constrained instances, but it sharply in-
creases when one approaches from both ends the point where
basically 50% of the instances are decided positively, which
is called the phase transition point. This second order phase-
transition is empirically observable but has no theoretical ex-
planation in the case of NP-complete problems, as illustrated
by the red curve in Figure 1. When the number n of vari-
ables increases, it is observed that the phase transition point
remains fixed, but the slopes become more sharp.

Figure 1. PSAT phase transition; each point was obtained by solving 100
instances of PSAT in the same class.

The existence of a second-order phase transition for all
NP-complete problems was conjectured by Cheeseman et al.
[1991], and it was demonstrated to hold for the SAT prob-
lem and related problems [Kautz and Selman, 1992; Gent
and Walsh, 1994], which are problems that show an easy-
hard-easy empirical complexity, with most instances in the
easy parts. In particular, several algorithms for the PSAT
problem have displayed such behavior [Finger and De Bona,
2011, 2015], such as the one in [Finger and De Bona, 2015]
presented in Figure 1.

Thus, the reduction from PCE-COHERENCE to PSAT is en-
couraging, specially when regarding classes GNPs

k, where
such reduction is linear, because many of the resulting PSAT-
instances are expected to be solved easily.

4.4 An algorithm for PCE-Extension
Let us turn to the PCE-EXTENSION problem. Given a co-
herent observable game G, our aim is to find the maximum
and minimum observer’s probabilistic constraints for some
action α maintaining coherence. In other words, we need
to search among the NP-witnesses of G for some that maxi-
mizes andminimizes the constraints onα. Onemight wonder
whether there are polynomial time (additive) approximation
algorithms for such problem, i.e., given a PCE-EXTENSION
instance consisting of G andα and a precision ε > 0, whether
there exist polynomial time algorithms which return m and
M such that

|P (α) −m| < ε and |P (α) −M | < ε.

The next results show the answer is negative, unless a
huge breakthrough in complexity theory is achieved. First
we establish an auxiliary reduction: from a game G =
⟨P,N,A, u⟩, we build the game G∗ = ⟨P,N,A∗, u∗⟩,
where A∗

1 = A1 ∪ {b}, with b /∈ A1, and A∗
i = Ai,

for i ∈ P \ {1}. Action profiles a ∈ A ⊂ A∗ remain
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with the same utilities u∗
i (a) = ui(a), for all i ∈ P , and

new action profiles pb = ⟨b, a2, . . . , an⟩ ∈ A∗, have util-
ities u∗

1(pb) = max{u1(a′
1, a2, . . . , an) | a′

1 ∈ A1} and
u∗

i (pb) = max{ui(a) | a ∈ A}, for i ∈ P \ {1}.

Lemma 1 Game G∗ may be built from a game G in polyno-
mial time and has the new pure Nash equilibria pb in addition
to the ones G already has. 2

PROOF Game G∗ may be built in polynomial time because
for every partitioning set {⟨x, a2, . . . , an⟩ | x ∈ A1} of ac-
tion profiles ofG, we may add one unique new action profile
pb = ⟨b, a2, . . . , an⟩; then it is necessary to add to G∗ less
new utility values than the description of G already has. Let
a = ⟨a1, . . . , an⟩ ∈ A be an action profile. If a is a pure
Nash equilibrium of G, players in P \ {1} cannot increase
their utilities by choosing other action in A∗

i and, if player
1 were able to do so, it would have to be by choosing ac-
tion b, then u∗

1(b, a2, . . . , an) > u1(a′
1, a2, . . . , an), for all

a′
1 ∈ A1, contradicting the definition of u∗

1. If a is not a pure
Nash equilibrium ofG, all players can increase their utilities
by choosing other actions in Ai. Then, all pure Nash equilib-
ria in G remains pure Nash equilibria in G∗. Finally, action
profiles pb = ⟨b, a2, . . . , an⟩ are clearly pure Nash equilibria
in G∗ and we have the result. ■

Theorem 4 Unless P = NP , there does not exist a poly-
nomial time algorithm that approximates, to any precision
ε ∈ (0, 1

2 ), the expected value by the minimization version of
PCE-EXTENSION. 2

PROOF Deciding the existence of pure Nash equilibria for
games in GNPk is an NP-complete problem; let us reduce
this problem to PCE-EXTENSION. Given a game G, we con-
sider the coherent observable game G = ⟨G∗, {P (ai) ≥ 0}⟩,
for some arbitrary ai ∈ Ai, for i ∈ P , together with action b
as an instance of PCE-EXTENSION. The reduction fromG to
G may be computed in polynomial time by Lemma 1. Sup-
pose there exists a polynomial time algorithm that approxi-
mates to precision ε ∈ (0, 1

2 ) the expected value by the min-
imization version of PCE-EXTENSION. If G does not have
any pure Nash equilibrium, all equilibria in G∗ are of the
type pb = ⟨b, a2, . . . , an⟩, then P (b) = 1 and the supposed
algorithm should returnm > 1 − ε > 1

2 . On the other hand,
if G has some pure Nash equilibrium, P (b) = 0 and the sup-
posed algorithm should return m < 0 + ε < 1

2 . Therefore,
such algorithm decides an NP-complete problem in polyno-
mial time and P = NP . ■

Theorem 5 Unless P = NP , there does not exist a poly-
nomial time algorithm that approximates, to any precision
ε ∈ (0, 1

2 ), the expected value by the maximization version
of PCE-EXTENSION. 2

PROOF Deciding the existence of pure Nash equilibria for
games in GNPk is an NP-complete problem; let us reduce
this problem to some instances of PCE-EXTENSION. Given
a game G, we consider the coherent observable game G =
⟨G∗, {P (ai) ≥ 0}⟩, for some arbitrary ai ∈ Ai, for i ∈
P \ {1}, together with all actions a1 ∈ A1 as |A1| differ-
ent instances of PCE-EXTENSION. The reduction from G to

G may be computed in polynomial time by Lemma 1. Sup-
pose there exists a polynomial time algorithm that approxi-
mates to precision ε ∈ (0, 1

2 ) the expected value by the max-
imization version of PCE-EXTENSION. If G does not have
any pure Nash equilibrium, all equilibria in G∗ are of type
pb = ⟨b, a2, . . . , an⟩, then P (a1) = 0, for all a1 ∈ A1, and
the supposed algorithm should return M < 0 + ε < 1

2 , for
all PCE-EXTENSION instances concerning a1 ∈ A1. On the
other hand, ifG has some pure Nash equilibrium, P (a1) = 1,
for some a1 ∈ A1, and the supposed algorithm should return
M > 1 − ε > 1

2 , for a particular PCE-EXTENSION instance
concerning some a1 ∈ A1. Therefore, we are able to decide
the existence of a pure Nash equilibrium in game G by run-
ning the supposed algorithm |A1| times in the instances com-
prehending G and a1 ∈ A1; G has a pure Nash equilibrium,
if it returns M > 1

2 for some instance, and G has no equi-
librium otherwise. Such routine based on the supposed algo-
rithm decides an NP-complete problem in polynomial time,
hence P = NP . ■

In the following, by means of a simple application of the
binary search algorithm, we are able to provide a determin-
istic procedure to solve PCE-EXTENSION, which shows that
its complexity burden is all due to PCE-COHERENCE. Given
a precision ε = 2−k, we proceed by making a binary search
through the binary representation of the possible constraints
to α, solving PCE-COHERENCE in each step. Algorithm 1
presents the procedure to solve the maximization version of
PCE-EXTENSION. We calledPCECoherence(G,Π ) the pro-
cess that decides a PCE-COHERENCE instance G = ⟨G,Π⟩.
An algorithm for solving the minimization version of PCE-
EXTENSION is easily adaptable from Algorithm 1.

Algorithm 1 PCE-EXTENSION-BS: a solver via Binary
Search
Input: A coherent PCE-COHERENCE instance G = ⟨G,Π⟩,
an action ai ∈ Ai, and a precision ε > 0.
Output: Maximum P (ai) value with precision ε.
1: k := ⌈| log ε|⌉;
2: j := 1, vmin := 0, vmax := 1;
3: if PCECoherence(G,Π ∪ {P (ai) = 1}) = Yes then
4: vmin := 1;
5: else
6: while j ≤ k do
7: vmax = vmin + 1

2j ;
8: if PCECoherence(G,Π ∪ {P (ai) ≥ vmax}) =

Yes then
9: vmin := vmax;

10: end if
11: j++;
12: end while
13: end if
14: return vmin;

For instance, suppose the goal is to find the maximum pos-
sible value for constraining α: the first iteration consists of
solving PCE-COHERENCE for P (α) = 1, if it is coherent,
P (α) = 1, if not, P (α) = 0 with precision 20=1. In case
the former iteration was not coherent, the second iteration
consists of solving PCE-COHERENCE for P (α) ≥ 0.5, if it
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is coherent, P (α) = 0.5, if not, P (α) = 0, both cases with
precision 2−1 = 0.5. One more iteration will give preci-
sion 2−2 = 0.25, and it consists of solving PCE-COHERENCE
for P (α) ≥ 0.75 in case the former iteration was coher-
ent, or for P (α) ≥ 0.25 in case it was not. The process
continues until the desired precision is reached and it takes
| log 2−k| + 1 = k + 1 iterations to be completed.

Theorem 6 Given a precision ε > 0, PCE-EXTENSION
can be obtained with O(| log ε|) iterations of PCE-
COHERENCE. 2

Example 5 Suppose we have an observable game G3 =
⟨G2,Π3⟩ with G2 as in Example 2 and Π3 a set of PCE
consisting only of P (a2) = 0.9. In order to solve PCE-
EXTENSION for finding P (b2) with precision 2−6, it will be
necessary to solve seven instances of PCE-COHERENCE in
the form below.

π2 + π4 + π5 = 0.9
π2 + π5 = p5

π1 + π2 + π3 + π4 + π5 = 1
π1, π2, π3, π4, π5 ≥ 0

The necessary iterations of PCE-COHERENCE are displayed
in Table 3. Our algorithm returns P (b2) ≈ 0.890625, which
is accurate within precision 2−6 = 0.015625, since P (b2) =
0.9. 2

5 Coherence allowing equilibria with
mixed-strategies
Weproceed on studying PCE-COHERENCEwith respect to the
more general concept of mixed Nash equilibrium.

A mixed-strategy for player i is a rational probability dis-
tribution σi over the set Ai of actions for player i and Σ =
Σ1 × · · · × Σn is the set of mixed-strategy profiles, in which
each Σi is the set of all possible mixed-strategies for player i.
It is assumed that each player’s choice of strategy is indepen-
dent from all other players’ choices, so the expected utility
function Ui for player i is given by:

Ui(σ) =
∑
a∈A

ui(a)
∏
j∈P

σj(aj),

where σ ∈ Σ.
A mixed-strategy profile e = ⟨σ1, . . . , σi, . . . , σn⟩ is a

(mixed Nash) equilibrium if, for every player i, Ui(e) ≥
Ui(σ1, . . . , σ

′
i, . . . , σn) for every σ′

i ∈ Σ; each σi in e is
called a best response for player i given the other players
mixed-strategies in e. Then, a mixed-strategy profile is a
mixed Nash equilibrium if, and only if, it is composed by
best responses for all players. A game G always has at least
one mixed Nash equilibrium [Nash, 1951].

Note that an action profile a may be seen as a mixed-
strategy profile σ by taking each action ai ∈ a for player i as
the mixed-strategy σi ∈ σ that assigns 1 to ai and 0 to the
other actions in Ai. This way, a is a pure Nash equilibrium
if, and only if, its associated σ is a mixed Nash equilibrium.

The mixed-strategy setting may be better understood if we
think of a game situation that repeatedly occurs and, in each
instance, the players choose their actions randomly according
to their mixed-strategy.

In this context, an observable game is a game that repeat-
edly occurs and which is known to be at one of its (mixed)
equilibria, but the external observer does not know exactly
which one. An instance of the game will be played and the
observer assigns subjective probabilities to actions being part
of the action profile to be reached in that instance. Formally,
an observable game is a pair G = ⟨G,Π⟩ as before. We may
again interpret these probability assignments as bets placed
by the observer to the actions that the players are allowed to
choose.

Another way of understanding observable games is by
imagining there are many game situations with the same set-
ting, and that repeatedly occurs, and all these game situations
are at some mixed Nash equilibrium. With that knowledge,
the external observer looks at one game situation that is about
to have a new instance played, but he does not know exactly
which game situation among the many ones existing this is.
Then, the observer does not know which is the mixed Nash
equilibrium the game situation he is looking at is in and he
assigns subjective probabilities for the players’ actions being
part of the action profile resulting from the game situation
instance.

As before, we suppose that there is a probability distribu-
tion over the equilibria. It is important to note that this prob-
ability distribution is independent from probability distribu-
tion in a mixed-strategy. The former probability distribution
ranges over equilibria and the latter ranges over actions. If
ej = ⟨σ1j , . . . , σnj⟩ ∈ EG, σij designates the i-th compo-
nent of ej . In this setting, the probability function P over
mixed Nash equilibria induces the probability P (ai) of an
action ai by

P (ai) =
∑

ej∈EG

σij(ai) · P (ej).

The definition of probabilistic constraints on equilibria
(PCE) is analogous to that in Section 2, namely a set of prob-
ability assignments on actions. PCE-COHERENCE is simi-
larly defined as the problem of, given an observable game
G = ⟨G,Π⟩, deciding if it is coherent, i.e. deciding if there
exists a probability function over the set of equilibria that sat-
isfies all constraints in Π.
Example 6 Recall Example 1 where we had the game be-
tween Alice and Bob in which Alice’s actions were a1, a2,
and a3, and Bob’s actions were b1, b2, and b3, such that
the joint utilities are in Table 1. This game has three pure
equilibria, now viewed as special cases of mixed equilibria:
e1 = ⟨σ1

1 , σ
1
2⟩, where σ1

1(a1) = 1, σ1
1(a2) = σ1

1(a3) = 0,
σ1

2(b1) = 1, σ1
2(b2) = σ1

2(b3) = 0; and e2 = ⟨σ2
1 , σ

2
2⟩ and

e3 = ⟨σ3
1 , σ

3
2⟩ that are also based on the ones described in Ex-

ample 1. However, there are several other mixed equilibria
among which we highlight e4 = ⟨σ4

1 , σ
4
2⟩ given by

σ4
1(a1) = 2

3
, σ4

1(a2) = 1
3
, σ4

1(a3) = 0; and

σ4
2(b1) = 4

5
, σ4

2(b2) = 1
5
, σ4

2(b3) = 0.
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Table 3. Iterations for solving PCE-EXTENSION in Example 5.
Iteration p5 π′ Coherence

1 12 = 1 - No
2 0.12 = 0.5 [0.1, 0.5, 0, 0.4, 0] Yes
3 0.112 = 0.75 [0.1, 0.75, 0, 0.15, 0] Yes
4 0.1112 = 0.875 [0.1, 0.875, 0, 0.025, 0] Yes
5 0.11112 = 0.9375 - No
6 0.111012 = 0.90625 - No
7 0.1110012 = 0.890625 [0.1, 0.890625, 0, 0.009375, 0] Yes

We have established that if only pure equilibria are consid-
ered, the constraints P (a2) = 1

3 and P (b3) = 1
4 are incoher-

ent. However, in a context that considers mixed Nash equi-
libria, they are coherent, as we detail in Example 7. 2

5.1 Complexity of PCE-Coherence over
2GNP
We also formulate PCE-COHERENCE in linear algebraic
terms. Let Π = {P (αi) ▷◁i pi, 1 ≤ i ≤ K} be a set of
PCE for an observable game withM mixed Nash equilibria.
PCE-COHERENCE becomes the problem of deciding the exis-
tence of a vector π satisfying

Aπ ▷◁ p∑
πj = 1 (3)
π ≥ 0

whereA = [aij ] is aK×M matrix whose columns represent
the mixed Nash equilibria in the game. In this case aij =
σpj(αi), where p ∈ P is such that αi ∈ Ap, that is aij is the
probability assignment of action αi in the mixed equilibrium
ej by player p. Again, we join the first two conditions in (3)
in matrix A. In the following, we show a complexity result
for PCE-COHERENCE similar to Theorem 1.

Theorem 7 PCE-COHERENCE over a GNP-class is a prob-
lem in NP. 2

PROOF This proof is totally analogous to that of Theorem 1.
Suppose the observable game G = ⟨G,Π⟩ is coherent and
|Π| = K. Therefore, there exists a probability distribution
over the set of all possible pure Nash equilibria that satisfy Π.
Moreover, by the Carathéodory’s Theorem [Eckhoff, 1993],
there is a probability distribution π assigning non-zero prob-
abilities to at mostK+1 equilibria. These equilibria may be
computed in non-deterministic polynomial time since G is
member of a GNP-class. Then, as guessing π and verifying
that constraints in Π are satisfied may also be done in non-
deterministic polynomial time, PCE-COHERENCE is in NP.■

It is not known if there exists a non-deterministic poly-
nomial algorithm that computes an exact mixed Nash equi-
librium for games with at least 3 players, and such a result
would imply theoretical breakthroughs in complexity theory
[Etessami and Yannakakis, 2010]. On the other hand, for
games with two players, an algorithm whose complexity lies
in NP has been described by Papadimitriou [2007]. Thus, re-
stricting GNPk to games with two players generates a GNP-
class with respect to mixed Nash equilibrium, which we call

2GNP. Further, we actually have to restrict the equilibrium
concept to “small” representations, as there are infinitely
many mixed Nash equilibria for some games – i.e. the equi-
libria representation sizes will be polynomially bounded on
the game parameters.

Note that both standard normal form and graphical nor-
mal form may be used to represent games in 2GNP. In fact,
neighborhoods do not play a significant role in these games;
so we might simply have Ni = P \ {i}, for i ∈ P = {1, 2}.
Also note that the restriction on “small” representations im-
plies that each game has only finitely many mixed equilibria.
The following proposition has a reduction due to Conitzer
and Sandholm [2008] that we use for establishing the com-
plexity of PCE-COHERENCE over 2GNP and the inapprox-
imability result later in this section.

Proposition 2 (Conitzer and Sandholm [2008]) Let φ be
a CNF Boolean formula with n propositional variables.
Then, there exists a 2-player gameGφ, which may be built in
polynomial time, with fi ∈ Ai, for i ∈ {1, 2}, such that φ is
satisfiable if, and only if, it has mixed Nash equilibria which
are mixed-strategy profiles σSAT = ⟨σ1, σ2⟩, where σ1 as-
signs positive probability 1

n to n distinct actions inA1 \{f1}.
Furthermore, action profile σf = ⟨f1, f2⟩ is the only other
possible mixed Nash equilibrium in Gφ. 2

Theorem 8 PCE-COHERENCE over 2GNP is NP-
complete. 2

PROOF Membership in NP follows from Theorem 7. SAT
is an NP-complete problem; let us reduce this problem to
PCE-COHERENCE. Given a CNF Boolean formula φ, let
Gφ be the game in Proposition 2. We consider the instance
G = ⟨Gφ, {P (f1) = 0}⟩ of PCE-COHERENCE, which may
be computed from φ in polynomial time. G is coherent if,
and only if, Gφ has another mixed Nash equilibrium beyond
σf , which happens if, and only if, φ is satisfiable. Thus, PCE-
COHERENCE over 2GNP is NP-hard. ■

Example 7 We show the reduction of PCE-COHERENCE to
the matrix form (3) for observable game in Example 6. We
only show the columns of matrixA corresponding to equilib-
ria mentioned in Example 6, which already provides a model
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satisfying the set of PCE in vector p below.

Aπ =

a1

a2

a3

b1

b2

b3



1 1 1 1
1 0 0 2

3
0 1 0 1

3
0 0 1 0
1 0 0 4

5
0 0 0 1

5
0 1 1 0


·


π1
π2
π3
π4

 =



1
p2
1
3
p4
p5
p6
1
4


= p

This matrix system is solvable due to, for example, the vec-
tor π = [ 1

2 ,
1
4 , 0,

1
4 ]T, so the PCE-COHERENCE instance is

coherent. 2

The complexity results of Theorems 7 and 8 rely on non-
deterministic algorithm. For a deterministic algorithm, the
immediate possibilities are brute force (exponential) search
or reduction to SAT (an NP-complete problem with very effi-
cient implementations). However, it has been shown that, in
the case of probabilistic reasoning, both approaches are far
inferior to an approach combining linear algebraic and SAT
methods [Finger and De Bona, 2011]. Thus, we provide a po-
tentially more practical algorithm combining linear algebraic
methods and game solvers whose equilibria can be efficiently
determined.

5.2 A column generation algorithm for PCE-
Coherence over 2GNP
An algorithm for solving PCE-COHERENCE has to provide a
means to find a solution for system (3) if one exists and, oth-
erwise, determine that no solution is possible. Without loss
of generality we assume that the first line of matrix A corre-
sponds to the condition

∑
πi = 1 and that the first position

of vector p is 1 and the remaining positions are sorted in a
decreasing order. Note that now matrix A hasK + 1 rows.

Let Ā = [UK+1|A] be the matrix A prefixed with the
{0, 1}-upper diagonal square matrix UK+1 of dimension
K + 1 in which the positions on the diagonal and above it
are 1 and all the other positions are 0. Note that both A and
Ā can have an exponential number of columns O(2K).

We now provide a method similar to PSAT-solving to deal
with mixed equilibria. Note that in the case of pure equilib-
ria the elements aij could have values only 0 and 1, but now
aij = σpj(αi) ∈ [0, 1]. Also note that the columns of UK+1
may not all represent equilibria, so Ā has some columns that
represent mixed equilibria and some that do not. We con-
struct a vector c of costs having the same size of matrix Ā
such that cj ∈ {0, 1}, cj = 0 iff column Āj represents a
mixed equilibrium for game G. Then we establish the fol-
lowing linear programming problem associated to (3).

min cT · π
subject to Ā · π = p

π ≥ 0
(4)

We actually solve the problems where all relations in vector
▷◁ in (3) are “=”. This standard form is convenient for using
the already existing optimization methods; a formulation for
the general case similar to (4) may be achieved by perform-
ing simple usual linear programming tricks [Bertsimas and
Tsitsiklis, 1997].

Lemma 2 Given a PCE-COHERENCE instance G = ⟨G,Π⟩
and its associated linear algebraic restrictions (3), G is co-
herent if, and only if, minimization problem (4) has a mini-
mum such that cTπ = 0. 2

Condition cTπ = 0 means that only the columns of Āj

corresponding to actual mixed equilibria of the game G can
be attributed probability πj > 0, which immediately leads
to solution of (4). Minimization problem (4) can be solved
by an adaptation of the simplex method with column gener-
ation such that the columns of A are generated on the fly.
The simplex method is a stepwise method which at each step
considers a basis B consisting of K + 1 columns of matrix
Ā and computes its associated cost [Bertsimas and Tsitsik-
lis, 1997]. Matrix UK+1 provides an initial basis B; then,
the processing proceeds by finding a column of Ā outside
B, creating a new basis by substituting one of the columns
of B by this new column such that the associated cost never
increases. To guarantee the cost never increases, the new col-
umn Āj to be inserted in the basis has to obey a restriction
called reduced cost given by c̃j = cj −cBB

−1Āj ≤ 0, where
cj is the cost of column Āj , B is the basis and cB is the cost
associated to the basis. Note that, in our case, we are only
inserting columns that represent actual mixed equilibria so
that we only insert columns of matrix A and their associated
cost cj = 0. Therefore, every new column Aj to be inserted
in the basis B has to obey the inequality

cBB
−1Aj ≥ 0. (5)

A column Aj representing a mixed Nash equilibrium may
or may not satisfy condition (5). We call a mixed Nash equi-
librium that does satisfy (5) as cost reducing mixed equilib-
rium. Our strategy for column generation is given by finding
cost reducing mixed equilibrium for a given basis.

Lemma 3 There exists an algorithm that decides the exis-
tence of cost reducing mixed equilibrium whose complexity
is in NP. 2

PROOF Since we are dealing with games whose mixed Nash
equilibria can be computed in NP, we can guess one such
equilibrium and in polynomial time both verify it is a Nash
equilibrium for the game and that it satisfies Equation 5. ■

We can actually build a deterministic algorithm for
Lemma 3 by reducing it to a SAT problem. In fact, com-
puting equilibrium in 2GNP can be encoded in a 3-SAT for-
mula φ. The condition (5) can also be encoded by a 3-SAT
formula ψ in linear time, e.g. by Warners algorithm [Warn-
ers, 1998], such that the SAT problem consisting of deciding
φ∪ψ is satisfiable if, and only, if there exists a cost reducing
mixed equilibrium. Furthermore its valuation provides the
desired column Aj . This SAT-based algorithm we call the
PCE-COHERENCE Column Generation Method.

Algorithm 2 presents the top level PCE-COHERENCE deci-
sion procedure. Lines 1–3 present the initialization of the
algorithm. We assume the vector p is in descending or-
der. At the initial step we make B(0) = UK+1, this forces
π

(0)
K+1 = pK+1 ≥ 0, π(0)

j = pj −pj+1 ≥ 0, 1 ≤ j ≤ K; and
c(0) = [c1, . . . , cK+1]T, where cj = 0 if column j in B(0) is
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Algorithm 2 PCE-COHERENCE-CG: a solver via Column
Generation
Input: A PCE-COHERENCE instance G = ⟨G,Π⟩.
Output: No, if G is not coherent. Or a solution ⟨B, π⟩ that
minimizes (4).
1: p := [{1} ∪ {pi | P (αi) = pi ∈ Π, 1 ≤ i ≤ K}] in

descending order;
2: B(0) := UK+1;
3: s := 0, π(s) = (B(0))−1 · p, c(s) = [c1, . . . , cK+1]T;
4: while c(s)T · π(s) ̸= 0 do
5: y(s) = GenerateColumn(B(s), G, c(s));
6: if y(s) column generation failed then
7: return No;

{instance is unsatisfiable}
8: else
9: B(s+1) = merge(B(s), y(s));

10: s++, recompute π(s) := (B(s−1))−1 · p and c(s) as
the costs of B(s) columns;

11: end if
12: end while
13: return ⟨B(s), π(s)⟩; {instance is satisfiable}

a Nash equilibrium; otherwise cj = 1. Thus the initial state
s = 0 is a feasible solution.

Algorithm 2 main loop covers lines 4–12 which contains
the column generation strategy at beginning of the loop
(line 5). If column generation fails the process ends with
failure in line 7; the correctness of unsatisfiability by failure
is guaranteed by Lemma 2. Otherwise a column is removed
and the generated column is inserted in a process we called
merge at line 9. The loop ends successfully when the ob-
jective function (total cost) c(s)T · π(s) reaches zero and the
algorithm outputs a probability distribution π and the set of
Nash equilibria columns in B, at line 13.

The procedure merge is part of the simplex method which
guarantees that given a column y and a feasible solution
⟨B, π⟩ there always exists a column j in B such that if
B[j := y] is obtained from B by replacing column j with
y, then there is π̃ ≥ 0 such that ⟨B[j := y], π̃⟩ is a feasible
solution. We have thus proved the following result.

Theorem 9 Algorithm 2 decides PCE-COHERENCE using
column generation. 2

5.3 An algorithm for PCE-Extension over
2GNP
We now analyze PCE-EXTENSION in analogy of what has
been done in Section 4.2. The definition of PCE-EXTENSION
is analogous to that of the pure equilibrium case, i.e. given
a coherent observable game G = ⟨G,Π⟩, with G in 2GNP,
and an action ai ∈ Ai, PCE-EXTENSION consists in finding
probability functions P and P that satisfy Π such that P (ai)
is minimal and P (ai) is maximal. As far as approximation
algorithms are concerned for PCE-EXTENSION, curiously, an
analogous version of Theorem 5 for the maximum case is
not immediate from Proposition 2. However, an analogous
version of Theorem 4 is immediately obtainable.

Theorem 10 Unless P = NP , there does not exist a poly-
nomial time algorithm that approximates, to any precision
ε ∈ (0, 1

2 ), the expected value by the minimization version of
PCE-EXTENSION. 2

PROOF SAT is an NP-complete problem; let us reduce this
problem to PCE-EXTENSION. Given a CNF Boolean formula
φ, let Gφ be the game in Proposition 2. We consider the co-
herent observable game G = ⟨Gφ, {P (ai) ≥ 0}⟩, for some
arbitrary ai ∈ Ai, for i ∈ P , together with action f1 as
an instance of PCE-EXTENSION. The reduction from φ to G
may be computed in polynomial time. Suppose there exists
a polynomial time algorithm that approximates to precision
ε ∈ (0, 1

2 ) the expected value by the minimization version of
PCE-EXTENSION. If φ is not satisfiable, the only equilibrium
in Gφ is σf , then P (f1) = 1 and the supposed algorithm
should return m > 1 − ε > 1

2 . On the other hand, if φ is
satisfiable, P (f1) = 0 and the supposed algorithm should re-
turn m < 0 + ε < 1

2 . Therefore, such algorithm decides an
NP-complete problem in polynomial time and P = NP . ■

PCE-EXTENSION in the mixed equilibrium setting may
also be solved by Algorithm 1 with PCECoherence(G,Π )
now being a process by Algorithm 2. We have a similar result
as in Theorem 6.

Theorem 11 Given an instance of PCE-EXTENSION over
2GNP and a precision ε > 0, PCE-EXTENSION can be ob-
tained with O(| log ε|) iterations of PCE-COHERENCE. 2

6 Related work
The framework defined in Section 3, where probabilities are
assigned to pure Nash equilibria, is very similar to another
concept of equilibrium: the correlated equilibrium [Aumann,
1974]. A correlated equilibrium in a gameG = ⟨P,N,A, u⟩
is a probability distribution over the set of action profiles
A that satisfies a specific equilibrium property. Despite the
similarity, these are distinct objects: while our framework
models the uncertainty about which pure Nash equilibrium
will be reached in a game (by a probability distribution over
EG ⊂ A), the distribution in a correlated equilibrium is the
very concept of equilibrium and is defined over all possible
action profiles (not necessarily Nash equilibria). Thus, there
is no guarantee that the search space of probability distribu-
tions over pure Nash equilibria in our framework compre-
hends correlated equilibria, neither that a correlated equilib-
rium would be the witness that guarantees the coherence of
an observable game.

In a deeper comparison, for both computing a correlated
equilibrium and deciding on the coherence of an observable
game allowing only pure equilibria, it is necessary to guar-
antee that a probability distribution on action profiles satis-
fies some linear inequalities that model the equilibrium prop-
erty, in the case of correlated equilibrium, and that repre-
sents the probabilistic constraints, in the case of coherence.
However, while the correlated equilibrium inequalities may
be directly derived from the given game [Papadimitriou and
Roughgarden, 2008], in order to write the coherence inequal-
ities, it is necessary to compute the pure Nash equilibria of
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the game, since the distribution in question is over such equi-
libria. This difference should explain the discrepancy in com-
plexity between the problem of computing a correlated equi-
librium, which is polynomial [Papadimitriou and Roughgar-
den, 2008], and that of computing a distribution overEG sat-
isfying a set of PCE, which is non-deterministic polynomial;
indeed, the proof we provide for the NP-completeness of
PCE-COHERENCE (concerning only pure equilibria) depends
on the NP-completeness of computing pure Nash equilibria.

Now, turning to PCE-COHERENCE allowing mixed Nash
equilibria, there are many results stating that deciding on the
existence of mixed equilibria in 2-player games with some
property, such as uniqueness, Pareto-optimality, etc, are NP-
complete problems [Gilboa and Zemel, 1989; Conitzer and
Sandholm, 2008]. PCE-COHERENCE may be seen as an addi-
tion to this list by Theorem 8 in Section 5 if one glimpses it
as the problem of deciding whether there are at most K + 1
mixed equilibria for which there is an associated vector π that
satisfies conditions in (3).

7 Conclusions and future work
By means of observable games, we have modeled the sce-
nario of uncertainty about exactly what equilibrium is to
be reached in a situation that will certainly reach one. To
avoid the possible hardness of computing and enumerating
all equilibria in order to assign probabilities to them, the pro-
posed model instead allows the observer to assign probabil-
ities to the possible actions of the players involved. PCE-
COHERENCE over GNP-classes in the pure equilibrium case
have been shown to be in NP, and to be NP-complete over NP-
complete GNP-classes. We have also provided reductions of
PCE-COHERENCE to PSAT, and of PCE-EXTENSION to PCE-
COHERENCE.

Let us resume the analogy between the study of equilib-
rium concepts and coherent observable games by highlight-
ing that equilibrium computation is part of an ongoing utility
debate [Papadimitriou andRoughgarden, 2008]. Since by the
aspect of the model per se, an equilibrium concept explains
agents behavior, the actual computation of an equilibrium
might be regarded as completely irrelevant. Nevertheless,
it might also be argued that it is only reasonable to accept
that agents behave according to an equilibrium if it is not too
hard to compute such equilibrium. In light of this discussion,
we may conclude that the hardness results concerning PCE-
COHERENCE point to the difficulty of the observer in being
coherent; thus, it may explain failures in the management by
local producers when competing with oligopolists.

However, PSAT has been shown to have an easy-hard-
easy phase-transition, which means that possibly most cases
of PSAT-instances resulting from the reduction from PCE-
COHERENCE over pure equilibria can be solved easily. By
this hypotheses, providing that the reduction itself is not too
complex (as in the case of classes GNPs

k), in most cases it
is not difficult for an observer to be coherent and then the
responsibility for a poor management falls entirely over the
poor knowledge on the oligopolistic market by the local pro-
ducer.

Moreover, we believe that the framework of observable

games we set in this work is in the interest of an observer
who actually wants to compute the coherence and the exten-
sion of his probabilities over actions which are in equilibrium,
independently of whether this equilibrium was actually com-
puted or how it was established, e.g. again the local producer
observing an oligopolistic market. In this way, beyond the re-
duction from PCE-COHERENCE to PSAT being encouraging
due to the phase transition behavior of PSAT, the improve-
ment in the technologies for implementing linear algebraic
solvers and SAT, MAXSAT, and SMT solvers points out that
these problems can now be dealt by practical applications in
most cases.

For the mixed Nash equilibrium, the possibility of hav-
ing a general PCE-COHERENCE solver lies on very improba-
ble breakthrough in algorithms. However in 2-player games
we are in the same zone as for general pure equilibrium
PCE-COHERENCE problem; since it is NP-complete, most in-
stances are expected to be easily solved in practice.

Finally, we highlight that the optimistic perspectives for
solving in practice the problems proposed in this work also
justify the uncertainty model that was designed to avoid the
need to establish a probability distribution over all equilib-
ria in a game. Solving these problems, of course, involves
computing some equilibria, however, our conclusions point
out that, in most cases, only a few equilibria need to be com-
puted.

For the future, besides tackling some practical problems
and implementations, the techniques here presented can be
expanded to other forms of equilibrium such as ε-Nash equi-
librium [Daskalakis et al., 2009].
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