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Summary
Interactions of land plants with fungi are of imminent importance to 
crop production and thus for human nutrition. However, interactions 
range from pathogenic fungi, e.g. cereal rusts, to beneficial inter- 
actions with plant growth promotion through soil, endophytic or  
mycorrhizal fungi. Thus, mutually beneficial, neutral or parasitic/
pathogenic interactions can be distinguished. In order to identify 
more general mechanisms on the fungal side coping with environ-
mental and plant response associated stress, modern technologies are 
available including the -omics technologies. In addition to that, dif-
ferent interactions may be compared, both on a more general level,  
but also at very small scale to identify the different parameters  
guiding interchange of nutrients and signals. This will allow for a 
holistic view on plant health necessary to establish eco-friendly tech-
nologies also in crop protection and plant nutrition.

Introduction
Plants have been in association with fungi in their terrestrial envi-
ronment millions of years and mutualistic, parasitic or neutral inter- 
actions have evolved (Mayer, 1989). Neutralism with respect to 
plant-fungus interactions might be encountered with some endo-
phytes. Endophytic merely describes the life style where a fungus 
is living within a plant host without causing symptoms (for a recent 
review: Kothe and turnau, 2018). It seems necessary, however, to 
note that an infection and showing growth in planta are essential to 
assign the fungus an endophytic life-style − mere isolation from plant 
tissue or DNA-dependent identification from a seemingly healthy, 
surface-sterilized plant part does not qualify for the verification of an 
endophytic nature. This latter part, regrettably, is often disregarded 
in literature.
The outcome such an association, however, is influenced by the  
environment, resulting in a dynamic range of interaction types. Fungi 
are known to play major roles in natural ecosystems and in modern 
agriculture based on their nutritional versatility and various inter-
actions with plants (Zeilinger et al., 2016). They are efficient de-
composers, and this ability gives them the capacity to make complex 
nutrients available to interacting partners, e.g. by mobilization of soil 
phosphates (gaind, 2016; Zhang et al., 2018; Zhang et al., 2014). 
The interactions of such plant growth promotion soil fungi with 
plants is hampered by the plant defense reactions that have evolved 
against pathogens (StaSKawicZ, 2001). Thus, recognition of benefi-
cial partners is essential. The recognition and differentiation of ef-
fector or ‘epitope-like’ cues to differentiate between friends and foes 
is therefore imperative for the survival of the plant. We therefore aim 
to discuss the different types of plant-fungal interactions to elucidate 
underlying mechanisms that govern such interactions and to describe 
the continuum of parasitic-neutral-mutual interactions.

Plant-fungus interaction types
Different plant parts can form niches for fungi (Fig. 1). The fungi can 
form mutualistic, neutral or pathogenic interactions with their host 

plant. Mutualism as the outcome of plant-fungal interaction refers  
to an interaction where both partners have a positive net pay-off as 
a result of their interaction. A classic example of plant-fungal mu-
tualistic interactions is the mycorrhiza, where fungi supply water 
and minerals while the plant provides the sugar for fungal growth 
(e.g., henKe et al., 2015; ParniSKe, 2008; wagner, et al., 2015). 
This well-studied interaction (Martin et al., 2017) can be clearly 
separated from plant endophytes, where mutualism is not really ob- 
vious (BaMiSile et al., 2018; clay and holah, 1999; deng and cao, 
2017). 
Unlike mycorrhizal roots, endophytic fungi show less frequently 
morphological changes in association with their host, and they are 
not necessarily restricted to the plant root. The neutralism observed 
with some endophytes merely describes a life style, where a fungus 
is living within a plant host without causing symptoms (for a recent 

Fig. 1:  Plant interactions with mutualistic, pathogenic and neutral fungi in 
different tissues.
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review: Kothe and turnau, 2018). It seems necessary, however, to 
note that an infection and showing growth in planta are essential to 
assign the fungus an endophytic life-style − mere isolation from plant 
tissue or DNA-dependent identification from a seemingly healthy, 
surface-sterilized plant part does not qualify for the verification of an 
endophytic nature. This latter part, regrettably, is often disregarded 
in literature.
Parasitic interactions, where one partner benefits at the detriment to 
the other, are the most prominent type of fungus-plant interaction. 
Many pathogens are known to exploit plants in the attempt to gain  
access to nutrition, and often they are tissue specific, like Phyto- 
phthora palmivora infecting buds and seeds (carella et al., 2018) 
or Heterobasidion annosum leading to root rot (lundén et al., 2015). 
Other fungal infections (for example, the smut fungus Urocystis tri-
entalis) are known to be systemic (PiqueraS, 2001). Some parasitic 
fungi have been shown to alter specific metabolic pathways in the 
plant host, leading to repression of pivotal compounds necessary 
for host physiology. A good example is the biotrophic pathogen 
Gymnosporangium asiaticum that represses amino acid/nucleotide 
metabolism in Rosaceae due to a deficiency in some precursor su- 
gars. This repression, in turn, results in the systemic symptoms like 
cell wall synthesis and lesion repair (lee et al., 2016). Mechanistic 
studies like this explain the systemic effects of infections, even 
though the site of infection was tissue specific. 

Molecular basis for different types of interactions
For a successful interaction, regardless of the outcome, there is a 
need for communication and/or signaling between the interacting 
pair (MBengue et al., 2016). Apart from chemical cues and small 
peptide signaling compounds, a small class of proteins called effec-
tors become increasingly addressed. They are encoded in genomic 
regions that are rarely expressed when the organism is grown axeni-
cally, but show high induction in interactions and show efficient de-
livery into the plant cells (Selin et al., 2016). They have been shown 
from pathogenic, endophytic and mycorrhizal interactions (KeMen 
et al., 2015). A good example for the latter are arbuscular mycor-
rhizal fungi, which respond to plant derived strigolactones with ef-
fector/elicitor production to suppress the plant defense (VoSS et al.,  
2018). In ectomycorrhizal fungi, effector proteins (called mycor- 
rhiza-inducing small secreted proteins, MiSSPs) were characterized 
as well (Plett et al., 2014). This group of proteins thus shows impor-
tant functions and potential convergent evolution in different plant-
fungus interactions.

Epigenetic switches/abiotic factors causing dynamic interactions
Plant phenotypic adjustment to the external environment is a big  
factor in the outcome of interaction with its microbiota. The differ-
ing response to these stimuli gave rise to dynamics in the interaction. 
Epigenetic mechanisms involve DNA methylation, histone modifi- 
cations and histone variants, and small RNAs leading to changes in 
gene expression (Vannier et al., 2015). Epigenetics and the plant  
microbiota play a very important role in the adjustments of the plant 
to its external environment, they therefore need to be considered in 
the evolution of interaction and development of the plant as a host 
(Vannier et al., 2015). Post-transcriptional and post-translational 
modifications in addition allow for a quick response to environmen-
tal stress (Shaw and etterSon, 2012). Epigenetic mechanisms have 
also been shown in fungus-plant interactions. Soyer and co-workers 
(2014) showed, how a pathogenic fungus uses histone modification 
as a switch to induce specific gene expression by lifting chromatin-
mediated repression while infecting plant, therefore switching the 
fungal lifestyle towards pathogenesis (Soyer et al., 2014).

Evolution of plant-fungal interactions
It is believed that arbuscular fungus-plant interactions have evolved 
over 480 million years since plants occurred on the land surface. 
This is even more convincing as reports have been showing examples 
of mutualistic interaction of this class of fungi with plants from very 
early lineages like liverworts (huMPhreyS et al., 2010). The simi- 
larity in the strategies and structures of fungal pathogens and sym-
bionts like arbuscules and haustoria are seen with both, developing  
into a structure with host cell invagination enabling efficient exchange 
of nutrients as well as regulatory molecules. Many arbuscular mycor-
rhizal fungal genes, however, are not only shared with pathogens, 
but with ectomycorrhizal fungi as well. Mycorrhiza-specific genes, 
and especially those encoding effectors, have been shown to evolve  
rapidly (corradi and Bonfante, 2012), and the diversity of the 
effectors contributes to host range and parasite speciation (doddS, 
2010). Evolution of host specificity has been well studied in fungal 
endophytes. It is believed to originate from the close adaptation be- 
tween the host plant and its fungal partner, suggesting a mutual influ-
ence of co-habitation and co-evolution (rai and agarKar, 2016). 
During long-term association, this partnership becomes stronger and 
permanently imprinted in the genetic constitution of both partners, 
which finally develops into complementary genetic system (Moricca 
and ragaZZi, 2008). The co-evolution phenomenon tentatively ex-
plains the lack of plant defense reactions against the presence of  
microbial endophytes (chriStenSen et al., 2002) and the ability of 
endophytes to produce bioactive metabolites usually known from 
host plants (Zhao et al., 2011).

Impact of plant-fungal interactions in the ecosystem
Fungi are very successful inhabitants of the soil environment. Spores 
can survive extremely harsh conditions and germinate into actively 
growing mycelia when the conditions become favorable. The batte-
ries of lytic enzymes and mechanical intrusive growth allow them 
to access and utilize rather complex organic nutrients. This feature 
helps in the breakdown of complex nutrient sources that other com-
munity members may only then utilize. Therefore, proliferation of 
fungal community members results in a burst of microbial commu-
nity diversity making fungi keystone species in ecological commu- 
nities. One specific example is a fungal species reported to increase  
fecundity and biomass of North American cheat grass, leading to 
higher probability of fire and therefore a frequent change in the 
ecosystem structure and function (BayneS et al., 2012). The fungus 
most importantly increases the probability of the survival of cheat 
grass seed, ensuring a good invasion strategy of cheat grass in North 
America. A fungal keystone species is more evident in pathogenic 
fungus, as obvious drastic effect is observed with their presence and 
therefore leads lead to change in the macro- and micro-environment, 
having significant impact on the ecosystem processes. Another, 
pathogen example is Ophiostoma ulmi that, as a single fungal spe-
cies, changed ecosystem properties of forests in Europe and Northern 
America (for review: taeruM, 2018).

Approaches in plant-fungal research
Advancement in genetics, proteomics and analytical chemistry has 
gone a long way to help unravel many of the molecular and chemical 
basis of interaction between plants and fungi. For the fundamental 
classification of interactions, it has been difficult to clearly verify 
the type of interaction in an interacting pair. This result of dyna- 
mics in biological interactions show the importance of a holistic view 
on the allocation of resources and cost accrued with the interaction. 
Approaches used to understanding the basis of biological interac-
tions include proteomics and/or protein assays involved in, e.g., sugar 
transport with the SWEET family (chen et al., 2010; ecKardt, 
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2011; ge et al., 2008; harriSon, 1996), ATPase activity to cha- 
racterize interaction sites (lei and dexheiMer, 1988), or genetic 
analyses with techniques like RT-qPCR and RNAseq to identify a 
wider range of inducible genes. Biological interactions limited to 
specific tissues may be studied with the advancement in sectioning, 
e.g. cryosectioning of root tissues used in mycorrhizal studies. This 
now needs to be combined with other techniques like in situ probing 
for a detailed analysis of interaction structures to assess signals and 
proteins at the site of interaction. Spectrometric and spectroscopic 
methods have allowed the detection and identification of small mole- 
cules and enzyme activities that play key roles in biological inter- 
actions (chriStenSen and KoloMietS, 2011). Developments in laser 
microdissection have gone steps further to afford researchers pos-
sibilities in studying tissue samples (day et al., 2005), especially for 
gene and protein expression studies. However, they may also be used 
for chemical or structural analyses. Since tissue samples still contain 
living cells, chemical labeling may be used within a tissue sample 
to the understand biosynthesis and exchange of molecules in the in-
teraction with radioactive label or stable isotopes. It seems manda-
tory now to tackle the utilization, metabolism or transfer of signaling 
molecules to characterize the function of these molecules in regu- 
lating the interaction. Only such a broader understanding will yield 
targets that allow for the development of more specific plant protec-
tion compounds on the one hand, while on the other hand signals 
providing better plant growth may be used to overcome the current 
strategy of over-fertilization. In terms of a more healthy environ-
ment, these two measures are affording a better human health while 
providing food for an increasing population.
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