
Journal of the Brazilian Computer Society, 2023, 29:1, doi: 10.5753/jbcs.2023.2219
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Challenges in High-Performance Computing
Philippe Olivier Alexandre Navaux [Federal University of Rio Grande do Sul | navaux@inf.ufrgs.br]
Arthur Francisco Lorenzon [Federal University of Rio Grande do Sul | aflorenzon@inf.ufrgs.br]
Matheus da Silva Serpa [Federal University of Rio Grande do Sul | msserpa@inf.ufrgs.br]

 Institute of Informatics, Universidade Federal do Rio Grande do Sul - PO Box 15064, Av. Bento Gonçalves, 9500,
91501-970, Porto Alegre, RS, Brazil

Received: 15 September 2021 • Accepted: 30 March 2023 • Published: 01 August 2023

Abstract High-Performance Computing, HPC, has become one of the most active computer science fields. Driven
mainly by the need for high processing capabilities required by algorithms from many areas, such as Big Data, Arti-
ficial Intelligence, Data Science, and subjects related to chemistry, physics, and biology, the state-of-art algorithms
from these fields are notoriously demanding computer resources. Therefore, choosing the right computer system
to optimize their performance is paramount. This article presents the main challenges of future supercomputer sys-
tems, highlighting the areas that demand the most of HPC servers; the new architectures, including heterogeneous
processors composed of artificial intelligence chips, quantum processors, the adoption of HPC on cloud servers; and
the challenges of software developers when facing parallelizing applications. We also discuss challenges regarding
non-functional requirements, such as energy consumption and resilience.

Keywords: High-Performance Computing, Supercomputers, Exascale, Computer Architecture, Parallel Programming

1 Introduction

High-Performance Computing, HPC, has been settled as the
area of specialists concerned with machines with the great-
est processing power of a given time, represented by super-
computers. Traditionally, two selections occur annually to
indicate which machines in the world have reached the top
of this processing power disclosed in the TOP500 [Dongarra
and Strohmaier, 2020].
The HPC scenario has been changing in recent years, pres-

sured by the processing power requirements from Artificial
Intelligence, AI, Machine Learning, ML, and Deep Learning,
DL, algorithms, and the need for this power to matter learn-
ing data in Big Data environments [Verbraeken et al., 2020].
In summary, HPC is not only an area that meets a niche of
needs of researchers in the fields of physics, chemistry, and
biology, among other specific ones, but an area that needs to
meet the demands of society as a whole.
Another deeper change has occurred. Cloud vendors are

investing in global networks of massive-scale systems for
HPC systems [Reed et al., 2022]. Simultaneously, one can
observe a massive migration from parallel application execu-
tions on dedicated HPC servers to cloud environments due to
many factors, such as the facility to access them over the in-
ternet and for provisioning high-performance architectures
on demand while keeping operating costs low. In this sce-
nario, hardware and software technologies have been pro-
posed over the years to allow a sustainable execution of HPC
applications in cloud environments.
On top of that, HPC environments are becoming increas-

ingly heterogeneous to support applications’ performance
and energy demands in scientific areas. In this scenario, most
supercomputers are equippedwith hardware accelerators and
techniques with distinct computing power capabilities, such
as graphical processing units, GPUs, field-programmable

gate arrays, FPGAs, processing in memory, PIM, and re-
cently, the adoption of Quantum processors. Hence, sev-
eral parallel programming libraries and patterns are proposed
yearly to get the most performance from such architectures.
Hence, we present in this article a comprehensive discus-

sion regarding: (i) the demands for HPC servers from differ-
ent fields of science and society; (ii) the main challenges in
the HPC area that researchers will face shortly in hardware
and software to further optimize the execution of applications
in terms of performance, energy consumption, and resilience;
(iii) the trends related to the increasing availability of hetero-
geneous architectures in HPC systems and how to get the
most out of each device.

2 The Need for HPC
In this section, we discuss how HPC systems can be em-
ployed to optimize the execution of applications widely
known in scientific areas.

2.1 Demands from Big Data area
The term Big Data was used for the first time in 1997, refer-
ring to the growing number of data generated every second in
the world in a structured or unstructured way. Michael Cox
and David Ellsworth, both working at NASA, wrote the arti-
cle “Managing Big Data for Scientific Visualization” for the
1997 Conference on Visualization, introducing the concept
of Big Data to the academic community [Cox and Ellsworth,
1997].
The amount of data generated per year doubles every two

years and grows exponentially [Desjardins, 2019]. With this
evolution, we are reaching the level of Yotta data, which cor-
responds to 1024 bytes or 10008 zettabytes. This amount of

https://doi.org/10.5753/jbcs.2023.2219
https://orcid.org/0000-0002-9957-5861
mailto:navaux@inf.ufrgs.br
https://orcid.org/0000-0002-2412-3027
mailto:aflorenzon@inf.ufrgs.br
https://orcid.org/0000-0001-5178-1036
mailto:msserpa@inf.ufrgs.br

Challenges in High-Performance Computing Navaux et al., 2023

data, also known as Big Data, comes from different sources
(e.g., sensors on the Internet of Things) and needs treat-
ment by non-traditional systems for manipulating, analyzing,
and extracting information from the dataset. However, only
around 20% of this extracted information would be helpful.
Therefore, Big Data is a collection of large and complex

datasets that becomes difficult to process using databaseman-
agement tools. It is often a collection of legacy data. In ad-
dition to dealing with new ways of managing data, the Big
Data area needs great computing power to process this data.
Furthermore, we must remember that data are numbers and
codes without treatment. Information, on the other hand, is
processed data. It is the processing of data that will create
meaning. Finally, knowledge is knowing about a specific
subject; it is having an application for information.
It is also important to mention that knowledge about in-

formation is power nowadays. It always has been, but with
the advent of large amounts of data and the ability to process
them, it became possible to conduct analysis and decision-
making. Information has become the most critical asset.
Companies that hold data and have the power to process and
analyze it hold today a capacity many times greater than the
governments. Furthermore, there are no frontiers for infor-
mation, and these companies are capturing data from almost
all over the world.
In summary, machines with high processing power, such

as supercomputers, are needed to assist in data storage and
extraction in the Big Data era.

2.2 Demands from the Artificial Intelligence
Area

According to the US Department of Energy’s ”AI for Sci-
ence” report [Stevens et al., 2020], new Artificial Intelli-
gence techniques will be indispensable to support the contin-
ued growth and expansion of Science infrastructure through
Exascale systems. The experience of the scientific commu-
nity, the use of Machine Learning, the simulation with HPC,
and the data analysis methods allowed a unique and new
growth of opportunities for Science, discoveries, and more
robust approaches to accelerated Science and its applications
for the benefit of humanity.
The convergence of HPC with AI allows simulation envi-

ronments to employ deep reinforcement learning in various
problems, such as simulating robots, aircraft, autonomous
vehicles, etc. DL techniques accelerate simulations by re-
placing models in climate prediction, geoscience, pharma-
ceuticals, etc. New frontiers in physics are being reached by
increasing the application of Partial Differential Equations
(PDE) with DL for simulations.

On the other hand, one major bottleneck in using ML and
DL algorithms is the learning phase before their use. De-
pending on the available computing infrastructure, this ac-
tivity can take weeks and even months. That is where high-
performance processing accelerates this step.
In the end, due to the HPC demands from the AI area, com-

panies are investing in parallel frameworks to optimize the
execution of AI software. As an example, NVIDIA provides
different solutions so that users can take advantage of GPUs
optimized for AI algorithms: TensorFlow, an open-source

platform for Machine Learning that provides tools and li-
braries to allow easy deployment of codes across heteroge-
neous devices; PyTorch, a GPU-accelerated tensor computa-
tional framework; and TorchANI, an implementation of Ac-
curate Neural Network Engine for Molecular Energies. An-
other example is the Intel Neural Compressor tool that helps
software developers to easily and quickly deploy inference
solutions on popular deep learning frameworks, including
TensorFlow and PyTorch.

Therefore, one of the challenges software developers will
face in the convergence of HPC with AI is how to efficiently
use the available hardware devices to get the most out of
all the provided frameworks. Simultaneously, hardware ven-
dors have the challenging task of designing optimized pro-
cessors for AI computing, as we discuss in Section 3.3.

2.3 Demands from Data Science and Related
Areas

In conjunction with advancements in supercomputing, the
rise of data generation technologies has resulted in the
convergence of HPC and data science applications. The
widespread adoption of high-throughput data generation
technologies, scalable algorithms and analytics, and efficient
methods for managing large-scale data has established scal-
able Data Science as a central pillar for accelerating scientific
discovery and innovation [Xenopoulos et al., 2016].
Data science can be defined as a field that combines dif-

ferent areas (e.g., math, statistics, artificial intelligence, ma-
chine learning, and specialized programming) with a subject
to uncover insights that are hidden in an organization’s data.
The lifecycle of data science involves tools, roles, and pro-
cesses that usually undergo the following steps: data collec-
tion, data storage and processing, data analysis, and presenta-
tion of reports and data visualizations that make the insights
[Kelleher and Tierney, 2018].
All steps are accelerated with the employment of HPC sys-

tems and can be used to provide insights beneficial to soci-
ety: fraud and risk detection, search engines, advanced im-
age recognition, speech recognition, and airline route plan-
ning. In summary, even with the use of HPC to optimize the
execution of data science algorithms, one of the main chal-
lenges faced by the area is to use hardware resources better
to reduce the training cost of learning algorithms.

3 HPC Architectures and Processors
Challanges

The last section (section 2) showed how advances in scien-
tific areas will demand more processing power to run the
models, manage the files, and extract the data, among other
demands. Hence, the main challenges HPC needs to over-
come to get results on time in terms of hardware for its em-
ployment in such areas will be presented in this section.

Challenges in High-Performance Computing Navaux et al., 2023

Figure 1. Fugaku [Fujitsu, 2021], Frontier [2021],Frontier [2021], and El Capitan supercomputers[LLNL, 2021].

ASCR Computing Upgrades At-a-Glance

November 24, 2020

System attributes ALCF Now NERSC Now OLCF Now
NERSC

Pre-Exascale

ALCF

Pre-Exascale
OLCF Exascale ALCF Exascale

Name

(Planned) Installation

Theta

2016

Cori

2016

Summit

2017-2018

Perlmutter

(2020-2021)

Polaris

(2021)

Frontier

(2021-2022)

Aurora

(2022-2023)

System peak > 15.6 PF > 30 PF 200 PF > 120PF 35 – 45PF >1.5 EF ≥ 1 EF DP sustained

Peak Power (MW) < 2.1 < 3.7 10 6 < 2 29 ≤ 60

Total system memory

847 TB DDR4 + 70 TB

HBM + 7.5 TB GPU

memory

~1 PB DDR4 + High

Bandwidth Memory

(HBM) + 1.5PB

persistent memory

2.4 PB DDR4 + 0.4

PB HBM + 7.4 PB

persistent memory

1.92 PB DDR4 +

240TB HBM
> 250 TB

4.6 PB DDR4 +4.6 PB

HBM2e + 36 PB

persistent memory

> 10 PB

Node performance

(TF)

2.7 TF (KNL node) and

166.4 TF (GPU node)
> 3 43

> 70 (GPU)

> 4 (CPU)
> 70 TF TBD > 130

Node processors

Intel Xeon Phi 7320 64-

core CPUs (KNL) and

GPU nodes with 8

NVIDIA A100 GPUs

coupled with 2 AMD

EPYC 64-core CPUs

Intel Knights Landing

many core CPUs

Intel Haswell CPU in

data partition

2 IBM

Power9 CPUs +

6 Nvidia

Volta GPUs

CPU only nodes: AMD

EPYC Milan CPUS;

CPU-GPU nodes:

AMD EPYC Milan with

NVIDIA A100 GPUs

1 CPU; 4 GPUs

1 HPC and AI optimized

AMD EPYC CPU and 4

AMD Radeon Instinct

GPUs

2 Intel Xeon Sapphire

Rapids and 6 Xe Ponte

Vecchio GPUs

System size (nodes)
4,392 KNL nodes and 24

DGX-A100 nodes

9,300 nodes

1,900 nodes in data

partition

4608 nodes
> 1,500(GPU)

> 3,000 (CPU)
> 500 > 9,000 nodes > 9,000 nodes

CPU-GPU

Interconnect
NVLINK on GPU nodes N/A

NVLINK

Coherent memory

across node

PCIe

AMD Infinity Fabric

Coherent memory

across the node

Unified memory

architecture, RAMBO

Node-to-node

interconnect

Aries (KNL nodes) and

HDR200 (GPU nodes)
Aries Dual Rail EDR-IB HPE Slingshot NIC HPE Slingshot NIC HPE Slingshot HPE Slingshot

File System
200 PB, 1.3 TB/s Lustre

10 PB, 210 GB/s Lustre

28 PB, 744 GB/s

Lustre

250 PB, 2.5 TB/s

GPFS
35 PB All Flash, Lustre N/A

695 PB + 10 PB Flash

performance tier, Lustre

≥ 230 PB, ≥ 25 TB/s

DAOS

Figure 2. Evolution of supercomputers

3.1 New Generation of Processors and Accel-
erators

Several proposals for parallel architectures have emerged re-
cently as depicted in Figures 1 and 2, which should shake
and change the processor market. Next we highlight the four
supercomputers with the highest computing power currently.
The ARM company designed the A64FX processor that

allowed Fujitsu’s FUGAKU computer with NVIDIA GPUs
[Fujitsu, 2021], Japan, to remain for two years (2020 and
2021) as the fastest computer in the TOP500 list, reaching a
performance of 442 Petaflops (Figure 1).
The first supercomputer to deliver performance greater

than 1 Exaflop was the Frontier (Figure 1) from the Oak
Ridge laboratory, USA. It was designed by Cray-HPE with
AMD Epyc processors and Radeon accelerators and reached
the performance of 1.1 Exaflops [Frontier, 2021], according
to the TOP500 list.
After breaking the exaflop performance barrier, it is natu-

ral that the number of supercomputers achieving such a per-
formance level increases. In this scenario, Aurora (Figure 1)
is a supercomputer from Argonne’s laboratory that is being
developed with Intel processors adopting the Ponte Vecchio
architecture that integrates the Xeon processor and the Xe
accelerator on the same chip [Aurora, 2021].

Also, the El Capitan supercomputer (Figure 1) from the
Lawrence Livermore National Laboratory, LLNL, designed
with AMD EPYC processors, code-named Genoa and Zen 4
processor core, and AMDRadeon Instinct GPUs, is expected
to exceed 2 Exaflops [LLNL, 2021].

In addition to these two machines, other Exascale Systems
are planned to be delivered in the next few years. The DoE,
Department of Energy from the USA, financed national com-
puting facilities centers to receive new systems with distinct
architectures from different companies. Figure 2 summa-
rizes the evolution of the subsequent machine installations,
starting with Perlmutter in NERSC - Berkeley, Polaris in
ALCF - Argonne, Frontier in OLCF - Oak Ridge, and Au-
rora in ALCF - Argonne. In other countries, there are also
Exascale Machines to be delivered like China, with the evo-
lution of the Sunway and the Tianhe, and in Japan, with the
new Fugaku.

It is worth mentioning that the architectures of these pro-
cessors and machines are increasingly heterogeneous, allow-
ing the execution of applications to be processed in the device
with the best performance.

Challenges in High-Performance Computing Navaux et al., 2023

3.2 Heterogeneous Architectures

The new processors, which are already appearing in the mar-
ket, have more and more heterogeneous architectures. In
HPC systems, processing units with different computing ca-
pabilities are combined to provide better performance and
energy efficiency when compared to homogeneous systems
(e.g., CPU-Only).

Figure 3. NVIDIA Tegra K1 chip integrating processors with GPUs in an
SoC

In this scenario, besides traditional CPU-GPU and FPGA-
based systems, the following heterogeneous architectures
will become popular in the near future in HPC (Figure 5).
Heterogeneous memory systems employ a combination of
memories, such as DRAM and SRAM, to improve the trade-
off between performance and energy consumption in data-
intensive workloads. Neural Processing Units, NPUs, are
processors designed to speed up AI workloads. Quantum
processors, which are in the early stages of development, but
with the potential to perform calculations that are exponen-
tially faster than classical computers [Fu et al., 2016].

In the market, one can find systems composed of CPUs
and GPUs on the same chip [Dávila et al., 2019], such as
those from Intel (Ponte Vecchio) and AMD (APUs). Another
possibility is the SoC, System on Chip, where on the same
chip (Figure 3), there are processors, accelerator, memory,
and I/O system. These chips are generally used in sensors,
Internet of Things, IoT, and edge computing environments.
In addition to this on-chip option, heterogeneity is possible
at the board level, where the processor coexists with the GPU
or the FPGA (Intel A10).

In this increasingly heterogeneous environment with dif-
ferent accelerators, the programming model must change
from serving a specific type of accelerator to being prepared
for a programming environment to suit different accelerators
[Vetter et al., 2022]. For example, with the emergence of
GPUs from AMD and Intel, new parallel programming inter-
faces should be used instead of the CUDA language, which
is proprietary to NVIDIA.

3.3 AI chips
In the upcoming years, AI is set to play a crucial part in
many fields, specifically in national and international secu-
rity [Khan and Mann, 2020]. However, generatl-purpose AI
software, datasets, and algorithms are not effective when run-
ning on traditional HPC systems, the focus has shifted to-
wards a computer hardware specialized to execute modern
AI applications.

Figure 4. Comparison of Cerebras WSE-2 with the largest GPU at the mo-
ment.

This hardware is called as “AI chip”, which may include
accelerators such as, GPUs, FPGAs, and application-specific
integrated circuits, ASICs, that are specialized for AI. Even
though general-purpose processors (e.g., CPUs) can be em-
ployed to execute simple AI tasks, they are becoming less
useful as AI advances. Hence, AI chips have optimized de-
sign features that accelerate the calculations required by AI
algorithms, e.g., large number of parallel calculations; the
use of mixed precision (discussed in Section 5.3); speeding
up memory accesses; and providing programming languages
to efficiently translate AI code for execution on AI chips.
In this scenario, one of the main challenges is to rightly

choose the AI chip that will execute a given AI algorithm.
GPUs are often used for the training step. FPGAs efficiently
perform the inference phase. On the other hand, ASICs can
be used to execute both phases.
At the 2020 SuperComputing conference, two new AI

chips were announced, Cerebras [Rocki et al., 2020] and
SambaNova [2021]. Cerebras chips employ the second gen-
eration of Wafer Scale Engine, WSE-2, a central processor
for deep learning and sparse tensor operations that contains
2.6 trillion transistors, 850,000 AI-optimized cores, and 40
gigabytes of high-performance on-wafer memory. Figure
4, extracted from [Cerebras, 2021], compares the Cerebras
WSE-2 chip with the largest GPU at the moment.

The SambaNova chip has the Reconfigurable DataflowAr-
chitecture, RDA [SambaNova, 2021], facilitating machine
learning and HPC convergence. The RDA provides a flexi-
ble dataflow execution model to all types of dataflow com-
putation problems. Furthermore, it does not have a fixed In-
struction Set Architecture (ISA) but is programmed for each

Challenges in High-Performance Computing Navaux et al., 2023

model.
In summary, AI chips with specialized hardware devices

will popularize in the next few years, which will likely
change how AI algorithms are executed. Therefore, one can
envision challenges regarding adopting such chips on tradi-
tional HPC systems and the emergence of new AI frame-
works.

3.4 Aware Computing

In recent years, there has been a growth of different types of
Aware Computing in HPC systems. When it is applied to the
execution of applications, the hardware and software knobs
(e.g., number of threads, cores, processor frequency, and the
amount of memory used) are adapted according to a given
optimization heuristic to the best situation so that the out-
come in non-functional metrics (i.e., performance, energy,
and power consumption) is improved. Consequently, this sit-
uation is changing the complexity of hardware and software
behavior.
With the need for reaching more performance with every

new generation of supercomputers, techniques like power-
and energy-aware computing have become widely used. The
reason is that such HPC systems must improve performance
without increasing power and energy consumption, so the
costs of cooling and electricity infrastructure do not grow.
This type of aware computing employs strategies to adapt
the hardware and software to keep power and energy de-
mands below a safety threshold. A popular technique widely
used in hardware is dynamic voltage and frequency scal-
ing, which automatically manages hardware components’
frequency and voltage levels based on their workload usage.
Another technique is thread-throttling, where the number of
running threads is adjusted according to the thread-level par-
allelism degree of a given application.
Similarly, since new HPC applications from scientific

fields increasingly require more memory space to store data,
memory-aware computing is becoming popular. In this type,
the design of a computer system is optimized for memory
performance, taking into account the increasing gap between
processor speed and memory latency. Memory-aware com-
puting involves data compression, prefetching, memory hi-
erarchy optimization, and efficient data placement. This
type of computing is particularly challenging for applications
that rely on memory, such as big data processing, machine
learning, and scientific simulations. One example is the
AMD High Bandwidth Memory, HBM , designed to provide
high-performance memory for graphics and other memory-
intensive applications.
Other types of aware computing are also becoming impor-

tant in HPC servers. In network-aware computing, the net-
work performance is optimized with load balancing, network
topology optimization, and congestion control. Security-
aware computing focuses on ensuring the security of systems.
Furthermore, one can also find data-aware and user-aware
computing, where the former focuses on efficient manage-
ment of data, and the second is concerned with providing
personalized user experiences.

3.5 Processing In Memory
Processing In Memory, PIM, is a way to execute instructions
in memory without traditionally moving data to the proces-
sor [Lee et al., 2021]. With that, the time lost in data trans-
fer is eliminated, being the main benefit of this technique.
PIM has been growing in its study, and some chips are ap-
pearing on the market. However, even though it can allow
data-intensive applications to avoid moving data from mem-
ory to CPU, new challenges are introduced for HPC system
architects and software developers.
Even though many challenges to designing PIM architec-

tures have been overcome during the last years, some points
are still open [Ghose et al., 2019]. One of them relies on how
HPC programmers can extract the benefits of PIMwithout re-
sorting to complex programming models. Another challenge
is understanding the constraints of distinct substrates when
designing PIM logic. Therefore, developing a PIM program-
ming model, data mapping, and runtime scheduling for PIM
are challenging topics that should be addressed before most
HPC developers can employ PIM.
High-tech companies (e.g., Samsung, Micron, and Synop-

sys) started developing memories with computing capabili-
ties. In the end, they believe that memory and AI computing
will converge into the same architecture, making AI-based
memory chips.

3.6 Quantum Computing
With quantum processors becoming a reality, it is possible
to imagine heterogeneous machines with quantum process-
ing units. The prospect of getting atom-sized operators capa-
ble of operating using germanium transistor techniques [Hen-
drickx et al., 2021] is enabling the arrival of Qubits proces-
sors on the market. With this, future architectures would
have x86 processor units with qubit units (Figure 5).
In this perspective, quantum processors will be used as

accelerators at first. They will solve problems, especially
in security, cryptography, meteorology, pharmaceuticals,
biotechnology, and economic models.
In the subsequent years, quantum computing will not sub-

stitute classical computing [Matsuoka et al., 2023]. Instead,
Quantum computing will help to solve complex problems
that take a lot of time with classical computers. Examples of
problems that will benefit from it can be found in modeling
protein or molecular simulations, developing new robust en-
cryption, processing data from accelerators, like CERN, and
other complex problems.

Host CPU

Figure 5. Future of Heterogeneous Architectures with Quantum Processors
- Based on Fu et al. [2016]

In recent years, many Quantum machines have been an-
nounced, like the Zuchongzhi with 66 qubits, Google with

Challenges in High-Performance Computing Navaux et al., 2023

its 54-qubit Sycamore processor, and IBM’s 14th quantum
computer model with 53 qubits. However, as scientists pre-
view practical computing, machines need nearly a thousand
qubits. In this scenario, IBM has an ambitious goal of build-
ing one quantum computer containing 1000 qubits by 2025.
In the end, one of the big challenges of quantum machines

is correcting the myriad errors that usually come with quan-
tum operations. So the researchers focus on having a lower
error rate on the entire system. Quantum Computing will be
the next frontier in the changes in processing capacity, which
will allow solving problems in Science that are currently un-
feasible to solve on time.

3.7 Cloud Computing
With the increasing demand for HPC for several areas,
as mentioned in Section 2, the big cloud computing
providers started to be interested in providing these facili-
ties. The emergence of instances with more powerful proces-
sors, GPUs, FPGAs, and improved interconnection systems
within the cloud was observed to allow users to instantiate a
set of machines able to meet a demand for greater processing
power.
In this scenario, HPC as a Service (HPCaaS) is becoming

employed. In Figure 6, extracted from [Paillard et al., 2015]
example of infrastructure for executing parallel workloads
on the Cloud, where the end-users submit their job through
internet, and the cloud environment (HPCaaS) is responsible
for allocating machines and deploying the job for execution
on HPC systems.
On the websites of the leading cloud providers, there

are advertisements such as ”High-Performance Computing
on AWS Redefines What is Possible,” ”Cray in Azure - a
dedicated supercomputer on your virtual network,” ”Build
your high-performance computing solution on IBM Cloud,
”Google Cloud - HPC in the cloud becomes a reality” clearly
showing the importance and interest that these companies are
giving to offer HPC in the cloud essential and growing part
of HPC.
The initial cloud performance issues are gradually being

overcome, allowing satisfactory results when running HPC
applications in this environment. The increased use of bet-
ter and faster connections, the availability of new genera-
tion processors, and a better storage administration allow
enough processing speed to execute complex applications in
the cloud. In the end, cloud servers must have a scalable and
cost-effective infrastructure for running HPC applications,
given their capability of provisioning resources on-demand
over the Internet.
On top of that, we also need to take care to Severless Com-

puting, a new paradigm for developing cloud applications. It
is a new level of virtualization, containers, and Function as
a Service, FaaS, reducing complexity for the user [Baldini
et al., 2017].

3.8 Moving to Zettascale Computing
In a paper from Liao et al. [2018], the authors suggested
that, by 2035, we will have HPC systems with one Zettas-
cale computing (1021 floating-point operations per second).

They understand that the evolution will increase from ma-
chines with 2 to 3 Eflops in 2025 to 2030, with performance
scaling to 50–80 Eflops, and the last step will end in 2035
with the Zflops machines.

To reach this level of computing, the authors expected a
list of technical metrics in a table presented in Table 1. The
computing system will have a power efficiency of 10 Tflop-
s/W for a total power consumption near 100MW for all the
systems. Interesting to observe that the performance estima-
tions per node will be 10Pflops and the bandwidth between
nodes 1.6 Tb/s. The data for all the system storage capacity
will be around 1ZB (Zeta byte).

Table 1. Metris for a Zflops Machine [Liao et al., 2018]

Metric Value
Peak Performance 1 Zflops
Power consumption 100 MW
Power efficiency 10 Tflops/W
Peak performance per node 10 Pflops/node
Bandwidth between nodes 1.6 Tb/s
I/O bandwidth 10-100 PB/s
Storage capacity 1 ZB
Floor space 1000 m²

4 Programming Challenges in HPC
This section discusses the impact of design decisions regard-
ing implementing parallel applications that run on top of
HPC servers. For that, we start by describing parallel al-
gorithms design patterns and the parallel programming in-
terfaces that can be used to implement to extract the most
from the HPC systems. Furthermore, given the importance
of memory on the application execution behavior, we discuss
techniques to optimize data and thread locality.

4.1 Parallel Algorithms Design Patterns
Software developers can employ different communication
models when parallelizing applications to ensure the coop-
eration between the cores that execute concurrently, such as
shared memory and message-passing. The former is based
on the existence of an address space in the memory that all
processors can access. It is widely used when parallelism is
exploited at the thread level, as they share the same mem-
ory address space. On the other hand, message-passing is
employed in environments where the memory space is dis-
tributed and/or processes do not share the same memory ad-
dress space. In summary, the challenge is to use the program-
ming model that best benefits from the target architecture:
while shared memory delivers better outcomes for multicore
and many-core processors, message-passing is most suitable
for large computers that communicate via an interconnection
link.
In addition to the communication model, another chal-

lenge is choosing the parallel programming style to extract
parallelism from sequential codes. For many years, the fork-
join model has been the style most used by software devel-
opers because of its ease in exploiting parallelism. When

Challenges in High-Performance Computing Navaux et al., 2023

Figure 6. HPC as a Service on Cloud Computing - Paillard et al. [2015]

Sequential Parallel Sequential

Time

Parallel Sequential

Fork Join Fork Join

Figure 7. The fork-join shared-memory programming model.

employing the fork-join model, as shown in Figure 7, the
master thread (represented by the orange rectangle) starts the
execution of the sequential phase. When it reaches a paral-
lel region, a team of threads is created to execute the parallel
region concurrently (fork operation). Then, at the end of the
region, all threads perform a join operation to synchronize.
From this moment on, only the master thread executes the ap-
plication binary until reaching another parallel region. Con-
sidering that this model is widely employed when paralleliz-
ing applications that run on top of multicore systems and that
processor companies (e.g., AMD, ARM, Intel, and NVIDIA)
have been releasing processors with more and more cores,
the challenge is the development of algorithms that can get
the most out from the architectures. In summary, the main
point is to scale the number of threads without losing perfor-
mance and energy efficiency.

However, the rigid execution model and lack of malleabil-
ity of parallel applications implemented with the fork-join
style may not deal with some hardware and software aspects
(e.g., data synchronization and cache contention) when there
is variability in the application behavior or execution environ-
ment, preventing linear performance improvements. When a
scenario like this arises, the rigid fork-join-based implemen-
tations can increase power consumption and jeopardize the
performance of parallel applications. With that, one can note
a popularization of task-based programming models, as dis-
cussed in the next section (Section 5), which can overcome
fork-join limitations providing more malleability and better
load-balancing on multicore systems. However, the chal-
lenge software developers face when exploiting task-based

level parallelism is defining the data dependency between
different parallel regions, which may limit the gains with par-
allelization.
Regardless of the programming model, when exploiting

parallelism, the software developers can employ design pat-
terns to help in this task, such asMap, Stencil, and Reduction,
which are the most used nowadays. The Map pattern, shown
in Figure 8, divides the workload (e.g., array, list, or other
related collection) into independent parts that can run in par-
allel with no data dependency, representing a parallelization
referred to as embarrassing parallelism Voss et al. [2019]. A
function is applied to all collection elements, usually produc-
ing a new collection with the same shape as the input. More-
over, the number of iterations and the inputs may be the same
and known in advance. For the Map pattern, the challenge
with new computer architectures will be the need for a heavy
function to be applied to each element of a collection and a
high number of iterations to fulfill the processor’s cores.

Figure 8. Map pattern example, where a function is applied to all elements
of a collection, producing a new collection with the same shape as the input
[Voss et al., 2019]

A generalization of the Map is the Stencil pattern, which
focuses on combining and applying functions in a set of
neighbors from each matrix point [Voss et al., 2019]. Fig-
ure 9 exemplifies a stencil operation over one element of the
matrix, resulting from the computation of the values on its
neighbors. Software developers face a critical challenge in
handling boundary conditions in this scenario due to the com-
munication overhead between threads/processes. The Sten-

Challenges in High-Performance Computing Navaux et al., 2023

cil pattern has good performance scalability onGPUs, as they
are organized so thousands of threads can be executed simul-
taneously. In the end, the main challenge will be to balance
the memory operations time with the computation time in the
way that the loading of neighbors should be faster than the
computation applied to them.
There are also many applications where many threads/pro-

cesses simultaneously apply the same operation over differ-
ent data. In this case, the Reduction pattern combines ev-
ery element calculated by each thread/process using an as-
sociative function called the combined function [Voss et al.,
2019]. Figure 10 shows an example of a reduction operation
executing in parallel, where pairs of elements are calculated
simultaneously until the final result is reached. Even though
it achieves satisfactory performance results when combin-
ing values computed by each thread, its implementation gets
more complex as the number of reductions after each iter-
ation changes at every step until the final result is reached.
Therefore, software developers face the challenge of coordi-
nating the computation during each reduction operation to
maximize the usage of hardware resources.

Figure 9. Stencil Computation Example [Voss et al., 2019]

Figure 10. Parallel reduction, where threads produce subresults that are
combined to produce a final single answer [Voss et al., 2019]

4.2 Parallel Programming Libraries

With the emergence of modern architectures that present dif-
ferent computing capabilities, many programming languages
and libraries to help software developers exploit parallelism
were introduced in the literature. We illustrate in Figure
11 the evolution of the number of citations on the Scopus
database of the most used parallel programming languages
over the years and discuss each one next.
As observed, Message-Passing Interface, MPI, has estab-

lished itself over the years as one of the main alternatives for
exploiting parallelism. This popularity happens due to the
need for a library to create processes and manage commu-
nication between them in distributed memory environments,
which is found in every HPC system. Given that, along with
the evolution ofMPI [Gabriel et al., 2004] (e.g., MPI-1, MPI-
2, and MPI-3) and in the technology available in HPC sys-
tems, the challenges are related to (i) balance communica-
tion and computation between computing nodes to better use
hardware resources; (ii) efficiently use asynchronous com-
munication to overlap communication and computation; and
(iii) ensure fault tolerance mechanisms.

Simultaneously, with the increase in the number of cores in
multicore architectures, there was a popularization in the use
of libraries that exploit parallelism in shared memory (for ex-
ample, OpenMP and POSIX Threads). The POSIX Threads
library, a lightweight thread implementation, was the first to
create parallel applications [Barney, 2009]. However, due to
the complexity and the need for the programmer to decide
different aspects of the operating system, it is no longer used
for this purpose. It continues to be used only for developing
applications aimed at the operating system.
In this scenario, the OpenMP library replaced the POSIX

Threads library. OpenMP consists of compiler directives, li-
brary functions, and environment variables that ease the bur-
den of managing threads in the code [Chandra et al., 2001].
Therefore, extracting parallelism using OpenMP usually re-
quires less effort when compared to POSIX Threads. Par-
allelism is exploited by inserting directives in the code that
inform the compiler how and which parts of the application
should be executed in parallel. With the increasing number
of cores and complexity of the memory hierarchy in shared-
memory architectures, the challenge when using OpenMP
will be related to (i) finding the optimal number of threads
to execute each parallel region; (ii) defining thread and data
placement strategies that reduce cache contention and last-
level cache misses; and (iii) efficiently employ directives
for heterogeneous computing. Furthermore, other libraries,
such as Cilk Plus [Schardl et al., 2018], developed by MIT
and later maintained by Intel, emerged to facilitate vector
and task programming; however, due to the evolution of the
OpenMP library, they also ceased to be used. In the last years,
OmpSs-2 has emerged as an alternative to OpenMP when
exploiting parallelism through tasks by providing more mal-
leability and better load-balancing on multi-core systems.
The scenario dominated by OpenMP and MPI drasti-

cally changes with the popularization of GPU architectures.
From then on, CUDA became one of the most used paral-
lel programming interfaces to accelerate multi-domain ap-
plications on NVIDIA GPUs [Sanders and Kandrot, 2010].

Challenges in High-Performance Computing Navaux et al., 2023

�����������
�����������
�����������

����������
����������

�����������
�����������
�����������

�����������
�����������

�����������
�����������
�����������

�����������
�����������

�����������
�����������
�����������

�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

����������
����������
����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������

�����������
�����������
�����������

�����������
�����������

����������
����������
����������

�����������
�����������
�����������

�����������
�����������
�����������

����������
����������
����������

0

500

1000

1500

2000

2500

3000

3500
N

u
m

b
e
r
 o

f
C

it
a

ti
o

n
s

��������
�������� OpenMP MPI CUDA OpenCL Intel OneAPI

Figure 11. Number of citations from the foremost parallel programming
libraries over the years in the Scopus database.

The CUDA library consists of a set of extensions for C,
C++ and FORTRAN, which allows the programmer to cre-
ate kernels, which are functions that can run on NVIDIA
GPU-type graphics cards [Cook, 2012]. In addition to this
library, OpenCL also emerged as a framework for heteroge-
neous computing, allowing the software developer to imple-
ment applications that run on both multicore processors and
graphics cards from any vendor [Munshi et al., 2011]. Fi-
nally, the OpenACC library has become popular as it looks
similar to the OpenMP library when exploiting parallelism
[Farber, 2016]. It also uses pragmas and makes program-
ming for GPUs fast and straightforward.
Considering the imminent increase in the use of hetero-

geneous architectures by end users, Intel released OneAPI
at the end of 2018. It simplifies software development
by providing the same programming languages and models
across all accelerator architectures. oneAPI seeks to provide
software developers with source-level compatibility, perfor-
mance transparency, and software stack portability. In this
scenario, the challenge will be defining the ideal architecture
to execute each piece of parallel code without jeopardizing
the performance of the entire HPC system.
Current and efficient parallel applications employ more

than one parallel programming interface. The MPI library
is generally used for message exchange between different
computational nodes while the OpenMP and CUDA / Ope-
nACC libraries exploit the use of multiple processor cores
and GPU-type graphics cards. The trend is the emergence
and evolution of compilers, both in self-parallelization and
data location optimization.

5 Other Challenges

Given the increasing heterogeneity of hardware resources
and availability of frameworks and libraries to exploit paral-
lelism in HPC servers shown in the last sections, other chal-
lenges become important to be addressed. Hence, we discuss
in this section, the trends related to energy consumption, that
is, what should one care about in HPC systems to improve
their energy efficiency. Similarly, new HPC environments
will require more resilience to reduce the amount of software
and hardware failures, as discussed in Section 5.2. We also
discuss two alternatives to optimize the energy efficiency of
HPC servers, such as mixed-precision and data locality in
Section 5.3 and 5.4, respectively.

5.1 Energy Demand

HPC machines’ growing demand for processing capabilities
has led manufacturers to associate thousands of processors
in clusters, which generates high power consumption. In
this scenario, some machines from the TOP500 list consume
around 30 MW, corresponding to a city of approximately
300,000 inhabitants. Consequently, machine builders and
processormanufacturers aim to optimize architectures so that
consumption decreases. These optimizations include chang-
ing the processor architecture, managing non-active units,
and reducing the processor operating frequency, among other
techniques [Padoin et al., 2019]. Today, new machines are
made to increase instruction speed and energy consumption,
which sometimes occurs the opposite.

Figure 12, extracted from a modern multicore processor
with WattWatcher tool when executing well-known parallel
workloads [LeBeane et al., 2015], clearly demonstrates one
of the challenges for the evolution of processor architectures.
It is verified that the percentage of energy dedicated to the
effective processing and execution of the instruction is about
17% of all energy (OoO and ALU). In comparison, about
34% is spent on static energy, leakage, the energy the circuit
consumes, even with nothing running. Furthermore, about
35% is spent on accesses to different levels of cache memory
access and 11% on registers. In the end, even if these per-
centages can improve during the next few years, it appears
that the energy invested in the final goal, which is the execu-
tion of the instruction, is small compared to the point spent
in other parts of the processor’s operation. Therefore, this
is a significant challenge to be improved in future processor
architectures.

Figure 12. Distribution of energy consumption in a core.

5.2 Resilience

Resilience deals with the ability of a system to continue oper-
ating in the presence of failures or performance fluctuations.
In supercomputers, which process high-performance appli-
cations and have thousands of cores, memories, and circuits
connecting them, the probability of a failure in any of its ele-
ments becomes more prominent. Therefore, resilience is one
of the challenges to be faced in order to continue delivering
high-performance execution of scientific applications while
keeping infrastructure-related costs low.

Challenges in High-Performance Computing Navaux et al., 2023

Analysis over the last years shows that newer HPC sys-
tems will be much less reliable as a consequence of three
main factors: the increasing complexity of the system de-
sign and number of hardware resources (e.g., cores and mem-
ories); the decreasing device dependability; and the shrink-
ing process technology. Figure 13 shows the mean time be-
tween failures (MTBF) of distinct HPC servers with different
number of nodes and cores per node, extracted from [Gupta
et al., 2017]. As can be observed, the greater the number
of nodes in the HPC system, the shorter the mean time (in
hours) between failures. This scenario means that newer su-
percomputers with thousands of processors and nodes will
have servers crashing every day, hence the importance of re-
silience to keep the machine running.
Analysis over time shows the growth of failures with

the evolution of supercomputers, with more and more cores
reaching thousands of them. Figure 13 shows this evolution,
which means that a supercomputer with thousands of proces-
sors will have servers crashing every day, hence the impor-
tance of resilience to keep the machine running. Resilience
is achieved through hardware and software that will dynam-
ically detect the failure, diagnose, reconfigure, and repair
it, allowing processing to continue without user awareness.
Therefore, this area becomes essential in future machines to
meet the needs of high-performance processing and will en-
able this processing to occur until obtaining results without
interruption.

2,918.0
2,187.0

189.0

36.9

8.9
5.2

1

10

100

1000

10000

IBM AC922

4608 Nodes

(44 cores/node)

IBM AC922

4662 Nodes

(44 cores/node)

EoS Cray XC30

9840 Nodes

(12 cores/node)

Jaguar XT4

7832 Nodes

(12 cores/node)

Jaguar XK6

18662 Nodes

(16 cores/node)

Titan XK7

18688 Nodes

(16 cores/node)

M
T

B
F

 (
h

o
u

r
s
)

Figure 13. Mean time between failures on different HPC servers.

5.3 HPC and Mixed Precision

The amount of energy and time spent with operations with
high precision induce researchers to optimize operations con-
sidering the correct need of precision in each calculus. Low-
ering the precision can save cost, time and energy. The
proper reduction of accuracy is the new challenge in appli-
cation execution.
Mixed-precision architectures usually support two ormore

floating-point precision arithmetic operations and allow the
reduction of both storage, energy, and computational require-
ments. By reducing the precision of some data and arithmetic
operations of the problems, it is possible to trade-off the qual-
ity of the result by the performance and energy efficiency of
the execution [Freytag et al., 2022].
Other than the precision reduction, there is Approximate

Arithmetic that works with simplified arithmetic’s units, that
are less expensive on area and so on energy, whose results
are less precise.

5.4 Data Locality
In future microprocessors, where the memory hierarchy will
become more complex, the energy spent only to move data
will critically affect the application’s performance and en-
ergy consumption. Hence, any nano-joule employed tomove
data up and down the memory hierarchy will decrease the
energy available for computation. In this scenario, task map-
ping and scheduling need to be optimized in the interconnec-
tion network, prioritizing location to restrict data movement
as much as possible [Cruz et al., 2021]. Therefore, the ten-
dency is to prioritize data locality over processor speed, al-
though local data tends to aid in faster processing. Energy
conservation becomes the priority.
Figure 14, extracted from the DoE report [Vetter et al.,

2022], shows that despite the evolution of chip technology,
with increasingly thinner technologies reaching 7nm, the de-
crease in energy consumption of the entire chip does not keep
the same pace with the reduction of energy due to computing.
This evolution shows that energy consumption for moving
data spends more power than performing computing opera-
tions on the chip, which implies an important revolution, not
only in the architecture of processors but also in the way in-
structions are executed. Compilers should be concerned with
bringing data closer to the processors.

Figure 14. Energy consumption at Pico Joules versus technology evolution
Vetter et al. [2022]

6 Conclusion
As discussed in the text above, High-Performance Process-
ing has gone from a specific area, meeting certain processing
needs, to a central theme in the evolution of computing, con-
sidering the growing needs of processing power in science
fields, such as Big Data, Artificial Intelligence, Data Science,
among others. This evolution goes through important trans-
formations of machines and processors, including the grow-
ing use of the cloud and cloud to meet these demands for
processing power. The search for greater performance is not
always the main priority; today, there is often an attempt to
optimize energy consumption. Heterogeneity is an integral
part of processors and machines, and the arrival of quantum
processors should increase this diversity. Resilience is cru-
cial for new HPC systems since system failures, errors, or
interruptions can result in data loss, delays, or system down-
time, leading to significant financial losses, productivity de-
clines, or even safety risks in critical applications. Further-
more, new forms of programming and storage are an essen-

Challenges in High-Performance Computing Navaux et al., 2023

tial part of the HPC development. It is concluded that the
evolution of computing involves the continuous growth of
processing power and new ways of doing it.

Declarations

Authors’ Contributions
All authors contributed to the writing of this article, read and ap-
proved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Funding
This study was partially supported by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Fi-
nance Code 001, by Petro bras grant n.º 2: 020/00182-5, by CN-
Pq/MCTI/FNDCT nº 308877/2022-5 and grant Universal 18/2021
nº 406182/2021-3.

Availability of data and materials
Data can be made available upon request.

References
Aurora (2021). Argonne leadership computing facility.
Available at:https://www.alcf.anl.gov/aurora. Ac-
cessed: Apr. 11, 2021.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.,
Slominski, A., et al. (2017). Serverless computing: Cur-
rent trends and open problems. Research advances in
cloud computing, pages 1–20. DOI: 10.1007/978-981-10-
5026-81.

Barney, B. (2009). POSIX threads programming.
National Laboratory. Available at: https:
//computing.llnl.gov/tutorials/pthreads.
Accessed: Mai. 4, 2022.

Cerebras (2021). The future of ai is here. Available at:https:
//cerebras.net/chip/. Accessed: Sep. 10, 2021.

Chandra, R., Dagum, L., Menon, R., Kohr, D., Maydan,
D., and McDonald, J. (2001). Parallel programming in
OpenMP. Morgan Kaufmann.

Cook, S. (2012). CUDA programming: a developer’s guide
to parallel computing with GPUs. Newnes.

Cox, M. and Ellsworth, D. (1997). Managing big data for sci-
entific visualization. In ACM siggraph, volume 97, pages
21–38. MRJ/NASA Ames Research Center. Available
at:https://www.researchgate.net/profile/David-
Ellsworth-2/publication/238704525_Managing_
big_data_for_scientific_visualization/links/
54ad79d20cf2213c5fe4081a/Managing-big-data-
for-scientific-visualization.pdf.

Cruz, E. H., Diener, M., Pilla, L. L., and Navaux, P. O.
(2021). Online thread and data mapping using a sharing-
aware memory management unit. ACM Transactions on
Modeling and Performance Evaluation of Computing Sys-
tems (TOMPECS), 5(4):1–28. DOI: 10.1145/3433687.

Dávila, G. P., Oliveira, D., Navaux, P., and Rech, P.
(2019). Identifying the most reliable collaborative
workload distribution in heterogeneous devices. In
2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1325–1330. IEEE. DOI:
10.23919/DATE.2019.8715107.

Desjardins, J. (2019). Howmuch data is generated each day?
Available at:https://www.visualcapitalist.com/
how-much-data-is-generated-each-day. Ac-
cessed: Mar. 12, 2021.

Dongarra, J. H. M. and Strohmaier, E. (2020). Top500 su-
percomputer:. Available at:https://www.top500.org/
lists/top500/2020/11/.. Accessed: Mar. 10, 2021.

Farber, R. (2016). Parallel programming with OpenACC.
Newnes.

Freytag, G., Lima, J. V., Rech, P., and Navaux, P. O. (2022).
Impact of Reduced andMixed-Precision on the Efficiency
of aMulti-GPUPlatform on CFDApplications. InCompu-
tational Science and Its Applications–ICCSA 2022 Work-
shops: Malaga, Spain, July 4–7, 2022, Proceedings, Part
IV, pages 570–587. Springer. DOI: 10.1007/978-3-031-
10542-539.

Frontier (2021). ORNL Exascale Supercomputer. Available
at:https://www.olcf.ornl.gov/frontier/. Accessed:
Apr. 10, 2021.

Fu, X., Riesebos, L., Lao, L., Almudever, C. G., Se-
bastiano, F., Versluis, R., Charbon, E., and Bertels, K.
(2016). A heterogeneous quantum computer architec-
ture. In Proceedings of the ACM International Con-
ference on Computing Frontiers, pages 323–330. DOI:
10.1145/2903150.2906827.

Fujitsu (2021). Supercomputer fugaku. Available at:https:
//www.fujitsu.com/. Accessed: Apr. 10, 2021.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Don-
garra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Bar-
rett, B., Lumsdaine, A., et al. (2004). Open mpi: Goals,
concept, and design of a next generation mpi implemen-
tation. In Recent Advances in Parallel Virtual Machine
andMessage Passing Interface: 11th European PVM/MPI
Users’ Group Meeting Budapest, Hungary, September 19-
22, 2004. Proceedings 11, pages 97–104. Springer. DOI:
10.1007/978-3-540-30218-619.

Ghose, S., Boroumand, A., Kim, J. S., Gómez-Luna, J., and
Mutlu, O. (2019). Processing-in-memory: A workload-
driven perspective. IBM Journal of Research and Devel-
opment, 63(6):3–1. DOI: 10.1147/JRD.2019.2934048.

Gupta, S., Patel, T., Engelmann, C., and Tiwari, D. (2017).
Failures in large scale systems: long-term measurement,
analysis, and implications. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–12. DOI:
10.1145/3126908.3126937.

Hendrickx, N. W., Lawrie, W. I., Russ, M., van Riggelen,
F., de Snoo, S. L., Schouten, R. N., Sammak, A., Scap-

https://www.alcf.anl.gov/aurora
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://cerebras.net/chip/
https://cerebras.net/chip/
https://www.researchgate.net/profile/David-Ellsworth-2/publication/238704525_Managing_big_data_for_scientific_visualization/links/54ad79d20cf2213c5fe4081a/Managing-big-data-for-scientific-visualization.pdf
https://www.researchgate.net/profile/David-Ellsworth-2/publication/238704525_Managing_big_data_for_scientific_visualization/links/54ad79d20cf2213c5fe4081a/Managing-big-data-for-scientific-visualization.pdf
https://www.researchgate.net/profile/David-Ellsworth-2/publication/238704525_Managing_big_data_for_scientific_visualization/links/54ad79d20cf2213c5fe4081a/Managing-big-data-for-scientific-visualization.pdf
https://www.researchgate.net/profile/David-Ellsworth-2/publication/238704525_Managing_big_data_for_scientific_visualization/links/54ad79d20cf2213c5fe4081a/Managing-big-data-for-scientific-visualization.pdf
https://www.researchgate.net/profile/David-Ellsworth-2/publication/238704525_Managing_big_data_for_scientific_visualization/links/54ad79d20cf2213c5fe4081a/Managing-big-data-for-scientific-visualization.pdf
https://doi.org/10.1145/3433687
https://ieeexplore.ieee.org/document/8715107
https://www.visualcapitalist.com/how-much-data-is-generated-each-day
https://www.visualcapitalist.com/how-much-data-is-generated-each-day
https://www.top500.org/lists/top500/2020/11/.
https://www.top500.org/lists/top500/2020/11/.
https://doi.org/10.1007/978-3-031-10542-5_39
https://doi.org/10.1007/978-3-031-10542-5_39
https://www.olcf.ornl.gov/frontier/
https://doi.org/10.1145/2903150.2906827
https://www.fujitsu.com/
https://www.fujitsu.com/
https://doi.org/10.1007/978-3-540-30218-6_19
https://ieeexplore.ieee.org/document/8792187
https://doi.org/10.1145/3126908.3126937

Challenges in High-Performance Computing Navaux et al., 2023

pucci, G., and Veldhorst, M. (2021). A four-qubit ger-
manium quantum processor. Nature, 591(7851):580–585.
DOI: 10.1038/s41586-021-03332-6.

Kelleher, J. D. and Tierney, B. (2018). Data science. MIT
Press.

Khan, S. M. and Mann, A. (2020). Ai chips: what they are
and why they matter. Center for Security and Emerging
Technology. DOI: 10.51593/20190014.

LeBeane, M., Ryoo, J. H., Panda, R., and John, L. K. (2015).
Watt watcher: fine-grained power estimation for emerg-
ing workloads. In 2015 27th International Symposium on
Computer Architecture and High Performance Computing
(SBAC-PAD), pages 106–113. IEEE.DOI: 10.1109/SBAC-
PAD.2015.26.

Lee, S., Kang, S.-h., Lee, J., Kim, H., Lee, E., Seo, S.,
Yoon, H., Lee, S., Lim, K., Shin, H., et al. (2021). Hard-
ware architecture and software stack for pim based on
commercial dram technology: Industrial product. In
2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 43–56. IEEE.
DOI: 10.1109/ISCA52012.2021.00013.

Liao, X.-k., Lu, K., Yang, C.-q., Li, J.-w., Yuan, Y., Lai,
M.-c., Huang, L.-b., Lu, P.-j., Fang, J.-b., Ren, J., et al.
(2018). Moving from exascale to zettascale computing:
challenges and techniques. Frontiers of Information Tech-
nology & Electronic Engineering, 19:1236–1244. DOI:
10.1631/FITEE.1800494.

LLNL (2021). DOE/NNSA Lab announces a partner-
ship with Cray to develop NNSA’s first exascale su-
percomputer. Jeremy Thomas. Available at:https://
www.llnl.gov/news/. Accessed: Sep. 10, 2021.

Matsuoka, S., Domke, J., Wahib, M., Drozd, A., and Hoe-
fler, T. (2023). Myths and legends in high-performance
computing. arXiv preprint arXiv:2301.02432. DOI:
10.48550/arXiv.2301.02432.

Munshi, A., Gaster, B., Mattson, T. G., and Ginsburg, D.
(2011). OpenCL programming guide. Pearson Education.

Padoin, E. L., Diener, M., Navaux, P. O., and Méhaut,
J.-F. (2019). Managing power demand and load im-
balance to save energy on systems with heterogeneous
CPU speeds. In 2019 31st International Symposium on
Computer Architecture and High Performance Computing
(SBAC-PAD), pages 72–79. IEEE. DOI: 10.1109/SBAC-
PAD.2019.00024.

Paillard, G. A. L., Coutinho, E. F., de Lima, E. T., and
Moreira, L. O. (2015). An architecture proposal for high
performance computing in cloud computing environments.
In 4th International Workshop on Advances in ICT Infras-
tructures and Services (ADVANCE 2015), Recife. Avail-
able at:https://www.researchgate.net/profile/
Emanuel-Coutinho/publication/293481549_
An_Architecture_Proposal_for_High_
Performance_Computing_in_Cloud_Computing_
Environments/links/56b897a708ae3c1b79b2dff5/
An-Architecture-Proposal-for-High-
Performance-Computing-in-Cloud-Computing-
Environments.pdf.

Reed, D., Gannon, D., and Dongarra, J. (2022). Rein-
venting high performance computing: Challenges and

opportunities. arXiv preprint arXiv:2203.02544. DOI:
10.48550/arXiv.2203.02544.

Rocki, K., Van Essendelft, D., Sharapov, I., Schreiber, R.,
Morrison, M., Kibardin, V., Portnoy, A., Dietiker, J. F.,
Syamlal, M., and James, M. (2020). Fast stencil-code
computation on a wafer-scale processor. In SC20: Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–14. IEEE. DOI:
10.1109/SC41405.2020.00062.

SambaNova (2021). Accelerated computing with a recon-
figurable dataflow architecture. white paper. Available
at:https://sambanova.ai/. Accessed: Sep. 10, 2021.

Sanders, J. and Kandrot, E. (2010). CUDA by example:
an introduction to general-purpose GPU programming.
Addison-Wesley Professional.

Schardl, T. B., Lee, I.-T. A., and Leiserson, C. E.
(2018). Brief announcement: Open cilk. In Pro-
ceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, pages 351–353. DOI:
10.1145/3210377.3210658.

Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick,
K., and Brown, D. (2020). AI for science: Report on the
department of energy (doe) town halls on artificial intelli-
gence (ai) for science. Technical report, Argonne National
Lab.(ANL), Argonne, IL (United States).

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Ver-
belen, T., and Rellermeyer, J. S. (2020). A survey on dis-
tributed machine learning. Acm computing surveys (csur),
53(2):1–33. DOI: 10.1145/3377454.

Vetter, J. S., Brightwell, R., Gokhale, M., McCormick, P.,
Ross, R., Shalf, J., Antypas, K., Donofrio, D., Humble, T.,
Schuman, C., et al. (2022). Extreme heterogeneity 2018-
productive computational science in the era of extreme het-
erogeneity: Report for DOE ASCR workshop on extreme
heterogeneity. DOI: 10.2172/1473756.

Voss, M., Asenjo, R., Reinders, J., Voss, M., Asenjo, R.,
and Reinders, J. (2019). Mapping parallel patterns to
TBB. Pro TBB: C++ Parallel Programming with Thread-
ing Building Blocks, pages 233–248. DOI: 10.1007/978-1-
4842-4398-58.

Xenopoulos, P., Daniel, J., Matheson, M., and Sukumar, S.
(2016). Big data analytics on HPC architectures: Perfor-
mance and cost. In 2016 IEEE International Conference
on Big Data (Big Data), pages 2286–2295. IEEE. DOI:
10.1109/BigData.2016.7840861.

https://doi.org/10.1038/s41586-021-03332-6
https://doi.org/10.51593/20190014
https://ieeexplore.ieee.org/document/7379840
https://ieeexplore.ieee.org/document/7379840
https://ieeexplore.ieee.org/document/9499894
https://doi.org/10.1631/FITEE.1800494
https://www.llnl.gov/news/
https://www.llnl.gov/news/
 https://doi.org/10.48550/arXiv.2301.02432
https://ieeexplore.ieee.org/document/8924168
https://ieeexplore.ieee.org/document/8924168
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
https://www.researchgate.net/profile/Emanuel-Coutinho/publication/293481549_An_Architecture_Proposal_for_High_Performance_Computing_in_Cloud_Computing_Environments/links/56b897a708ae3c1b79b2dff5/An-Architecture-Proposal-for-High-Performance-Computing-in-Cloud-Computing-Environments.pdf
 https://doi.org/10.48550/arXiv.2203.02544
https://ieeexplore.ieee.org/document/9355322
https://sambanova.ai/
https://doi.org/10.1145/3210377.3210658
https://doi.org/10.1145/3377454
https://www.osti.gov/biblio/1473756/
https://doi.org/10.1007/978-1-4842-4398-5_8
https://doi.org/10.1007/978-1-4842-4398-5_8
https://doi.org/10.1109/BigData.2016.7840861

	Introduction
	The Need for HPC
	Demands from Big Data area
	Demands from the Artificial Intelligence Area
	Demands from Data Science and Related Areas

	HPC Architectures and Processors Challanges
	New Generation of Processors and Accelerators
	Heterogeneous Architectures
	AI chips
	Aware Computing
	Processing In Memory
	Quantum Computing
	Cloud Computing
	Moving to Zettascale Computing

	Programming Challenges in HPC
	Parallel Algorithms Design Patterns
	Parallel Programming Libraries

	Other Challenges
	Energy Demand
	Resilience
	HPC and Mixed Precision
	Data Locality

	Conclusion

