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Summary
There is a great demand of salt-tolerant sugarcane planting material 
in Cuba. Temporary immersion bioreactors (TIB) are effective 
to significantly increase sugarcane in vitro shoot proliferation 
rate from 1:4 in conventional containers to about 1:35. Sugarcane 
micropropagation in TIBs under NaCl stress may help screen mutants 
with salinity tolerance. We developed the experiment shown here to 
identify a NaCl concentration able to stress shoot in TIBs. At 30 days 
of culture initiation with different NaCl levels (0 - 200 mM), explant 
multiplication rate, shoot cluster fresh mass, and levels of aldehydes, 
chlorophylls, carotenoids and phenolics were determined in the plant 
material. Content of soluble phenolics in the culture medium was also 
evaluated. Addition of NaCl decreased shoot multiplication rate and 
fresh mass. Other statistically significant differences were recorded 
but the most important were noted in the increased contents of 
carotenoids, malondialdehyde, other aldehydes and soluble phenolics 
in the plants, and in the soluble phenolics in the culture medium. This 
research may be useful for future experiments of in vitro selection of 
new sugarcane genetic materials with NaCl tolerance. Fifty percent 
of multiplication rate was reduced with 89 mM NaCl which can be 
used to stress shoots during micropropagation in TIBs and eventually 
detect mutants with salt tolerance.
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Introduction
There is a great demand of sugarcane planting material in Cuba, 
especially for salt-contaminated soils. Conventional methods of 
macropropagation, such as stem segments, do not satisfy the demand. 
Several researchers have developed protocols for micropropagation 
of different sugarcane varieties (Lee, 1987) and their results de- 
pended upon the genotype. Jiménez et al. (1995) recommended a 
micropropagation protocol for a Cuban variety (C-1051-73). However, 
the potential use of this micropropagation protocol is limited because 
of the relatively low multiplication rates (about 1:4). For wide spread 
application, it was necessary to develop more efficient methods. 
Several systems for plant micropropagation have been established 
to increase proliferation and reduce production costs (TisseraT and 
Vandercook, 1985; aiTken-chrisTie and daVies, 1988; simonTon 
et al., 1991; aLVard et al., 1993). Our group developed a protocol for 
sugarcane (cv. C-1501-73) shoot formation in a temporary immersion 
bioreactor (TIB) (Lorenzo et al., 1998). This investigation was 
based on the protocol established by Jiménez et al. (1995), the shoot 
formation step was the only step modified and multiplication rate was 
increased from 1:4 to about 1:35 in 30 d of culture (Lorenzo et al. 
1998; Lorenzo et al., 2001a; Lorenzo et al., 2001b).

This positive result with TIBs might be caused by the combination 
of advantages of solid and liquid culture medium. Micropropagation 
on solid culture medium allows plant air exchange but nutrient 
uptake is limited to the explant basal surface. On the other hand, 
micropropagation in liquid culture medium increases nutrient uptake 
but hyperhydricity is frequently observed and is characterized 
by various degrees of morphological and physiological disorders 
including glassy, a waterlogged-tissue appearance and disordered 
growth in the shoot system, and more specifically in the leaves (ziV, 
1995). In a TIB, explants are covered with the culture medium only 
for a few minutes. Immersion allows nutrient uptake through the 
entire explant surface. However, the plant air exchange is restored 
after removing of culture medium. These two features are not usually 
combined in the classic liquid culture procedure (aLVard et al., 
1993; Lorenzo et al., 1998; escaLona et al., 1999).
In vitro-induced mutagenesis (e.g. irradiation and chemical agents) 
combined with high plant multiplication rates may produce genetic 
variants (Larkin and scowcrofT, 1981; Brown et al., 1993; 
cardoza and sTewarT, 2004; BhaTia et al., 2005; casTiLLo et al., 
2010) with improved agricultural performance in soils damaged by 
salt contamination. Many in vitro-induced mutants are agriculturally 
useless. Therefore, the development of efficient in vitro methodologies 
for early selection of salt-tolerant materials is essential (Ben-
hayyim and kochBa, 1982; LuTTs et al., 2001; Gadakh et al., 2017; 
hairuddin et al., 2017). Yet, it is important to note that the limitation 
of mutations is that no additional gene pool is brought into the plant 
material, for a better tolerance it might also be necessary to have such 
a germplasm (acquaah, 2007).
The present work shows effects of NaCl (0, 50, 100, 150, 200 mM) on 
sugarcane micropropagation in TIBs to induce conditions of salinity 
and osmotic shock with the plant tissues. NaCl have been used to 
simulate this stress in conventional tissue culture containers for many 
years (Ben-hayyim and kochBa, 1982; LuTTs et al., 2001; faTima 
et al., 2015; zaher-ara et al., 2016; carLoni et al., 2017; Gadakh 
et al., 2017; hairuddin et al., 2017). Sugarcane shoot multiplication 
rate, shoot cluster fresh weight, and levels of aldehydes, chlorophylls, 
carotenoids and phenolics were determined in the plant material. 
The content of soluble phenolics in the culture medium was also 
evaluated. This is a contribution to develop of a TIB-based selection 
method of sugarcane salt tolerance. 

Materials and methods
Sugarcane meristems (cv. C-1051-73) were collected from field-
grown plants and cultured following the protocol of Jiménez et al. 
(1995). Sugarcane in vitro-cultured plants after four subcultures 
were used as explants. Routine subcultures were at 30-d intervals. 
Bioreactors described in Fig. 1 (A, B) were implemented. Jiménez  
et al. (1995) culture medium, modified by Lorenzo et al. (1998), was 
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used: murashiGe and skooG (1962) inorganic salts and vitamins; 
100 mg l-1 inositol; 30 g l-1 sucrose, 0.3 mg l-1 6-benzyladenine and 
1.0 mg l-1 paclobutrazol. Different levels of NaCl were supplemented 
to the culture medium at the beginning of the 30-d-long subculture: 
0, 50, 100, 150, 200 mM. Each treatment involved three bioreactors 
(5 explants/bioreactor). Cultures were maintained at 25±1 oC;  
80 μmol m-2 s-1 (fluorescent light) and an 8 h photoperiod. At 30 d,  
shoot multiplication rate, shoot cluster fresh weight, and levels of 
malondialdehyde, other aldehydes, chlorophyll a and b, carotenoids 
and phenolics (soluble, cell wall-linked) were determined in the plant 
material. Content of soluble phenolics in the culture medium was 
also evaluated. Plant tissues were sampled from three independent 
replicates of 100 mg each (one from each bioreactor).
Chlorophylls were quantified following Porra (2002), phenolics by 
the method of Gurr et al. (1992), and malondialdehyde and other 
aldehydes as described in heaTh and Packer (1968). To determine 
the levels of chlorophyll pigments, extraction was carried out with  
5.0 ml acetone (80%, v:v). The samples were centrifuged (14086.8 
× g, 4 °C, 15 min) and supernatants collected and absorbances at 
646.6 and 663.6 nm recorded (RAYLEIGH, VIS-723G). Levels of 
carotenoids were also determined according to LichTenThaLer 
(1987) and absorbance at 470 nm was measured. Phenolic compounds 
were extracted and quantified using a spectrophotometer by a 
colorimetric method based on reaction with Folin Ciocalteu reagent 
(mg gallic acid equivalents per g fresh weight). Malondialdehyde 
and other aldehydes were quantified by a colorimetric method based 
on reaction with thiobarbituric acid. Excretion of phenolics was 
determined using a modification of the Hoagland (1990) procedure. 
Culture medium (0.5 ml) was mixed with 4.5 ml distilled water and 
0.5 ml Folin Ciocalteau reagent (50% v/v) added. The mixture was 
shaken, left for 5 min and one ml of saturated sodium carbonate 
solution added. The mixture was shaken again, left for 60 min, and 
the optical density was measured at 725 nm. Phenolic concentration 
was determined by a calibration curve using gallic acid as the 
standard.
All data of this study were statistically evaluated using SPSS (Version 
8.0 for Windows, SPSS Inc., New York, NY) to perform One-Way 
analysis of variance (ANOVA) and Tukey tests (p=0.05). The overall 
coefficients of variation (OCV) were calculated as follows: (standard 

deviation/average) * 100. In this formula, we considered the average 
values of the five NaCl levels compared (treatments) to calculate the 
standard deviation and average. Therefore, the higher the difference 
between the five treatments compared, the higher is the OCV 
(Lorenzo et al., 2015). OCVs were classified as “Low” from 17.33 
to 43.64%, “Medium” from 43.64 to 69.94% and “High” from 69.94 
to 96.25%.

Results and discussion
NaCl decreased sugarcane shoot multiplication and fresh weight 
in a concentration-dependent way (Fig. 1C; Fig. 2A, 2B). With  
200 mM NaCl, shoot multiplication rate reached 9.6% (3.3/33.9) 
of that obtained in the control treatment without NaCl, while fresh 
weight only reached 16.1% (1.4 g / 8.5 g). At biochemical level, several 
statistically significant differences among NaCl treatments were 
recorded (Fig. 2C-J) but “High” OCVs were only noted in the contents 
of carotenoids in the plants (Fig. 2G) and in the soluble phenolics 
excreted to the culture medium (Fig. 2J). Shoot multiplication rate 
(Fig. 2A) and the levels of carotenoids (Fig. 2G) and the excreted 
phenolics (Fig. 2J) were negatively correlated when NaCl was added. 
NaCl (0-200 mM) increased levels of carotenoids from 13.5 to  
79.7 μg g-1 fresh weight (5.9 times, Fig. 2G); and excreted phenolics 
from 7.8 to 30.0 μg ml-1 culture medium (3.8 times, Fig. 2J).
Biochemical indicators with “Medium” OCVs also increased when  
salinity stress was imposed: 2.6 times the contents of malondialde-
hyde (0.10 / 0.04 nmol g-1 fresh weight; Fig. 2C); 3.7 times other 
aldehydes (1.4 / 0.4 nmol g-1 fresh weight, Fig. 2D); and 2.8 times 
soluble phenolics in the plants (4.4 / 1.5 μg g-1 fresh weight, Fig. 2H).  
Although statistically significant differences were recorded in the 
levels of chlorophyll a (Fig. 2E), b (Fig. 2F) and cell wall-linked 
phenolics (Fig. 2I), their OCVs were “Low” indicating a small effect 
of NaCl on them. 
Plants have developed complex mechanisms for adaptation to the 
osmotic, ionic, and oxidative stresses that are induced by the salt 
stress (naik and aL-khayri, 2016). Salinity has been associated 
with increases in abscisic acid (shafi et al., 2011), proline 
(Benhassaini et al., 2012), glycine-betaine (quan et al., 2004), 
poly-ols, sugar alcohols and soluble sugar concentrations (Gurmani 

Fig. 1: Design of the temporary immersion bioreactor used and typical shoots produced. A Temporary immersion bioreactor. B More of operation of a  
temporary immersion bioreactor. Immersions (2 min each) were performed every 3 h during 30 d. C Typical phenotypes of sugarcane shoots pro- 
duced in temporary immersion bioreactors with different levels of NaCl. Glass containers with 300 ml of total capacity, 200 ml of liquid culture  
medium, and silicone tubes were used. Five explants per container were cultured (40 ml medium / explant). Shoots were free in the bottom of con- 
tainers. The design of temporary immersion bioreactor was previously described by Lorenzo et al. (1998) and escaLona et al. (1999).
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et al., 2007). Salinity stress also decreases plant growth (wesT  
et al., 2004; munns, 2005), nutrient uptake (aBdeLGadir et al., 
2005), K+:Na+ ratio (díaz-LóPez et al., 2012), stomatal aperture and 
density (huanG et al., 2009), hexoses, sucrose and starch (arBona  
et al., 2005) and chlorophyll contents (riVeLLi et al., 2012).  
Exposure to salinity is known to induce or stimulate the production 
of secondary plant products, such as phenols, terpenes, and alkaloids 
(winkeL-shirLey, 2002; haGhiGhi et al., 2012; seLmar and 
kLeinwächTer, 2013; BoesTfLeisch et al., 2014; BoesTfLeisch 
and PaPenBrock, 2017). Catharanthus roseus grown under salt 
stress showed increased levels of the alkaloid vincristine (misra 
and GuPTa, 2006; faTima et al., 2015). In Grevillea, a significant 
increase in anthocyanin concentration was reported under salinity 
exposure in both the salt-tolerant Grevillea ilicifolia and the salt-
sensitive Grevillea arenaria (kennedy and de fiLiPPis, 1999). In 
Datura innoxia, salt treatment increased the total alkaloid content in 
young leaves, and the results indicated that at the organ level, tropane 
alkaloid accumulation was related to plant growth (BracheT and 
cosson, 1986). Salinity also increased the diamine and polyamine 
content in Oryza sativa (krishnamurThy and BhaGwaT, 1989). 
In our experiment with sugarcane micropropagated in TIBs with 
NaCl; levels of soluble phenolics in the culture medium and shoots, 
carotenoids, malondialdehyde and other aldehydes were the clearest 
indicators of stress. These results agree with previous experiments 
conducted in different culture systems and plant species submitted 
to abiotic stressors (winkeL-shirLey, 2002; haGhiGhi et al., 
2012; riVeLLi et al., 2012; seLmar and kLeinwächTer, 2013; 
BoesTfLeisch et al., 2014; hernández et al., 2015; BoesTfLeisch 
and PaPenBrock, 2017).  
Despite the extensive studies on the effects of salinity stress on 
plants, the influence of NaCl on sugarcane shoots as micropropagated 
in TIBs, provide a new perspective. Multiplication rates shown in  
Fig. 2A indicate that 50% reduction was obtained with 89 mM 
NaCl. This concentration can be used to stress shoots during 
micropropagation in TIBs and eventually identify mutants with 
salinity or osmotic tolerance.

Several in vitro selection methodologies to produce mutants able 
to grow under salinity have been described.  For instance, callus 
cultures have been stressed in vitro with NaCl in rice (LuTTs et al., 
2001), citrus (Ben-hayyim and kochBa, 1982), sugarcane (Gadakh 
et al., 2017) and onion (hairuddin et al., 2017). Although the new 
genotype tolerance requires additional confirmation under a field 
environment, in vitro selection allows some research cost reductions 
because there is no inclusion of a large number of susceptible 
materials in expensive field trials.
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Fig. 2: The effect of sodium chlorine on sugarcane during microprogagation in temporary immersion bioreactors. Shoot dusters were formed around each 
explant. Vertical bars represent SE. Results with the same letter are not statistically different (One-way ANOVA, Tukey, p>0.05). Overall coefficient of 
variation (OCV) = (Standard deviation/Average) * 100. To calculate this coefficient, the five average values were considered. The higher the difference 
among results, the higher the overall coefficient of variation. Classification of OCVs: “Low” from 17.33 to 43.64%, “Medium” from 43.64 to 69.94% 
and “High” from 69,94 to 96.25%.
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