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Abstract A knowledge base, expressed using the Resource Description Framework (RDF), can be viewed as a
graph whose nodes represent entities and whose edges denote relationships. The entity relatedness problem refers
to the problem of discovering and understanding how two entities are related, directly or indirectly, that is, how they
are connected by paths in a knowledge base. Strategies designed to solve the entity relatedness problem typically
adopt an entity similarity measure to reduce the path search space and a path ranking measure to order and filter
the list of paths returned. This article presents a framework, called CoEPinKB, that supports the empirical evalua-
tion of such strategies. The proposed framework allows combining entity similarity and path ranking measures to
generate different path search strategies. The main goals of this article are to describe the framework and present a
performance evaluation of nine different path search strategies.
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1 Introduction

Knowledge bases, such as DBpedia [Lehmann et al., 2015],
are expressed using the RDF data model and can be viewed
as graphs whose nodes represent entities and whose edges
denote relationships. In this article, we present a framework,
called CoEPinKB, that supports exploring a knowledge base
to discover and understand how two entities are connected.
This is known as the entity relatedness problem, formalized
as: “Given an RDF graph G and a pair of entities a and b,
represented in G, compute the paths in G from a to b that
best describe the connectivity between them”.
Searching for relevant relationship paths between two en-

tities has applications in several areas. For example, the aca-
demic community may be interested in finding interrelation-
ships between researchers in co-authorship networks, or a
historian may also want to identify the relationships between
two politicians in History. Large knowledge bases describe
entities and their relations and can be used to search for these
kinds of relationships. However, entities may share toomany
direct relations and relationship paths, sometimes reaching
hundreds of thousands in a graph of billion edges, making
it challenging to compute and identify relevant relationship
paths between pairs of entities.
Our proposal is based onHerrera [2017], which introduced

a two-step strategy to address the entity relatedness problem:
(1) search for relationship paths between pairs of entities;
and (2) rank the paths and return the top-k, where k is spec-
ified by the user. This strategy must, however, be refined to
avoid generating and ranking a very large number of paths.
To address the first step, the author proposed a generic strat-
egy based on the backward search heuristic [Le et al., 2014],
which is a breadth-first search strategy that expands the paths

starting from each input entity, in parallel, until a candidate
relationship path is generated. Herrera [2017] adapted the
expansion process to use activation criteria that prioritize cer-
tain paths over others and to filter the entities less related to
the target entities so that it can be easier to identify more
meaningful paths. These activation criteria give priority to
entities with a low degree in the graph and maintain entities
that are similar to the last entity reached in a partially con-
structed path, using some similarity measure. The second
step adopts ranking approaches that use the semantics of the
relationships between the entities to assign a score to relation-
ship paths [Herrera, 2017]. After sorting the set of relation-
ship paths found in the first step, the top-k paths are selected
to describe the connectivity of an entity pair.
The first contribution of this article is the proposal and im-

plementation of a framework that helps address the entity
relatedness problem. The framework is called CoEPinKB,
an acronym that stands for understanding the Connectivity
of Entity Pairs in Knowledge Bases. The architecture of
CoEPinKB, shown in Figure 1, features two main compo-
nents: the Backward Search component executes a breadth-
first search starting from each input entity and expanding
similar entities to find the most relevant relationship paths;
and the Relationship Path Ranking component, which ranks
the resulting paths. The two hot spots are the activation
function, implementing the entity similarity measure, and the
path rankingmeasure. The current version of CoEPinKB im-
plements the three entity similarity measures and the three
relationship path ranking measures defined in Section 2.
CoEPinKB differs from the implementation proposed

in Herrera [2017] in three aspects. First, it was designed
to make it easy for developers to add new entity similarity
and relationship path ranking measures to generate new path
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Figure 1. CoEPinKB architecture

search strategies. Second, CoEPinKB has a simple and prac-
tical Web user interface that facilitates the interaction of the
users with the framework and provides an API that facili-
tates executing different experiments and analyzing the re-
sults. Lastly, CoEPinKB was engineered to work with any
knowledge base accessible using a SPARQL service over
HTTP.

Existing analysis [Herrera, 2017] evaluated nine relation-
ship path search strategies on two entertainment domains.
However, the analysis did not evaluate the performance of
these strategies concerning execution time. The second con-
tribution of this article is then a more detailed analysis of the
performance of these different strategies concerning execu-
tion time on two entertainment domains in DBpedia.

The remainder of this article is organized as follows. Sec-
tion 2 presents an overview of background information nec-
essary to understand our work. Section 3 briefly reviews re-
lated work. Section 4 describes the proposed solution and
the process of finding relevant relationship paths between
entity pairs through a backward search algorithm. Section 5
presents some technical aspects of the implementation of the
proposed framework. Section 6 presents a performance eval-
uation of path search strategies, using CoEPinKB. Finally,
Section 7 presents the conclusions and some directions for
future work.

2 Background

In this section, we provide the required background informa-
tion to understand the basic principles of RDF and the use of
similarity and path ranking measures in knowledge graphs to
find relevant relationship paths between an entity pair. The
reader may skip this section on a first reading and go directly
to Sections 4 and 5, which are the central contributions of the
article.

2.1 RDF
The Resource Description Framework (RDF) is a flexible
and extensible data model for representing information about
resources [Schreiber and Raimond, 2014]. Resources can be
anything, including documents, people, physical objects, and
abstract concepts. RDF allows representing this variety of
resources and their relationships through RDF triples, which
are statements about resources that have the form (s, p, o),
where s stands for the subject, p for the predicate, and o for
the object.
An RDF dataset R is a set of RDF triples. It can be mod-

eled as a labeled graph GR = (VR, ER, L(ER)), where VR

is the set of subjects or objects of the triples in R and there
is an edge ei(s, o) ∈ ER (s, o) in ER from s to o labeled
p = L(ei(s, o)) iff the triple (s, p, o) occurs in R. An IRI in
VR will be referred to as an entity occurring in G.
An undirected path π in an RDF graph GR be-

tween entities w0 and wk is an expression of the form
(w0, p1, w1, p2, w2, . . . , pk−1, wk−1, pk, wk), where: k is
the length of the path; wi is an entity in GR such that wi and
wj are different, for 0 ≤ i ̸= j ≤ k; and either (wi, wi+1) or
(wi+1, wi) are edges of G labeled with pi+1, for 0 ≤ i < k.
Note that, since a path is undirected, butG is a directed graph,
we allow either (wi, wi+1) or (wi+1, wi) to be used to gen-
erate a path.

2.2 Similarity Measures
A similarity measure is a real-valued function σ that quan-
tifies the similarity between two objects e and f , such that
σ(e, f) ∈ [0, 1], σ(e, e) = 1, and σ(e, f) = σ(f, e).
Similarity measures can be classified into four main cate-
gories [Meymandpour and Davis, 2016]: (i) distance-based
models, which are based on the structural representation of
the underlying context; (ii) feature-based models, which de-
fine concepts or entities as sets of features; (iii) statistical
methods, which consider statistics derived from the underly-
ing context; and (iv) hybrid models, which comprise combi-
nations of the three basic categories.
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Feature-based similarity measures assume that the con-
cepts can be represented as sets of features and assess the sim-
ilarity of two concepts based on the commonalities among
their feature sets. In this article, the set of features of an en-
tity is modeled as a set of entities in its surroundings.
Let T be an RDF dataset and G be the RDF graph induced

by T . For two entities a and b in G, two abstract walkers
are deployed to traverse the graph at a specific depth d to
acquire features. At each depth, a walker collects entities,
after visiting depth d; the walkers return the sets of features
Ad and Bd of entities a and b, respectively.
The Jaccard index [Jaccard, 1901] between two entities a

and b in G is defined as the cardinality of the intersection of
their sets of features Ad and Bd divided by the cardinality of
their union:

J(a, b) = |Ad ∩Bd|
|Ad ∪Bd|

= |Ad ∩Bd|
|Ad|+ |Bd| − |Ad ∩Bd|

(1)

If a = b or Ad ∪Bd = ∅, we define J(a, b) = 1.
The Wikipedia Link-based Measure (WLM) [Milne and

Witten, 2008] measures the semantic similarity of two
Wikipedia pages by comparing their incoming and outgoing
links. However, it can be also used to measure the similarity
between two entities a and b in G and is defined as:

WLM(a, b) = log(max(|Ad|, |Bd|))− log(|Ad ∩Bd|)
log(|V |)− log(min(|Ad|, |Bd|))

(2)
where V is the set of entities of G.

SimRank [Jeh and Widom, 2002] measures the similarity
of the structural context in which objects occur based on their
relationships with other objects.
Let G be an RDF graph and w be an entity (node) in G. A

node v is an in-neighbor of w iff there is an edge (v, w) in
G. Let I(w) denote the set of in-neighbors of w in G. The
SimRank score s(a, b) between entities a and b is defined as
follows:

s(a, b) = λ

|I(a)||I(b)|
∑

c∈I(a)

∑
d∈I(b)

s(c, d) (3)

where λ is a confidence level between 0 and 1. If a = b,
we define s(a, b) = 1. If I(a) = ∅ or I(b) = ∅, we define
s(a, b) = 0.
The problem of reducing the computational cost of Sim-

Rank has been addressed, for example, in [Lizorkin and Ve-
likhov, 2008; Li et al., 2010, 2020; Reyhani Hamedani and
Kim, 2021].

2.3 Relationship Path Ranking Measures
After finding relationship paths between two entities, one im-
portant step is to rank the paths and consider only the top-k
most relevant ones. A relationship path ranking measure r
considers each path π between two entities a and b in an RDF
graph G as a sequence of properties and nodes, as defined in
Section 2.1, analyses each component in π, and generates a
score. A higher score indicates a greater relevance.

Let T be an RDF dataset, G be the RDF graph induced by
T , p be a predicate in T (a property in G) and w be an entity
in G.
The Predicate Frequency Inverse Triple Frequency (PF-

ITF), proposed by Pirrò [2015], is an adaptation of the orig-
inal TF-IDF used in information retrieval that considers the
participation of a predicate p in all triples in an RDF dataset
and can be defined as follows. The frequency of p incoming
to (outgoing from) w in G, pfw

i (p, G) and pfw
o (p, G), are

shown in Equation 4 and Equation 5, respectively. The in-
verse triple frequency of p in G, itf(p, G), and the predicate
frequency inverse triple frequency, pfitfw

x (p, G), are shown
in Equation 6 and Equation 7, respectively.

pfw
i (p, G) = |∗

p−→ w|
|∗ → w|

(4)

pfw
o (p, G) = |w

p−→ ∗|
|w → ∗|

(5)

itf(p, G) = log |T |
|∗ p−→ ∗|

(6)

pfitfw
x (p, G) = pfw

x (p, G)× itf(p, G) (7)

where |∗ p−→ w| is the number of triples in G where the pred-
icate p is incoming to w, |w p−→ ∗| is the number of triples
where the predicate p is outgoing from w, |∗ → w| is the
total number of triples incoming to w, |w → ∗| is the total
number of triples outgoing from w, and |∗ p−→ ∗| is the to-
tal number of triples including p. Note that, in Equation 7,
pfitfw

x (p, G) can use pfw
i (p, G) or pfw

o (p, G).
Let π(w0, w1) = (w0, p1, w1) be a path between w0 and

w1 in G of length k = 1. The score of π is defined as:

score(π(w0, w1), G) = pfitfw0
o (p1, G) + pfitfw1

i (p1, G)
2

(8)
The score of a path π(w0, wk) =

(w0, p1, w1, . . . , wk−1, pk, wk), for k > 1, is defined
as:

score(π(w0, wk), G) =
score(π(w0, w1), G) + . . . + score(π(wk−1, wk), G)

k
(9)

The Exclusivity-based Relatedness (EBR), introduced
by Hulpuş et al. [2015], claims that a relation between two
concepts is stronger if each of the concepts is related through
the same type of relationship to fewer other concepts. Using
the notation introduced to define PF-ITF, the exclusivity of a
relationship a

p−→ b is defined as:

exclusivity(a p−→ b) = 1
|a p−→ ∗|+ |∗ p−→ b| − 1

(10)

The denominator is subtracted by 1 because the rela-
tionship a

p−→ b is otherwise counted twice, once for the
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relationships outgoing from a and once for the relation-
ships incoming to b. The score of a path π(w0, wk) =
(w0, p1, w1, . . . , wk−1, pk, wk) in G is defined as:

score(π(w0, wk), G) = 1∑k
i=1 1/exclusivity(wi−1

pi−→ wi)
(11)

The Pointwise Mutual Information (PMI) [Church and
Hanks, 1990] measures the co-occurrence strength between
two items. The PMI score of a path is estimated based on the
co-occurrence of the properties and entities in the path. We
consider three cases in the computation of the relevance of a
path:

1. Co-occurrence of two properties pr and ps, when they
are properties of the same entity. (Equation 12)

2. Co-occurrence of a property p and an entity w, when p
is outgoing from w. (Equation 13)

3. Co-occurrence of a property p and an entity w, when p
is incoming to w. (Equation 14)

These cases can be formalized as follows:

PMI(pr, ps) = log f(pr, ps)
f(pr) ∗ f(ps)

(12)

PMI(w, p) = log f(w, p)
f(w) ∗ f(p)

(13)

PMI(p, w) = log f(p, w)
f(p) ∗ f(w)

(14)

where f(., .) is the frequency that two items co-occur in G
and f(.) is the frequency of a property or entity in G. The
score of a path π(w0, wk) = (w0, p1, w1, . . . , wk−1, pk, wk)
in G is defined as:

score(π(w0, wk), G) =
median{PMI(pi, pj)|1 ≤ i ̸= j ≤ k}
+ (1/2k) ∗ (PMI(w0, p1) + . . . + PMI(wk−1, pk)
+ PMI(p1, w1) + . . . + PMI(pk, wk))

(15)

3 Related Work
Several strategies and tools have been proposed to discover
the semantic associations between a pair of entities in a
knowledge base. Some approaches [Heim et al., 2009; Pirrò,
2015; Herrera et al., 2016] first identify all possible rela-
tionships between two entities, using SPARQL queries to
retrieve paths up to a certain length, and then rank the re-
sults based on some predefined informativeness measures.
Pathfinding techniques have also been used to identify entity
relationships [Fang et al., 2011;Moore et al., 2012; De Vocht
et al., 2013; Cheng et al., 2014; Herrera, 2017].
Heim et al. [2009] proposed an approach that automati-

cally reveals relationships between two known entities and
displays them as a graph. The relationship paths are found

by an algorithm based on the concept of decomposition of
an RDF graph [Lehmann et al., 2007] and composed of sev-
eral SPARQL queries that search iteratively for paths with
increasing length, starting from zero, between the input enti-
ties. The authors presented RelFinder, an implementation of
this approach, and demonstrated its applicability using an ex-
ample from the DBpedia. However, this approach does not
provide mechanisms for ranking or comparing paths.
REX [Fang et al., 2011] is a system that takes a pair of

entities in a given knowledge base as input and identifies a
ranked list of relationship paths, called by the authors as rela-
tionship explanations. REX implements different algorithms
for finding the relationship explanations, adapted from solu-
tions proposed for the keyword search problem in databases.
The PathEnumBasic algorithm is based on the backward ex-
pansion search introduced in BANKS [Bhalotia et al., 2002]
and generates partial paths from input entities concurrently,
with shorter paths being generated first. The second path
enumeration algorithmPathEnumPrioritized is a direct adap-
tion of the bidirectional search [Kacholia et al., 2005], an im-
proved version of BANKS, and instead of always expanding
the shortest partial paths, the degree of the nodes is used as
an activation score to prioritize the expansion. The authors
also proposed some interestingness measures for ranking re-
lationship explanations and performed user experiments to
demonstrate the effectiveness of the algorithms.
Moore et al. [2012] proposed an approach that can find in-

formative paths between two specified nodes. It performs a
shortest paths search between the two nodes using a metric
that just depends on the degrees of adjacent nodes and favors
paths via low-degree nodes, thus ensuring that the paths pre-
fer more specific and informative relationships over general
ones.
DeVocht et al. [2013] introduced an approach for pathfind-

ing that takes into account the meaning of the connections
and uses a distance metric based on Jaccard. It applies the
measure to estimate the similarity between two nodes and
to assign a weight based on the random walk, which ranks
the rarest resources higher. De Vocht et al. [2016] proposed
an in-depth extension of this algorithm which reduces arbi-
trariness by increasing the relevance of links between nodes
through additional pre-selection and refinement steps. The
authors also compared and measured the effectiveness of dif-
ferent search strategies through user experiments.
EXPLASS is an approach proposed by Cheng et al. [2014]

that explores a knowledge base searching for associations
and provides a list of the top-k clusters, which are labeled
with an association pattern that gives users a conceptual sum-
mary of the associations in the cluster. The clusters are ob-
tained by formulating and solving a data mining problem,
and then the top-k ones are found by formulating and solv-
ing an optimization problem. Cheng et al. [2017] examined
existing techniques for ranking semantic associations and
proposed two new techniques based on the heterogeneity or
homogeneity of the constituents of a semantic association.
Cheng et al. [2021] presented a fast algorithm for semantic
associations search by enumerating and joining paths, which
proved a tighter bound and allowed more effective distance-
based pruning of the search space than previous work.
Pirrò [2015] introduced RECAP, a framework to gener-
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ate different types of relatedness explanations between enti-
ties, possibly combining information from multiple knowl-
edge bases. RECAP goes beyond related approaches such
as REX and EXPLASS, as it allows to build different types
of explanations (for example, graphs and sets of paths), thus
controlling the amount of information displayed. The author
first formalizes the notion of relatedness explanation and in-
troduces different criteria to build explanations based on in-
formation theory, diversity, and their combinations. The first
approach that the author proposed for ranking paths between
a pair of entities is based on the informativeness of a path
and uses the novel PF-ITF measure to calculate the score
of a path. The author conducted experiments to investigate
whether RECAP provides useful explanations to the user.
DBpedia Profiler is a tool proposed by Herrera et al.

[2016] which implements a strategy to generate connectivity
profiles for entities represented in DBpedia. The tool uses
SPARQL queries to identify relationship paths that connect
the given pair of entities and adopts a strategy based on se-
mantic annotations, which use a similarity measure, to group
and summarize the collected paths. The authors made exper-
iments to compare DBpedia Profiler with RECAP and the
results showed that this tool outperforms RECAP in terms of
performance and usability.
As stated above, many approaches [Fang et al., 2011;

De Vocht et al., 2013; Cheng et al., 2014; Pirrò, 2015; Her-
rera et al., 2016] evaluate relationship paths rankingswith the
help of user experiments. Herrera et al. [2017], by contrast,
proposed the Entity Relatedness Test Dataset, a ground truth
of paths between pairs of entities in two entertainment do-
mains in theDBpedia that supports the evaluation of different
strategies that address the entity relatedness problem. The
authors used information from the Internet Movie Database
(IMDb)1 and last.fm2 to generate specialized relationship
path rankings between entity pairs in the movies and music
domains, respectively. For each domain, the dataset contains
20 pairs of entities, each with a ranked list with 50 relation-
ship paths based on information about their entities found in
IMDb and last.fm, and on information about their properties,
computed from DBpedia.
Herrera [2017] introduced a generic search strategy, based

on the backward search heuristic proposed by Le et al. [2014]
for keyword search, which combines SPARQL queries, acti-
vation criteria, similarity, and ranking measures to find rele-
vant paths between a pair of entities in alternative ways. This
approach expands the paths starting from two source entities
and prioritizes certain partial paths over others until relation-
ship paths between these entities are generated. The activa-
tion criteria consider the degree of the entities and use simi-
larity measures, such as Jaccard index, WLM, and SimRank.
For ranking the paths found and selecting those that are rele-
vant, the author used rankingmeasures, such as PF-ITF, EBR,
and PMI. Finally, the author evaluated the accuracy of the
results of the different strategies with the help of the ground
truth proposed by Herrera et al. [2017]. However, this work
lacks an evaluation of the performance, in terms of execu-
tion time, of each of the different path search strategies, as

1https://www.imdb.com/
2https://www.last.fm/

well as a tool with a graphical user interface that facilitates
evaluating these strategies.
Table 1 compares CoEPinKB with the related systems

mentioned above, in terms of the knowledge graphs sup-
ported, types of output, availability of filtering capabilities,
and the requirement of local data.

Table 1. Comparison of CoEPinKB with related systems

System Knowledge
Graph Output Filtering

Capabilities
Local
Data

RelFinder DBpedia Graph No Yes
REX Yahoo! Graph No Yes

EXPLASS DBpedia Paths Yes Yes
RECAP Any Graph, Paths Yes No

DBpedia Profiler DBpedia Graph, Paths No Yes
CoEPinKB Any Paths Yes No*

* Local data is only necessary to be used as a cache to speed up queries, but it is not
mandatory.

CoEPinKB differs from most related systems in the fol-
lowing major aspects. As for the RDF knowledge base, only
RECAP and our framework are knowledge base indepen-
dent; CoEPinKB, as RECAP, only requires the availability
of a remote SPARQL query endpoint. Regarding the local
data requirement, CoEPinKB and RECAP do not assume lo-
cal data availability or any data pre-processing. However, by
using a local cache, CoEPinKB can speed up the execution
of the queries.
Finally, we remark that none of these related works exam-

ined in detail the effects of using different entity similarity
measures or path-ranking measures on the execution time of
the path search strategies.

4 The CoEPinKB Approach
In this section, we describe the process of discovering rele-
vant relationship paths that connect two entities in an RDF
graph using different path search strategies that combine en-
tity similarity and path ranking measures. We propose an
approach based on a single-machine configuration using the
data parallel paradigm.

4.1 Overview
Recall that the entity relatedness problem refers to the ques-
tion of exploring a knowledge base, represented as an RDF
graph, to discover and understand how two entities are con-
nected. An RDF knowledge base R is equivalent to an RDF
graph GR whose nodes represent the entities in R and whose
edges denote the relationships expressed in R. This is a con-
venient representation to explore the connectivity in R of a
pair of entities, a and b, which reduces to computing paths in
GR between a and b.
Let GR be the RDF graph that represents an RDF knowl-

edge base R. We consider a family of path search strategies
that receive as input a pair of target entities (w0, wk) in GR

and output a list of ranked paths in GR from w0 to wk. Each
path search strategy in the family has two basic steps:

1. Find a set of paths in GR from w0 to wk such that each
path satisfies a set of selection criteria.

https://www.imdb.com/
https://www.last.fm/
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2. Rank the paths found and select the top-k relevant ones.

The first step of a path search strategy uses the backward
search heuristic [Le et al., 2014], which is a breadth-first
search strategy that expands the paths starting from each tar-
get entity, in parallel, until a candidate relationship path is
generated. The expansion process considers one or several
of the following selection criteria to prioritize certain paths
over others and to filter the entities less related to the target
entities so that it can be easier to identify more meaningful
paths:

Entity similarity: Select a path (w0, p1, w1, . . . , pk, wk) iff
there is q ∈ [0, k] such that, for each i ∈ [0, q), wi and
wi+1 are similar and, for each j ∈ [q, k), wj and wj+1
are similar.

Bounded entity degree: Select a path whose intermediate
entities, or at least those intermediate entities that need
to be expanded, have less than n neighbors in GR.

Bounded path length: Select a path of maximum length
equal to k.

The first criterion says that a path can be broken into two
parts, left and right, such that the entities on the left part
are transitively similar to the first entity, w0, and the entities
on the right part are transitively similar to the second entity,
wk. This criterion maintains entities that are similar to the
last entity reached in a partially constructed path, using some
similarity measure, and can be implemented by a backward
search strategy, as described in the next section. This article
considers the three entity similarity measures, Jaccard index,
WLM, and SimRank, described in Section 2.2.
This work also assumes that the bounded entity degree cri-

terion is always applied together with the entity similarity cri-
terion because, as stated Fang et al. [2011] and Moore et al.
[2012], nodes with high degree influence the path search pro-
cess with potentially very unspecific information.
Paths between target entities can have an arbitrary length.

However, considering only paths of length at most k leads
to relationship paths of manageable size that users can
better interpret. Related approaches, such as REX [Fang
et al., 2011], EXPLASS [Cheng et al., 2014], SCS Connec-
tor [Nunes et al., 2014], RECAP [Pirrò, 2015], and DBpe-
dia Profiler [Herrera et al., 2016], also considered bounded-
length paths.
The second step of a path search strategy receives as input

the set of paths found in the first step and uses a path ranking
measure to sort the paths by relevance. Each of these paths
is a possible explanation of how the two input entities are re-
lated. This article considers the three path ranking measures,
PF-ITF, EBR, and PMI, reviewed in Section 2.3.
To create different search strategies to discover relevant re-

lationship paths, we combine entity similarity and path rank-
ing measures to be used in the pathfinding and ranking pro-
cesses, respectively. Therefore, we obtain a family of 9 path
search strategies, presented in Table 2, which we will evalu-
ate in Section 6. The second column of the table contains the
acronym used for each strategy hereafter in the document.

Table 2. Path Search Strategies

# Acronym Name
1 J&I Jaccard index & PF-ITF
2 J&E Jaccard index & EBR
3 J&P Jaccard index & PMI
4 W&I WLM & PF-ITF
5 W&E WLM & EBR
6 W&P WLM & PMI
7 S&I SimRank & PF-ITF
8 S&E SimRank & EBR
9 S&P SimRank & PMI

4.2 Finding Relationship Paths between Enti-
ties in a Knowledge Graph

The backward search heuristic uses breadth-first search
(BFS) to explore the neighbors of each target entity. Two
BFS, which we call left and right, are executed alternately
to traverse the RDF graph. We recall that we assume that the
edges of an RDF graph may be traversed in both directions.
In each expansion step, the BFS ignores entities with a

high degree (i.e., entities with a large number of incoming
and outgoing links) and uses an entity similarity measure to
prioritize the entities with a higher similarity score to gener-
ate relevant relationship paths. A path is generated if both
BFS processes reach a common entity or a target entity and
the length of the path does not exceed a set limit. We break
the backward search into two basic and independent steps:
(1) expansion, and (2) join of the paths.
Algorithm 1 describes the implementation of the back-

ward search. The input of the algorithm consists of a pair
of entities, a and b, an integer l representing a path length
limit, an integer d representing an entity degree limit, an ac-
tivation function τ , and a real number λ ∈ [0, 1] defining an
expansion limit; and the output is a set P of paths between a
and b.

Algorithm 1: backwardSearch
Input: a pair of entities a and b, a path length limit

l, an entity degree limit d, an activation
function τ , and a real number λ ∈ [0, 1]
defining an expansion limit

Output: a set P of paths from a to b

1 side← 0, left← 0, right← 1;
2 Vleft ← {a}, Vright ← {b};
3 Pleft ← ∅, Pright ← ∅;
4 length← 0;
5 while length < l do
6 Vside, Pside ← expansion(Vside, Pside, d, τ, λ);

7 length← length + 1;
8 side← length mod 2;
9 P ← join(Pleft, Pright, a, b);
10 return P

The value of variable side alternates between 0, indicat-
ing that the expansion will be applied to the “left side” sub-
paths, starting on a, and 1, indicating that the expansion will
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be applied to the “right side” sub-paths, starting on b. The
values of variables left and right are therefore 0 and 1, re-
spectively.
The sets Vleft (i.e., V0) and Vright (i.e., V1) store the en-

tities to expand in each iteration from “left” and “right”, re-
spectively. The undirected sub-paths generated during the
expansion of the entities (Line 6) are stored in main memory
in setsPleft (i.e., P0, for the “left side” sub-paths) andPright

(i.e., P1, for the “right side” sub-paths). The algorithm re-
turns a set P of undirected paths between a and b created if
there are sub-paths in Pleft and Pright that reach a common
entity, or if sub-paths in the “left” (“right”) side reach b (a).
Algorithm 2 describes the expansion process. For each

entityw to expand, the algorithm retrieves the neighbors ofw
(Line 3). If this set of neighbors, represented as an adjacency
list, is not already in memory, it retrieves it from the Web
and stores it in memory. An important remark is that, if w
is not a target entity (i.e., a or b) and w has more than the
maximum number of links (bounded entity degree criterion),
then w will not be expanded and the paths that pass through
w will be discarded (Line 4).

Algorithm 2: expansion
Input: a set Vside of entities to expand, a set Pside

of partial paths, a maximum entity degree d,
an activation function τ , and a real number
λ ∈ [0, 1] defining an expansion limit

Output: a set Vnew of activated neighbors of
entities in Vside, and a set Pside of partial
paths

1 Vnew ← ∅;
2 for w ∈ Vside do
3 Nw ← neighborsOf(w);
4 if |Nw| <= d or w is a target entity then
5 Sw ← τ(w, Nw);
6 Truncate Sw to retain only the first λ%

elements;
7 for ws ∈ Sw do
8 Add new sub-paths into Pside indexed

by ws by appending the edge from ws

to w to sub-paths of Pside indexed by
w;

9 Add ws to Vnew;

10 return Vnew, Pside

Algorithm 2 also calls the activation function τ (Line 5)
with w and Nw, the list of neighbors of w, as input. The ac-
tivation function τ implements an entity similarity measure
and returns a list Sw of neighbors similar to w. This list is or-
dered by highest similarity and only the first λ percent of the
elements of the list are considered (Line 6). For example, if
λ = 0.3, only the first 30% of the elements in the list are con-
sidered to extend the sub-paths indexed by w in Pside (Lines
7-8). A sub-path is extended by appending the edge from ws

to the activated entity w, regardless of the actual direction
of the edge. These new extended sub-paths are then indexed
by the activated neighbor ws of w. The activated entities are

included in set Vnew (Line 9) for later expansions.
Algorithm 3 describes the join process, which generates

undirected paths from a to b through the function concat
when two undirected sub-paths, one coming from left and
the other from the right, reach the same entity w (Lines 2-
4). The Boolean expression “w ∈ Pleft” is true when there
is a set of paths, denoted Pleft[w], in Pleft that end on w.
Likewise, “w ∈ Pright” is true when there is a set of paths,
denoted Pright[w], in Pright that start on w. Also, if a path
coming from left reaches the target entity (Lines 5-6), or a
path coming from right reaches the source entity (Lines 7-8),
it is included in the set P of the resulting paths.

Algorithm 3: join
Input: a set Pleft of partial paths from left, a set

Pright of partial paths from right, and a pair
of entities a and b

Output: a set P of paths from a to b

1 P ← ∅, left← 0, right← 1;
2 for w ∈ Pleft do
3 if w ∈ Pright then
4 Add paths resulting from

concat(Pleft[w], Pright[w]) to P ;

5 if b ∈ Pleft then
6 Add paths in Pleft[b] to P ;
7 if a ∈ Pright then
8 Add paths in Pright[a] to P ;
9 return P

The approach for finding relationship paths in this article
is adapted from the algorithm proposed by Herrera [2017].
In that proposal, the join of sub-paths coming from the left
and the right is executed after each expansion iteration. That
strategy has the disadvantage that paths might be generated
repeatedly andmust therefore be discarded. The author states
that in this way the paths can be consumed without waiting
for the completion of the backward search process, however,
there is no guarantee that those first generated paths will have
greater relevance than the paths that will emerge in later iter-
ations. For this reason, our algorithm awaits the completion
of the expansion process and then generates paths with all
the sub-paths that start from a different side of the graph and
reach a common node.

4.3 Ranking Relationship Paths in a Knowl-
edge Graph

The number of paths connecting two entities a and b in a
knowledge base can be very large. To help users understand
the connectivity between that pair of entities it is necessary
to reduce the size of the resulting path set. In this section, we
discuss how to effectively select the most relevant relation-
ship paths between a pair of entities.
Specifically, given a relationship path ranking measure

and a parameter k, the relationship path ranking algorithm
returns a ranked list of top-k most relevant relationship paths
based on the relationship path rankingmeasure. Algorithm4
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shows the pseudocode of getRelevantPaths, which includes
three steps: (1) executing the backward search to find the re-
lationship paths (using the Algorithm 1), (2) executing the
path ranking function to get an ordered list of ranked paths,
and (3) selecting the top-k most relevant paths.

Algorithm 4: getRelevantPaths
Input: a pair of entities a and b, a path length limit

l, an entity degree limit d, an activation
function τ , a real number λ ∈ [0, 1] defining
an expansion limit, a path ranking function
γ, and a maximum number of paths k

Output: a list of the top-k relevant paths from a to b

1 P ← backwardSearch(a, b, l, d, τ, λ);
2 R← getPathsOrderedByScore(P, γ);
3 Truncate R to retain only the first k elements;
4 return R

The getPathsOrderedByScore function uses the path
ranking function γ, which implements some path ranking
measure, to calculate the score of each of the paths in the
list P . This function runs in parallel to speed up the ranking
process. After calculating the score of each discovered path
and ordering the list of paths in descending order according
to this score, we take the first k elements and this result is the
output of the algorithm.

5 The CoEPinKB Framework
The CoEPinKB framework takes as input a pair of entities
and a search strategy. A search strategy consists of an entity
similarity measure that will be used by the backward search
algorithm as the activation function to decidewhen to expand
some neighbor of an entity or not, and a relationship path
ranking measure to select the top-k relevant paths between
the two entities provided.
During the first phase of the execution of CoEPinKB,

the Backward Search component communicates with the
SPARQL Query Executor component requesting the required
data to execute the backward search algorithm. This last
component gets the requested data using two different ap-
proaches: (i) first, it tries to get the data from the persistent
cache; (ii) if the requested data is not available then it gets the
data directly from the SPARQL Endpoint through SPARQL
queries, and stores it in the persistent cache to speed up fu-
ture searches. After the backward search algorithm finishes,
the Backward Search component sends a list of relationship
paths between the pair of entities to the Relationship Path
Ranking component.
Then, the second phase begins. Similar to the previous

phase, the Relationship Path Ranking component communi-
cates with the SPARQL Query Executor component request-
ing the required data to execute the path ranking algorithm.
Finally, after the algorithm finishes, the Relationship Path
Ranking component sends the list of ranked paths to the user
through the user interface.
Frameworks are semi-complete, reusable applications that

can be specialized to produce custom applications for a spe-

cific domain. The flexibility points of a framework, called
hot spots, are the interfaces, abstract classes, or methods that
must be implemented to add the functionality specific to a
problem [Markiewicz and Lucena, 2001]. Some features
of the framework are not mutable and are known as frozen
spots. These points of immutability compose the kernel of
the framework and are pieces of code already implemented
within the framework that call one or more hot spots.
There are two key hot spots in CoEPinKB –the activation

function, implementing the entity similarity measure, and
the path ranking measure– which are the core of the Back-
ward Search and Relationship Path Ranking components.
These components were designed using an architectural pat-
tern based on interfaces, which increases the extensibility of
the framework by making it easier to add new entity simi-
larity measures and relationship path ranking measures. As
illustrated in Figure 1, the current version of CoEPinKB im-
plements 3 entity similarity measures (i.e., Jaccard index,
WLM, and SimRank) and 3 relationship path ranking mea-
sures (i.e., PF-ITF, EBR, and PMI).
To add a new activation function, a developer must create

a class that implements the IEntitySimilarityMeasure
interface. This interface has a getSimilarity method that
receives an entity and a collection of RDF statements that
connect the input entity with its neighbors and returns a
list with the similarity values between the entity and each
of its neighbors. Similarly, to add a new relationship path
ranking measure, a developer must create a class that im-
plements the IRelationshipPathRankingMeasure inter-
face, which only has the getPathsOrderedByRank method
declaration that receives a list of paths between a pair of en-
tities and returns this list of paths ordered by the value of the
current relationship path ranking measure.
To improve performance, we use concurrent programming

in the implementation of the entity similarity and path rank-
ing measures through the fork/join framework in Java. Fol-
lowing a divide and conquer approach, we split intensive
tasks, such as computing the similarity between an entity and
its neighbors, into smaller independent subtasks that can be
performed in parallel to maximize the use of multi-core pro-
cessors. For example, if the task of computing the rank of
each path in a list of relationship paths is simple enough (i.e.,
paths.size() is lower than a specified threshold), then the
task is executed asynchronously. Otherwise, the list of paths
is divided into sublists (the task is divided into subtasks) and
the results of all subtasks are recursively joined into a single
result.
At the data layer, the framework has the SPARQL

Query Executor component that interacts with RDF datasets
through their SPARQL endpoints. The framework also uses
a persistent cache to store the result of the SPARQL queries
executed during the expansion of the entities in the RDF
graph. The main reason for this decision is that the back-
ward search and the relationship-path ranking algorithms re-
quire executing a large number of queries (quite possibly
over the network), which can negatively affect the overall
performance of the framework.
A framework that facilitates the understanding of the con-

nectivity between pairs of entities in knowledge bases us-
ing different search strategies requires a simple and at the
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Figure 2. CoEPinKB UI

same time highly configurable interface in terms of the pa-
rameters that make up a search strategy. Figure 2 shows
the CoEPinKB User Interface and an excerpt of the re-
sult when the input entities are dbr:Michael_Jackson and
dbr:Whitney_Houston, and the entity similarity and rela-
tionship path ranking measures are Jaccard index and EBR,
respectively.
The user also specifies other parameters through the inter-

face such as the maximum path length between the entities
(set to 4 by default, but the user can set this parameter to
search for shorter/longer paths); the maximum entity degree,
to discard entities with a high number of neighbors during the
expansion; a list of properties irrelevant when building the re-
lationship paths; an entity prefix, to expand only to resources
that are considered entities; an expansion limit λ ∈ [0, 1], un-
derstood as a percentage, that limits the expansion process;
and the maximum number of paths that the user wants.
The results are presented using a table layout and the rele-

vant paths are ordered in descending order by the score. The
interface also allows the user to navigate to the page of the
resource –subject, predicate, or object– by clicking on the
corresponding URI.
CoEPinKB also provides a RESTful API, so the user can

submit a GET request that returns a JSON document contain-
ing the corresponding list of relevant paths between the two

entities. This form of interaction with the framework makes
it easy to execute batch searches and perform experiments.
The CoEPinKB framework is available online3 and was

implemented in Java in conjunction with other technologies,
such as Apache Jena4, a free and open-source Java frame-
work for building Semantic Web and Linked Data applica-
tions, to interact with the RDF data sources; Redis5, a popu-
lar distributed in-memory key-value store, as our persistent
cache; and the Jedis6 library, which allowed us to interact
with a Redis instance from our Java application.

6 Evaluation
Herrera [2017] executed some experiments to evaluate a fam-
ily of 9 path search strategies (shown in Table 2) against
a ground truth [Herrera et al., 2017] from the music and
movies domains, and a baseline, RECAP [Pirrò, 2015]. The
pairwise comparison method was used to identify the path
search strategy that returns the best ranking compared with
the ground truth, and to compare the best strategy with the
baseline. Those experiments suggested that the J&E strat-

3http://semanticweb.inf.puc-rio.br:8080/CoEPinKB/
4https://jena.apache.org/
5https://redis.io/
6https://github.com/redis/jedis

http://semanticweb.inf.puc-rio.br:8080/CoEPinKB/
https://jena.apache.org/
https://redis.io/
https://github.com/redis/jedis
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Table 3. Entity pairs from the music and movies domains

Music domain Movies domain
EP Entity Degree EP Entity Degree

1 dbr:Michael_Jackson 9000 6 dbr:Elizabeth_Taylor 2319
dbr:Whitney_Houston 4171 dbr:Richard_Burton 1967

2 dbr:The_Beatles 14105 7 dbr:Cary_Grant 1875
dbr:The_Rolling_Stones 8602 dbr:Katharine_Hepburn 1916

3 dbr:Elton_John 7796 8 dbr:Laurence_Olivier 2644
dbr:George_Michael 2703 dbr:Ralph_Richardson 1062

4 dbr:Led_Zeppelin 4810 9 dbr:Errol_Flynn 1423
dbr:The_Who 4617 dbr:Olivia_de_Havilland 1208

5 dbr:Pink_Floyd 5199 10 dbr:William_Powell 874
dbr:David_Gilmour 1654 dbr:Myrna_Loy 1039

egy, which adopts the Jaccard index and the EBR measure,
is the best of the 9 strategies compared and obtained better
results than the baselines.
Herrera [2017] did not include experiments to evaluate

the performance of all these strategies concerning execu-
tion time. This article aims to fill this gap by presenting
a performance evaluation of these different strategies using
CoEPinKB.

6.1 Experimental Setup
This section describes the experimental environment, hard-
ware and software components, dataset, and parameter set-
tings for experimenting with the CoEPinKB framework.
Hardware and Software Configurations. All the ex-

periments were performed on a Linux server with Ubuntu
16.04.7 LTS system, an Intel® Core™ i7-5820K CPU @
3.30GHz, and 6GB of memory dedicated to Java applica-
tions. We used Java v11.0.10, Tomcat v.9.0.36, and Re-
dis v3.0.6.
Dataset. The experiments were carried out over DBpe-

dia [Lehmann et al., 2015], a well-known large public knowl-
edge base which data is extracted fromWikipedia infoboxes.
DBpedia constitutes the main resource of Linked Open Data
on theWeb containingmore than 228million entities to date7.
The CoEPinKB framework queries the DBpedia dataset on-
line via the public OpenLinkVirtuoso SPARQLprotocol end-
point at http://dbpedia.org/sparql. OpenLink Virtuoso serves
as both the back-end database SPARQL query engine and
the front-end HTTP/SPARQL server with an Nginx overlay
primarily to cache results for each submitted query string.
This public endpoint does not include all available DBpe-
dia datasets8. When the experiments were performed, this
dataset contained just over 400 million triples.
Target Entity Pairs. We selected 10 entity pairs from the

Entity Relatedness Test Dataset [Herrera et al., 2017], 5 en-
tity pairs from the music domain, and 5 from the movies do-
main. Table 3 shows the selected entity pairs and the degree
of each entity from both domains. Observe that the entities
from the music domain have a higher degree than the entities
from the movies domain, which affects the performance of
the path search strategies, as reported in Section 6.2.

7https://www.dbpedia.org/
8https://www.dbpedia.org/resources/sparql/

Path Search Strategies. Using CoEPinKB, we proceeded
to evaluate the family of nine path search strategies obtained
by combining three entity similarity measures (Jaccard in-
dex, WLM, and SimRank) and three path ranking measures
(PF-ITF, EBR, and PMI), as shown in Table 2.
Configuration parameters. We configured the experi-

ments using the following parameters:
Maximumpath length between the entities: set to 4, since

this was the limit adopted by previous works, as REX [Fang
et al., 2011], EXPLASS [Cheng et al., 2014], RECAP [Pirrò,
2015], DBpedia Profiler [Herrera et al., 2016], and the ex-
periments in Herrera [2017]. As argued by Nunes et al.
[2014], paths longer than 4 would express unusual relation-
ships, which users might misinterpret.

Maximum entity degree: set to 200. This degree limit was
deduced fromDBpedia statistics [Herrera, 2017], which indi-
cate that 90% of the entities have less than 200 links. This cri-
terion is applied together with entity similarity during the en-
tity expansion process because it can be assumed that nodes
with a high degree often carry very unspecific information
that negatively influences the path search process [Moore
et al., 2012].

Expansion limit: set to λ = 0.5. So, the adjacency list
of each entity is sorted by similarity, and only the top 50%
of the entities are considered, independently of the size of
the list and the similarity scores. We considered 50% of the
list because it is a moderate factor to maintain the connectiv-
ity between entities and propagate the similarity score in the
graph [Cohen, 2010].

Set of ignored properties: a total of 10 properties were
ignored during the exploration of the knowledge base.
These properties are: purl:subject, rdfs:seeAlso,
rdf:type, dbo:type, dbo:wikiPageRedirects,
dbo:wikiPageDisambiguates, dbp:aux,
dbp:name, dbp:title, dbp:wordnet_type, and
dbp:governmentType. This is justified by the fact
that these properties describe relationships between entities
that are irrelevant for our analysis.
For instance, if we considered properties like

purl:subject and rdf:type, we would have to deal
with too many paths that are of little interest to us. There
are more than 225 statements in which the subject is the
entity dbr:Michael_Jackson and the predicate is one of
these properties. The property dbo:wikiPageRedirects

http://dbpedia.org/sparql
https://www.dbpedia.org/
https://www.dbpedia.org/resources/sparql/
http://purl.org/dc/terms/subject
https://www.w3.org/TR/rdf-schema/#ch_seealso
https://www.w3.org/TR/rdf-schema/#ch_type
http://dbpedia.org/ontology/type
http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/ontology/wikiPageDisambiguates
http://dbpedia.org/property/aux
http://dbpedia.org/property/name
http://dbpedia.org/property/title
http://dbpedia.org/property/wordnet_type
http://dbpedia.org/property/governmentType
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is also present in many statements (almost 70 times in the
case that the entity dbr:Michael_Jackson is the object)
that mainly link entities with typographical errors or other
types of minor errors with the corresponding correct entity.

Entity prefix: set to http://dbpedia.org/resource.
This prefix was used to expand only to resources that are con-
sidered entities of our interest.

Maximum number of paths: set to 50, because this value
suffices to explore the connectivity between the entities, as
reported in Fang et al. [2011]; Cheng et al. [2014]; Hulpuş
et al. [2015]; Pirrò [2015]. Also, this value was used in the
experiments performed by Herrera [2017] and this is the ex-
act number of paths for each entity pair in the ground truth
proposed by Herrera et al. [2017].

6.2 Experiment Results
This experiment aims to evaluate the performance, in terms
of average execution time, of the nine different path search
strategies shown in Table 2. For each pair of entities in each
domain, we searched the top-k relationship paths between
them six times (we excluded the first cold start run time, to
avoid the warm-up bias) and calculated the average time of
the last five executions of the program. Figure 3 shows the
performance of the path search strategies in both domains.

J&I J&E J&P W&I W&E W&P S&I S&E S&P
0

100

200

300

·103

Av
er
ag
e
tim

e
(m

s) Movies domain
Music domain

Figure 3. Average time of path search strategies using CoEPinKB

The results showed that strategies that use SimRank have
a poor performance. They took, on average, 116,070 ms and
266,838 ms to execute the pathfinding process in the movies
and music domains, respectively, that is, almost 2 minutes
for the movies domain, and almost 4 minutes and a half for
the music domain. This is due to the recursive definition of
SimRank. As we mentioned in Section 2.2, there are many
studies to speed up its computations [Lizorkin and Velikhov,
2008; Li et al., 2010; Reyhani Hamedani and Kim, 2021].
However, as these strategies were not shown to be success-
ful in finding relevant relationship paths in the experiments
in Herrera [2017], we focused on the performance analysis
of the rest of the strategies, leaving aside those that use Sim-
Rank.
Figure 4 shows the performance of the path search strate-

gies in the music and movies domains, splitting the average
execution times of each strategy into the average time spent
searching and ranking the relationship paths, and excluding
the strategies that use SimRank.
We notice that for the entity pairs in the music domain the

average execution time of all strategies is higher than the av-
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Figure 4. Average execution times of path search strategies in each domain
(excluding S&I, S&E, and S&P strategies)

erage execution time for the entity pairs in the movies do-
main. This is because the entity pairs in the music domain
represent “more popular” subjects withinDBpedia than those
in the movies domain, which means a larger number of links
with other entities, which in turn dramatically impacts the
performance of graph traversal algorithms such as backward
search and the implemented entity similarity and path rank-
ing measures. Overall, in both domains, the best path search
strategies in terms of performance are J&E (2,558 ms), J&I
(3,049ms), and J&P (3,241ms). In themovies domain, these
strategies achieved the following average execution times:
J&E (976 ms), J&I (1,130 ms), and J&P (1,184 ms). While
in the music domain the behavior of the average execution
times was: J&E (4,139 ms), J&I (4,968 ms), and J&P (5,298
ms).
The experiments reflect the particularity of how each of

the entity similarity and path ranking measures is calculated.
The average times for the strategies using the Jaccard index
or WLM were quite good and very similar when compared
to those using SimRank because both entity similarity mea-
sures use the feature sets Ad and Bd, which are stored and
quickly accessed in our persistent cache. In our experiments,
the depth d at which the graph is traversed to acquire features
of an entity is set to 2. However, the strategies that useWLM
take longer than those that use the Jaccard index because
during the process of finding paths they expand the graph
through connections that end up generating a larger number
of paths in most cases, which affects the performance of the
searching and ranking algorithms. On average, the strategies
that use the Jaccard index found 132 paths in the movies do-
main and 920 paths in the music domain, while the strategies
that use WLM found 428 and 2,780 paths in the movies and
music domain, respectively.
Figure 5 shows the number of paths found for each entity

pair using the Jaccard index and WLM. Recall that the first
5 entity pairs (EP1-EP5) belong to the music domain, while
the rest (EP6-EP10) belong to the movies domain.
As for the path ranking measures, EBR executes fewer

calculations than PF-ITF and PMI (see Section 2.3). For
this reason, the average time for ranking paths using EBR is
better than the average time using PF-ITF and PMI, as con-
firmed in the evaluation of the different strategies.
The experiments in Herrera [2017] indicated that J&E and

W&Eperform better than the other strategies as far as finding
the relevant paths between a pair of entities in the music and
movies domains and that the J&E strategy performs better

http://dbpedia.org/resource
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Figure 5. Number of paths found for each entity pair using Jaccard index
and WLM as entity similarity measures

than the baselines. Concerning execution time, the results of
this article indicated that the most effective strategy is also
the fastest one. Therefore, we may conclude that J&E is the
fastest strategy and performs better than the other strategies.

7 Conclusions
In this article, we introduced CoEPinKB, a framework that
allows empirically evaluating path search strategies that com-
bine entity similarity and path ranking measures, to un-
derstand the connectivity of entity pairs in RDF datasets.
CoEPinKB supports such evaluation by featuring two flex-
ibility points: the entity similarity and the path ranking mea-
sures. Also, CoEPinKB was engineered to work with any
knowledge base accessible using a SPARQL service over
HTTP. Our performance evaluation of the path search strate-
gies indicated that any strategy that uses SimRank as the acti-
vation function has a poor performance when compared with
the other strategies. We also verified that the most effective
strategies are also the fastest ones.
As future work, we plan to test the path search strategies in

other knowledge bases and implement additional entity sim-
ilarity and relationship path ranking measures.
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