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Abstract Breast cancer is the second most common cancer type and is the leading cause of cancer-related deaths
worldwide. Since it is a heterogeneous disease, subtyping breast cancer plays an important role in performing a
specific treatment. In this work, we propose an evaluation framework that uses different machine learning tech-
niques for a broader analysis of the PAM50 list in the classification of breast cancer subtypes. The experiments
show that the best method to be used in the classification of breast cancer subtypes is the SVM with linear kernel,
which presented an F1 score of 0.98 for the Basal subtype and 0.90 for the Her 2 subtype, the two subtypes with
worse prognosis, respectively. We also presented a gene analysis for the classification methods using SHAP values,
where we found which genes are important for the classification of each subtype.
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1 Introduction

Breast cancer is the second most common type of cancer and
is the leading cause of disease-related death worldwide [Bray
et al., 2018]. As a highly heterogeneous disease, breast can-
cer shows distinct genetic variations, clinical outcomes, and
treatment strategies among its subtypes [Chen et al., 2016].
Breast cancer has four main molecular subtypes: Basal, Her
2, Luminal A, and Luminal B. Basal and Her 2 are the sub-
types with the worst prognosis (they have the highest fatal-
ity rate), respectively, while Luminal A and Luminal B are
linked to a better prognosis, as there are effective targeted
therapies for them [Dwivedi et al., 2019].
Classification methods are commonly used to identify can-

cer subtypes because they allow efficient, accurate, and ob-
jective diagnosis. Diagnosis of a tumor based on its bi-
ological (or “intrinsic”) subtype provides significant prog-
nostic and predictive information for patients with breast
cancer [Parker et al., 2009]. Thus correct classification
into its subtypes is critical for the effective treatment of pa-
tients [Mendoncaneto et al., 2021]. Nowadays, for patient
prognosis andmanagement, classical immunohistochemistry
markers (e.g., ER, PR and HER2), along with traditional clin-
icopathological variables (e.g., tumor size, tumor grade, and
nodal involvement), are commonly used [Dai et al., 2015].
Recent advances in DNA microarray technology have

allowed us to monitor the expression levels of thousands
of genes simultaneously during important biological pro-
cesses [Jiang et al., 2004], resulting in gene expression data.
Presenting a viable alternative to employ in cancer classifica-

tion, these gene expression data pose a challenge for analy-
sis, as there are usually thousands of genes for a few hundred
samples.
Despite the wealth of these data, genetic mapping of breast

cancer and its subtypes is still far from complete. Currently,
there is a list called PAM50 [Chia et al., 2012], which in-
cludes fifty genes accepted as representative for the charac-
terization of breast cancer and is considered the referential
set of genes to differentiate the subtypes. However, there is
still a need to investigate these subtypes further, as there is
no precise way to distinguish them using the PAM50 gene
list.
This shows that although the study of gene expression is

already a reality, there is still no definitive understanding of
all genes related to breast cancer and, especially, a definitive
understanding of the interactions between these genes. Thus,
an important contribution to accurate diagnosis is identifying
a subset of genes capable of characterizing the subtypes and
differentiating them from each other.
In this context, we propose an evaluation framework that

uses different machine learning techniques to classify breast
cancer subtypes and investigate the features. Given the par-
ticularities of gene expression data, mainly caused by the sen-
sitivity of different technologies for its acquisition, it is not
a simple application of machine learning methods and pack-
ages from a computational point of view. Since depending
on the technologies used (e.g., cDNA microarray [Schena
et al., 1995] or oligonucleotide arrays Lockhart et al. [1996])
to quantify the gene expression data. Results are presented
differently. For example, RNA-Seq is a more recent and
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advanced technique. It is capable of investigating at high
resolution all the RNAs present in a sample, characteriz-
ing their sequences, and quantifying their abundances at the
same time. Therefore, combining results from two distinct
technologies is challenging.
Accordingly, there is a clear need to investigate existing

techniques to treat these input data with different charac-
teristics and reliability. Based on this, the main contribu-
tions of this work are: (i) Study of different methods in the
task of classifying breast cancer subtypes, (ii) analysis of the
PAM50 list in the classification of breast cancer subtypes and
(iii) identify a list of genes that are important for the classifi-
cation in each subtype.

2 Motivation
Studying the characteristics of thousands of genes simul-
taneously offered a deep insight into cancer classification
problem. The gene expression profiles available in cancer
datasets introduced an abundant amount of data ready to be
explored [Tarek et al., 2017] and laid the problem to a high-
dimensional data problem.
Despite the large data, as there are usually thousands of

genes for a few hundred samples, there is a movement to em-
ploy gene expression data in the cancer classification [Yip
et al., 2011]. One way to simplify the high-dimensional data
classification problem is selecting genes [Guyon et al., 2002].
The majority of the cancer classification approaches are em-
ployed for binary classification (cancer/not cancer). Classi-
fication of multiclass cancer problem such as breast cancer
subtypes based on gene expression profiles is less common
but has more practical implications for prognosis as well as
the potential to further improve our understanding of gene
expression of various cancer problems [Nguyen and Rocke,
2002].
Thus, employing a feasible breast cancer subtype classifi-

cation using representative genes is an important task, which
needs the best methods to narrow the gene selection and im-
prove the classification [Shukla et al., 2018]. Additionally,
this is the best way to simplify machine learning methods,
speed up the classification task and significantly improve the
performance of the classifier [Gatto et al., 2021; Alanni et al.,
2019; Díaz-Uriarte and De Andres, 2006].

3 Related Work
When employing gene expression data in cancer classifica-
tion context, authors try to reduce the uneven number of sam-
ples versus genes, by selecting only relevant genes, this ap-
proach is known as gene filtering or gene selection. Selecting
only important genes, can improve the classification perfor-
mance and also reduce the computational effort.
Graudenzi et al. [2017] proposed a classification frame-

work based on Support Vector Machines (SVMs) with a fea-
ture selection strategy based on the concept of pathway ac-
tivity. They identified and analyzed a list of enriched path-
ways in four different breast cancer subtypes, and used this
information to perform the feature selection method in the

classifier implementation. In terms of overall accuracy, the
proposed classifier presents an accuracy around 85.00%, us-
ing 400 genes from the feature selection method.
Lee et al. [2020] used a pathway-based approach for fea-

ture selection, and applied a deep learning model with atten-
tion mechanism and network propagation for cancer classi-
fication. They used five TCGA1 cancer datasets. The aver-
age F1 score of their method was 93.74% for urothelial blad-
der Carcinoma (BLCA), 85.52% for breast invasive carci-
noma (BRCA), 87.01% for colon adenocarcinoma (COAD),
89.62% for prostate adenocarcinoma (PRAD), and 91.49%
for (Stomach adenocarcinoma) STAD. They selected a total
of 5, 515 genes for the classification task.
Mostavi et al. [2020] proposed three distinct Convolu-

tional Neural Networks (CNN) for cancer classification task.
Regarding the prediction of breast cancer subtypes, the 1D-
CNN model was employed. The authors used poor statistics
methods for the feature selection step, such as standard devi-
ation and mean. After selecting 7, 091 genes, they used their
model for the classification task and achieved an average ac-
curacy of 88.42% among five subtypes.
In the work of Li et al. [2017], the authors divided the pro-

cess into two stages. First, a genetic algorithm is used as a
gene selection mechanism, and the KNN (k-nearest neigh-
bors) algorithm as a classification method. The dataset con-
tains 31 tumor types. For the sorting task using KNN, k was
set to 5 with a majority voting rule. The results show that the
classification accuracy was greater than 90% for 28 of the 31
types of cancer.
Lyu and Haque [2018] incorporated gene expression data

into 2-D images and used a Convolutional Neural Network
(CNN) to classify 33 distinct types of cancer. The authors
transform cancer classification based on the gene expression
problem into an image problem. The main problem is that
gene expression data is highly dimensional, whereas most
deep learning architectures are for 2-D imaging. As a re-
sult, the authors achieved a mean F1 across cancer types of
95.43% using 20, 531 genes.
Table 1 synthesize the related works. In summary, re-

search that explores the problem of multiclass (subtypes)
classification encounters difficulty concerning performance.
The works of Li et al. [2017] and Lyu and Haque [2018] dealt
with the binary classification, even though they used more
than 30 types of tumour, all the samples were classified as
cancer or non cancer, therefore achieving high results.
When dealing with the multiclass classification, these

works use hundreds of genes and do not reach such expres-
sive results, not reaching 90% of accuracy. Different sub-
types can share important genes for their identification, so
classifying a type of cancer among the subtypes makes it a
much more complex task. In this context, we will work with
the PAM50 list as it is considered representative for breast
cancer subtypes and has only fifty genes to generate better
results using fewer genes.

1The Cancer Genome Atlas Program
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Table 1. Summary of the related work.

Author # of genes Features Classes Classifier Evaluation Metrics

[Graudenzi et al., 2017] 400 Basedo em
pathways

Multiclass SVM Precision, recall and
accuracy

[Mostavi et al., 2020] 7,091 Standard Deviation
and mean

Multiclass 1D-CNN Precision, recall and
F1

[Lee et al., 2020] 5,015 Baseado em
Pathways

Multiclass GCN+MAE F1

[Li et al., 2017] - Genetic
algorithm

Biclass KNN Accuracy

[Lyu and Haque, 2018] 20,531 Variance Biclass GA/KNN Precision, recall,
accuracy e F1

4 Evaluation Framework
The evaluation framework in this work consists of the fol-
lowing steps. (i) collection of databases that have gene ex-
pression; (ii) data pre-processing to select only the genes
involved in the study; (iii) classification of samples among
breast cancer subtypes; and (iv) analysis of the performance
of classifiers with different evaluation metrics.

4.1 Dataset and Pre-processing
This framework starts by choosing the dataset, where the data
can be extracted from genomic data repositories containing
gene expression data. After the data collection phase, pre-
processing is necessary to identify if the database has all
50 genes from the PAM50 list. Thus, among all the genes
that exist in the chosen dataset, only the 50 genes from the
PAM50 list are selected, if the 50 genes are not in the dataset,
another dataset needs to be used to validate the work. In this
step, we understand that employing the PAM50 genes in the
classification task is already a way of feature selection since
it reduces our scope from thousands of genes to only 50.

4.2 Classification
After selecting only the PAM50 genes for the training and
testing basis, we classify themwith different classifiers. This
step aims to understand how different classification methods
are able to distinguish breast cancer subtypes using gene ex-
pression data.

4.3 Data Analysis
To measure the performance of the methods, we apply tra-
ditional metrics such as precision, recall, F-measure, and
accuracy. Since biological data usually have a sparse
dataset [Chicco, 2017], we also measure the performance
of the methods using the Matthews correlation coefficient
(MCC) [Baldi et al., 2000] and precision vs. recall curve
(AUPRC). Both metrics were selected because they are suit-
able for unbalanced databases. While MCC is more appro-
priate for binary classification, the precision vs. recall curve
is a more reliable and informative indicator of statistical per-
formance in multiclass problems [Chicco, 2017].

We also calculate specificity as this measure is used to see
how correctly we can classify an individual into the correct
cancer subtype [Parikh et al., 2008]. Metrics are defined as:

Precision = TP
TP + FP

, (1) Recall = TP
TP + FN

, (2)

F1 = 2 × precision × recall
precision + recall

, (3)

Accuracy = TP + TN
TP + FP + FN + TN

, (4)

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

, (5)

Specificity = TN
TN + FP

, (6)

in which TP are true positives, TN are true negatives, FP are
false positives, and FN are false negatives. The higher the
value of these metrics, the better the result.
After performing the classification and evaluating the per-

formance of each classifier, we apply the Shapley Values
(SHAP) [Lundberg and Lee, 2017] to evaluate the feature
importance for each of the classifiers. SHAP is a game the-
ory based approach to describe the performance of a ma-
chine learning model. SHAP can provide explanations for
local and global models, estimating feature contributions to
the output of the model. To produce an interpretable model,
SHAP uses an additive feature attribution method. Accord-
ing to Bi et al. [2020], the SHAP values can be calculated as
follows:

ϕi =
∑

S⊆F,{i}

|S|! (|F | − |S| − 1)!
|F |!

[
fs∪{i}

(
xs∪{i}

)
− fs (xs)

]
,

(7)
where F represents the set of all features and S represents
all feature subsets obtained from F after removing the ith

feature. Then, two models, fs∪{i} and fS , are trained again,
and predictions of these models are compared to the current
input

[
fs∪{i}

(
xs∪{i}

)
− fs (xs)

]
, where xS represents the

values of the input features in the set S. To estimate ϕi from
2|F | differences, the SHAP approach approximates the Shap-
ley value by either performing Shapley sampling or Shapley
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quantitative influence. It is interesting to note that, SHAP
estimates the feature importance (magnitude of the contribu-
tion) as well as the sign (positive or negative).

5 Evaluation of the proposed
Framework

This section presents an analysis of the different classifiers
used to classify breast cancer subtypes using the PAM50
gene set. Additionally, we detail the methodology used to
apply the proposed approach.

5.1 Methodology
In this subsection, we describe the evaluation methodology
used in this work. We detail the characteristics of the datasets
used in the experiments. We present the parameters chosen
for the machine learning methods and also explain the eval-
uation metrics used.

Dataset

We used two distinct gene expression datasets from the Clin-
ical Proteomic Tumor Analysis Consortium (CPTAC) [Ed-
wards et al., 2015] to validate the methods. The datasets
present the gene expression of patients with breast cancer.
These specimens are divided into four intrinsic breast cancer
subtypes (see Section 1).
To evaluate the performance of the classifiers, we employ

a 10-fold cross-validation classification. We combined both
datasets using ComBat [Johnson et al., 2007], a widely used
tool for correcting technical biases in gene expression data.
Therefore, obtaining a larger dataset with 194 samples. Then,
we separated the resulting merged dataset into 70% for train-
ing and 30% for testing. The training set was used for the
10-fold cross-validation.
Table 2 summarizes the characteristics of the databases

used in the experiments:

Table 2. Dataset description.

Dataset # of genes Subtypes # of samples
Total #

of samples

Cptac 2C 23122

Basal 29

117
Her 2 14

Luminal A 57
Luminal B 17

Cptac 2D 16525

Basal 18

77
Her 2 12

Luminal A 23
Luminal B 24

Classifiers

To evaluate the performance of the PAM50 list for classify-
ing breast cancer subtypes, we employed five distinct meth-
ods. The Grid search [Bergstra and Bengio, 2012] was used
to optimize the parameters for each classifier, the parame-
ters set for the Grid Search were chosen empirically. Table 3

presents the chosen classifiers and parameters. The remain-
ing parameters have been set to the scikit-learn2 default con-
figuration.

Table 3. Classifier parameters.
Method Parameters

SVM(Linear) C = 0.1

SVM(RBF) C = 1.1

KNN p = 1, n neighbors = 5, weights = uniform

Random Forest bootstrap = F alse, min samples split = 6, n estimators = 28

XGBoost gamma = 0.04 , learning rate = 0.07

To calculate the evaluation metrics, we used the scikit-
learn and pandas-ml3 libraries. We compare the different
classifiers to see which method performs better overall and
for each subtype separately. We use the evaluation metrics
presented in Section 4.

5.2 Results
Different classifiers take into account distinct ways of clas-
sifying samples into different classes. Some use spacing
between classes to differentiate them (SVM), while others
check which class predominates among the elements closest
to the analyzed sample (KNN). Some use decision trees (Ran-
dom Forest) to perform the classification, and others start
from a primary hypothesis and try to improve it to reach a
better result (XGboost). Therefore, we expect that there will
be different results for the tested classifiers, even if they are
submitted to the same test conditions.

Classification Analysis

In the first experiment, we compared the results obtained by
all methods to classify the four subtypes (Figure 1). Figure 1a
illustrates performance in terms of precision, recall, and F1.
Figure 1b illustrates performance in terms of accuracy, MCC,
and specificity. The X axis presents the precision (Figure
1a) and the accuracy (Figure 1b). The Y axis presents the
recall (Figure 1a) and the specificity ((Figure 1b). The larger
the circle, the higher the F1 in Figure (Figure 1a) and the
specificity in (Figure 1b). The color of the circle indicates
the method.
Comparing the performance obtained by the methods, we

see that SVM(Linear) outperformed all other methods in the
six analyzed macro metrics. This performance can be ex-
plained by the fact that it is the classifier that best managed
to separate the samples from Luminal A from Luminal B.
Figure 2 shows the average confusion matrices obtained

by each method. Each row represents the instances of an
actual class, and each column represents the instances of a
predicted class. We can see that the results obtained with
the SVM(Linear) (Figure 2a presented better results than the
other classifiers, where 7,69% of the Basal samples were
wrongly classified as Her 2, 19,09% of Her 2 samples and
0,59% of Luminal A misclassified as Luminal B. In the case

2https://scikit-learn.org/stable/
3https://pypi.org/project/pandas-ml/

https://scikit-learn.org/stable/
https://pypi.org/project/pandas-ml/
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Table 4. Classification results using precision, recall and F1 micro metrics. Best results in bold.

Method
Precision Recall F1

Basal Her2 LumA LumB Basal Her2 LumA LumB Basal Her2 LumA LumB
SVM(Linear) 0,99 0,91 0,87 0,86 0,96 0,88 0,93 0,81 0,98 0,90 0,90 0,83
SVM(RBF) 0,99 0,91 0,83 0,84 0,96 0,84 0,89 0,79 0,98 0,88 0,86 0,82

KNN 0,96 0,97 0,83 0,84 0,99 0,86 0,89 0,79 0,97 0,91 0,86 0,81
Random Forest 0,96 0,85 0,80 0,80 0,93 0,78 0,86 0,74 0,95 0,81 0,83 0,77

XGBoost 0,97 0,90 0,80 0,85 0,91 0,84 0,85 0,79 0,94 0,87 0,82 0,82

Table 5. Classification results usingMCC, AUPRC and Specificity micro metrics. Best results in bold.

Method
MCC AUPRC Specificity

Basal Her2 LumA LumB Basal Her2 LumA LumB Basal Her2 LumA LumB
SVM(Linear) 0,95 0,79 0,80 0,66 0,96 0,88 0,93 0,81 1,00 0,97 0,86 0,95
SVM(RBF) 0,95 0,75 0,72 0,63 0,96 0,84 0,89 0,79 1,00 0,98 0,82 0,94

KNN 0,95 0,82 0,72 0,63 0,99 0,86 0,89 0,79 0,97 1,00 0,82 0,94
Random Forest 0,90 0,62 0,65 0,54 0,93 0,78 0,86 0,74 0,99 0,97 0,77 0,93

XGBoost 0,87 0,73 0,65 0,63 0,91 0,84 0,85 0,79 1,00 0,98 0,77 0,95

of SVM(RBF) (Figure 2b, the classifier had difficulty sepa-
rating the Her 2 samples, where 14,55% of the samples were
incorrectly classified as Luminal A and 15,45% incorrectly
classified as Luminal B.
TheKNN classifier (Figure 2c) had the same classification

problem as the SVM(RBF), where 35,56% of the Luminal B
samples were classified as Luminal A. In addition, 15,45%
of the Her 2 samples were incorrectly classified as Luminal
B. The KNN was the only method to correctly classify 100%
of the Basal subtype. Tests with the Random Forest (Fig-
ure 2d) present that 39,44% of Luminal B were erroneously
classified as Luminal A. Finally, XGBoost (Figure 2e) mis-
classified 27,69% of the Basal samples and confused 35,56%
of the Luminal B samples with Luminal A subtype.
In summary, the SVM(Linear) classifier provides the best

performance, with the least amount of wrongly classified
samples. It can also be noted that the subtype with the worst
prognosis, Basal, had the few characterization problems, re-
gardless of classifier, thus being the most characteristic sub-
type among the four. In contrast, the Luminal B subtype is
the subtype where the classifiers have greater difficulty in
classifying the samples. It also happens that all classifiers
have classified at least 10% of the Her 2 subtype as Luminal

B.
Analyzing Table 4, containing the results obtained by the

five classifiers tested, we can identify that the Basal subtype
obtained a precision score of 99% in both SVM classifiers.
The Luminal A subtype had the highest precision score of
87% with SVM(Linear), plus a recall above 85% in four of
the five classification methods used. Observing the Her 2
subtype, it can be seen that it manages to obtain a score of
97% of precision with the KNN classifier, with a recall near
90% only with SVM(Linear) classifier. The Luminal B sub-
type had amaximum precision of 86% and amaximum recall
of 81%.
When we analyze the F1 score, the SVM(Linear) classifier

holds three highest scores in the four subtypes, The Basal
subtype had a score of 98%, while the Luminal A subtype
had 90% and the Luminal B subtype had 83%. For the Her
2 subtype, the KNN classifier had a score of 91%.
Table 5 contains the results for the metricsMCC, AUPRC

and Specificity. Examining the data obtained with the metric
MCC, we notice that the classifier SVM(Linear) along with
SVM(RBF) and KNN have the highest scores for the sub-
types Basal with 95%. Only SVM(Linear) achieves a MCC
of 80% in Luminal A. In contrast, the Her 2 subtype had a

Table 6. Classification results using macro metrics compared with the related work. The best results for each metric are bold.

Method # of genes F1 Macro ACC MCC AVG AUPRC AVG Specificity

SVM(Linear) 50 0,85 0,84 0,79 0,89 0,94

SVM(RBF) 50 0,83 0,81 0,75 0,87 0,93

KNN 50 0,84 0,82 0,77 0,88 0,93

Random Forest 50 0,76 0,75 0,67 0,83 0,91

XGBoost 50 0,80 0,77 0,71 0,85 0,92

1D-CNN (Mostavi) 50 0,63 0,73 - - -
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Figure 1. Performance obtained by the methods using macro metrics.

maximum score of 82% with the KNN classifier.

In the AUPRC metric, the SVM(Linear) classifier ob-
tained scores of 88% for the Her 2 subtype, 93% for the
Luminal A subtype, and 81% for the Luminal B subtype.
The KNN classifier obtained an AUPRC of 99% for the
Basal subtype. Analyzing the Specificity, we notice that the
Basal subtype got 100% with the classifiers SVM(Linear),
SVM(RBF), and XGBoost. The Her 2 subtype obtained a
maximum of 100% using the KNN classifier. The Luminal A
subtype obtained 86% with the SVM(Linear) classifier, and
the Luminal B subtype obtained 95% of Specificity using the
SVM(Linear) and XGBoost.

Analyzing the data from the Table 6, with the results of
the macro metrics, and the results of the related works. We
can conclude that SVM(Linear) outperforms all of the other
classifiers. The work of [Mostavi et al., 2020] uses a CNN
but only achieves a F1 score of 63%. The SVM(Linear)
has the best score in the following employed evaluation met-
rics: 85% for F1, 84% for Accuracy, 79% forMCC, 89% for
AUPRC and 94% for specificity.

In general, we notice that the Basal, the subtype with the
worst prognosis, is the most characteristic among all since
the classifiers obtained better results in this subtype. Con-
cerning Her 2 (subtype with the second-worst prognosis),
we noticed that it obtained the second best result among the
subtypes. While Luminal B had the worst result, thus be-
ing the most difficult to be classified. Finally, the results
showed that the evaluation framework combined reveals that
the PAM50 gene list has good results when classifying the
breast cancer subtypes, and the SVM(Linear) is the best clas-
sifier to employ.

Gene Analysis

In this step, we analyze which features (genes) are more im-
portant for each of the methods to classify the breast can-
cer subtypes using SHAP values (Section 4). Although to
compute the SHAP values, we face an exponential compu-
tational complexity [Messalas et al., 2019], in the scope of
our project, we were able to apply it to all samples since our
merged dataset has 194 samples.
Figure 3 shows the features SHAP values obtained by each

method. The larger the bar, the more critical the gene is
for the classification of the subtype. We can see that dis-
tinct classifiers present distinct gene importance. For the
SVM(Linear) (Figure 3a, the larger bars belong to the Basal
subtype, therefore showing why this subtype has the best
classification score.
For the SVM(RBF) (Figure 3b, the genes are also impor-

tant in classifying the Luminal B subtype, explaining why
these method only looses to SVM(Linear) when classifying
the Luminal B subtype. The KNN (Figure 3c also presents
the genes as important for the Basal subtype, explaining the
performance in the classification of this subtype. For the
other subtypes, this method presents similar results when
compared with SVM(RBF) and Random Forest.
The Random Forest (Figure 3d) presents genes very im-

portant for the basal subtype classification and also for Her
2 and Luminal A. Finally, the XGBoost (Figure 3e) presents
the worst result among all the methods.
Summarizing the results, we can see that the ESR1 gene

has almost the same importance for each classifier and is the
most important gene to classify the Her 2 subtype. This is
because mutations on this gene are acquired frequently in
metastatic hormone receptor-positive breast cancer [Turner
et al., 2020].
When we look for the PGR gene, we can see that it is more

important for the Luminal A subtype in all the methods. This
is because the expression of PGR is a potent prognostic in-
dicator for evaluating the long-term prognosis of Luminal
A [Kurozumi et al., 2017]. The FOXA1 and MLPH genes
are the more critical genes to classify the basal subtype. Both
are implicated in the development of breast cancer [He et al.,
2015]. FOXA1 segregates with genes that characterize the
luminal subtypes in DNA microarray analyses [Badve et al.,
2007].
In our next experiment (Figure 4), we analyze the SHAP

values individually for each class (subtype). We chose the
SVM(Linear) for this analysis since it presented the best clas-
sification performance among all themethods tested (Subsec-
tion 5.2). This summary plot shows the importance of fea-
tures and how their SHAP values are spread across the data.
The plot uses SHAP values to show the distribution of each
feature’s impacts on the model output. The dots represent
each sample in the test dataset.
For each subtype (Figures 4a, 4b, 4c and 4d), we can see

which features are most influential in the model’s output, the
importance of the features are ranked in ascending order. For
example, in Figure 4a, the ESR1 gene is the more important
gene for the Basal subtype, while the CCNE1 gene is the 15th
more important gene.
The horizontal location of the samples (the dots across the



Classification of breast cancer subtypes: A study based on representative genes Mendonca-Neto et al. 2022

Bas
al

H
er

2

Lu
m

in
al

A

Lu
m

in
al

B

Basal

Her2

Luminal A

Luminal B

92.31% 7.69% 0.0% 0.0%

0.0% 80.91% 0.0% 19.09%

0.0% 0.0% 99.41% 0.59%

1.67% 5.0% 29.44% 63.89%

(a) SVM(Linear)

Bas
al

H
er

2

Lu
m

in
al

A

Lu
m

in
al

B

Basal

Her2

Luminal A

Luminal B

93.08% 6.92% 0.0% 0.0%

0.0% 70.0% 14.55% 15.45%

0.0% 0.0% 99.41% 0.59%

0.0% 0.56% 39.44% 60.0%

(b) SVM(RBF)

Bas
al

H
er

2

Lu
m

in
al

A

Lu
m

in
al

B

Basal

Her2

Luminal A

Luminal B

100.0% 0.0% 0.0% 0.0%

8.18% 72.73% 3.64% 15.45%

0.0% 0.0% 95.88% 4.12%

1.67% 0.56% 35.56% 62.22%

(c) KNN

Bas
al

H
er

2

Lu
m

in
al

A

Lu
m

in
al

B

Basal

Her2

Luminal A

Luminal B

87.69% 10.0% 2.31% 0.0%

2.73% 60.0% 19.09% 18.18%

0.0% 0.0% 94.12% 5.88%

1.11% 3.33% 39.44% 56.11%

(d) Random Forest

Bas
al

H
er

2

Lu
m

in
al

A

Lu
m

in
al

B

Basal

Her2

Luminal A

Luminal B

82.31% 7.69% 10.0% 0.0%

0.91% 70.0% 19.09% 10.0%

0.0% 0.0% 94.12% 5.88%

0.56% 1.11% 35.56% 62.78%

(e) XGBoost
Figure 2. Confusion matrices obtained by each method.

plot) shows whether the effect of that value is associated with
a higher or lower prediction, and the color shows whether
that variable is high (in red) or low (in blue) for that obser-
vation. As can be seen in Figures 4a, 4b, 4c and 4d, the
more important gene for each subtype is more spread across
the plots.
We can see that the importance of genes is different for

each subtype. It is interesting to note that ESR1 is the most
important gene for Basal, Her 2, and Luminal B, while for
Luminal A is the second most important gene. We can also
see that the distribution of the samples varies depending on
the subtype.
For example, while for the Basal subtype (Figure 4a) most

samples have negative SHAP values and a high correlation
with the gene expression, for the Luminal B subtype (Fig-
ure 4d), most samples have positive SHAP values. These
results complement the experiments presented in Figure 3a,
as they demonstrate the behavior of the SHAP values in each
of the samples for each of the subtypes.

6 Conclusion and Future Directions
This paper presents an evaluation framework for classify-
ing breast cancer subtypes based on the PAM50 gene list.
We employed distinct classification methods, each with dif-
ferent characteristics, to analyze whether there is a differ-
ence between them when classifying the breast cancer sub-
types. Seven evaluation metrics were employed to evaluate
the methods to get an overview of how the methods perform.
As a result, we noticed that the SVM(Linear) obtained bet-

ter macro results than the others. We also verified that the

Basal subtype (the one with the worst prognosis and the most
characteristic), the classifier KNN outperformed all the other
methods, reaching an F1 score of 100%. In addition, the
other classifiers remained with a score above 80% for this
subtype.

It is noticed that Her 2, the subtype with the second-worst
prognosis, has the third best results in the classification. It
reaches a maximum F1 score of 80%, achieving a minimum
of 60% with the classifier Random Forest, in which the Her
2 samples are confused with all other subtypes.

Among the Luminal A and Luminal B subtypes, there is
confusion between the samples, given that they are highly
correlated. Although the PAM50 has only 50 genes, this is
a good set for ranking as it scored in four of the five clas-
sifiers an F1 Macro score above 75%. At the micro-level,
SVM(Linear) also managed to maintain an F1 score above
82% for all subtypes.

When analyzing the features, we can see that SHAP values
identify the more important genes for the classification of
each subtype and when we study those genes, we understand
how they are related to the classified subtypes.

As future work, we intend to extend the analysis to a mul-
tilevel classification, in which we will employ a hierarchical
classifier to perform the classification of breast cancer sub-
types. Therefore, we will isolate the subtypes and investigate
if there are classifiers that present better performances for the
analyzed subtype, using the genes from the PAM50 list.
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Figure 3. Feature SHAP values for each method.
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