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Summary
Climate change poses risks to both wild and crop plant biodiversity, 
which can be mitigated by cryopreservation (usually at -196 °C in 
liquid nitrogen [LN]) of crop germplasm. Cryopreservation is widely 
regarded as a reliable method for the ex situ conservation of plant 
genetic resources but its effects on subsequent field performance of 
popular crop species such as sorghum are largely unknown. This 
hampers the large-scale implementation (i.e. germplasm banks) of 
cryostorage for such species. This short communication describes 
the early stages of germination and field performance of plants  
derived from cryopreserved sorghum seed. Compared with the  
control, cryopreservation significantly increased seed electrolyte 
leakage and from 24 to 120 hours, percentage of germination of the 
control was ~2.6 folds higher than cryopreserved seeds. At 0 days,  
chlorophyll a/b rate was ~1.7 folds higher in the control and at  
7 and 14 days, chlorophyll a level (~1.5 folds) and chlorophyll a/b 
rate (~1.8-1.9 folds) were higher in the control. Contrastingly, at  
7 days, seedlings derived from cryopreserved seeds (treatment seed-
lings) showed ~1.5 folds more superoxide dismutase activity and  
~1.9 folds more peroxidase activity. In contrast, treatment and con- 
trol adult plants were statistically comparable in terms of chloro-
phylls, proteins, superoxide and peroxidase activities, plant architec-
ture, and yield components. The fact that differences in biochemical 
indicators observed between control and treatment seedlings did not 
persist in adult plants validates the use of seed cryopreservation for 
the conservation of sorghum genetic resources.
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Introduction
Sorghum, an African grass related to sugarcane and maize, is the fifth 
most important cereal crop globally and is known to tolerate low-
nutrient soils and drought. Cultivated varieties are phenotypically 
diverse (Kayodé et al., 2006; Labeyrie et al., 2016) and are grown 
for food, feed, fiber and fuel due to the high soluble sugar content of 
their stems (breeze, 2018; ManzeLLi et al., 2006; Mathur et al., 
2017; Paterson et al., 2009). In 2016, the world area harvested for 
sorghum reached 44 771 056 ha and the world production, 63 930 558 t  
(Food and Agriculture Organization of the United Nations Statistics 
(Faostat, 2017)).
Access to sorghum seed is crucial for farming and shortfalls are 
common in many countries. Farmer-farmer exchange is important 
for providing locally-adapted seed to fill this gap but access varies 
considerably among households, affecting quantities supplied and 

terms of exchange (McGuire, 2008; otieno et al., 2018; sMaLe  
et al., 2018). In the context of climate change with risks to lose 
diversity, cryopreservation of plant materials in liquid nitrogen (LN) 
has been described as a suitable technology to conserve genetic re- 
sources of several species (Panis, 2018; berjaK et al., 2010), such 
as Actinidia deliciosa (Mathew et al., 2018), Solanum betaceum 
Cav. (Graça et al., 2018), Elaeis guineensis Jacq. (beuLé et al., 
2018) and Lilium (Pan et al., 2018). However, the potential effects 
of cryostsorage of explants and seeds on subsequent plant growth 
in the field must be established before large-scale implementation 
in cryobanks (enGeLMann and raManatha, 2012). In this regard, 
studies have shown that cryostorage of seed-derived germplasm 
can compromise the vigor of recovered plants (berjaK et al., 2010). 
Studies have also shown that recovery after cryopreservation of 
excised embryonic axes also seldom results in the production of true-
to-type plants (hardinG, 2004; MycocK, 1999; steinMacher et al., 
2007; wesLey-sMith et al., 2001).
It has been known for some time now that exposure to different 
types of stress can alter subsequent plant responses (bruce et al., 
2007), but there is little understanding of how stresses imposed at 
the embryonic stage for example, are translated or manifested during 
subsequent plant growth. A few reports suggest that there exists with- 
in cryopreserved plant materials some ‘memory’-based mechanism 
that senses environmental signals (Forsyth and staden, 1983; 
KvaaLen and johnsen, 2008), which in turn influence adaptive traits 
in the seedlings they give rise to. With this background, this short 
communication describes the early stages of germination, seedling 
growth and field performance of plants produced from cryopreserved 
sorghum seed.

Materials and methods
Plant material
Harvested sorghum seeds (cv. CIAP2) were air dried at room 
temperature from 15% to 6% moisture content and then stored for  
4 months at 4 °C in the dark in hermetically sealed containers. Seeds 
with 6% moisture content (fresh weight basis) (ista, 2005) were 
used in subsequent experiments. 

Seed cryopreservation and recovery
One batch of the seeds was placed in cryo-vials (volume: 2 ml;  
5 seeds per cryo-vial) and directly plunged in LN for 24 h (referred 
to hereafter as treated/cryopreserved seeds). Recovery of seeds 
from LN was performed according to Stanwood and Bass (1981). 
Another batch of seeds was stored at 4 °C until further use (referred 
to hereafter as control seeds). 
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Seed electrolyte leakage, germination and seedling growth from 
0 to 144 hours
Electrolyte leakage from seeds was measured as recommended by 
Martínez-Montero (2002) immediately after seed recovery from LN. 
Percentage of seed germination (0-144 hours) and seedling weight 
(0-72 hours) were also evaluated by incubating seeds on filter papers 
in Petri dishes (Ø: 10 cm; 15 mL distilled water; five replicates of  
10 seeds/dish). These parameters were also measured for control 
seeds. 

Studies of seed and seedlings from 0 to 14 days 
A second group of control and treated seeds was set out to germinate 
as described above (five replicates of 10 seeds/dish) and evaluated 
at 0, 7 and 14 days for chlorophyll pigments (Porra, 2002), total 
proteins (bradFord, 1976), and activities of superoxide dismutase 
(KuMutha et al., 2009) and peroxide oxidase (saGiv and bar-
aKiva, 1972) were evaluated in the seeds (0 day) or the primary 
leaves (7 and 14 days). Hypocotyl length, primary leaf length, radicle 
length, total plantlet fresh weight, and total plantlet dry weight were 
also recorded. 

Growth of adult plants in a plant bed until harvest at 110 days
Ninety treated and control seeds were randomly selected and sown 
in a plant bed as described in Fig. 1. Technical instructions pro- 
vided by the Cuban Ministry for Agriculture to cultivate sorghum 
were applied. Border plants, which had more space to grow, were 
not considered. Levels of chlorophyll pigments (Porra, 2002), total 
proteins (bradFord, 1976), and activities of superoxide dismutase 
(KuMutha et al., 2009) and peroxide oxidase (saGiv and bar-
aKiva, 1972) were evaluated in middle-aged leaves at 62 days after 
planting on soil (anthesis). Additionally, the following agricultural 
traits were evaluated according to Peacock (1990) at 62 days of 
growth: plant height, number of leaves per plant, middle-aged leaf 
length and width, number of stems per plant, and fresh and dry weight 
of plants. All plants were harvested after 110 days of growth and the 
following traits were recorded: panicula length and width, number of 
branches per panicula, number of grain per panicula branch, number 
of grains per panicula, fresh weight of 1000 grains and dry weight 
of 1000 grains. 

Statistical analysis
SPSS (Version 17.0 for Windows, SPSS Inc.) was used to compare 
growth and physiological parameters between control and treated 
plants/seeds using a Students t-test (p≤0.05). 

Results
Seed electrolyte leakage, germination and seedling growth from 
0 to 144 hours
Compared with the control, cryopreservation significantly increased 
electrolyte leakage from seeds (~2 folds: 19.1% / 9.4%, Fig. 2A) im-
mediately after recovery from LN. Although percentage of germina-
tion was similar at 144 hours, from 24 to 120 hours, percentage of 
germination of the control was ~2.6 folds higher (average, Fig. 2B). 
Seedling weight of control group was also higher (average ~1.2 folds, 
Fig. 2C).    

Studies of seed and seedlings from 0 to 14 days 
Tab. 1 shows the effects of cryopreservation on early stages of 
germination (0, 7, 14 days).  Except for chlorophyll a + b on 0 day, 
statistically significant differences were observed on all sampling 

Fig. 1:  Superior view of the useful area of the plant bed, made of Ferralytic-
red soil and filter-cake-sugarcane ashes (1:1, v:v). Dots symbolize 
seeds (70 cm × 25 cm apart). The broken arrow in the middle of the 
plant bed represents the microject irrigation system, which watered 
the plants for 5 min every 8 h. The plant bed was 50 cm high and its 
bottom contained a 10 cm-high stones layer to facilitate drainage.

days (Tab. 1):  At 0 day, chlorophyll a/b rate was ~1.7 folds higher in 
the control treatment (1.13 / 0.65); at 7 days the level of chlorophyll 
a was ~1.5 folds higher in the control (21.37 μg g-1 fresh weight /  
14.02 μg g-1 fresh weight); and chlorophyll a/b rate was ~1.9 folds 
higher in the control (1.31 / 0.71). Contrastingly, at 7 days, plantlets 
derived from cryopreserved seeds showed ~1.5 folds (0.42 U mg-1 
proteins / 0.27 U mg-1 proteins) more specific superoxide dismutase 
activity and ~1.9 folds (0.71 U mg-1 proteins / 0.37 U mg-1 proteins) 
more specific peroxidase activity.   
At 14 days, plantlet chlorophyll a levels was ~1.5 folds higher in the 
control (25.31 μg g-1 fresh weight / 17.13 μg g-1 fresh weight) and 
chlorophyll a/b rate was ~1.8 folds (1.38 / 0.75) higher in this group  
(Tab. 1). Contrastingly, the specific peroxidase activity was ~1.7 
folds higher in cryopreserved seed-derived seedlings (0.60 U mg-1 
proteins / 0.36 U mg-1 proteins).
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Growth of adult plants in a plant bed until harvest at 110 days
The data shown in Tab. 2 indicates that seed cryopreservation has 
no significant effects on adult plants relative to the control. Interes- 
tingly, ex vitro, 100% of seed germination was recorded in both treat- 
ments. Differences in biochemical indicators between treatment and 
control seedlings reported above (Tab. 1) did not persist in adult plants  
(Tab. 2), e.g. levels of chlorophylls and proteins, and superoxide dis-
mutase and peroxide oxidase activities.  

Discussion
Cryopreservation imposes a series of stresses on plant material both 
during storage and upon recovery, and this can induce modifications 
in plants produced from cryopreserved explants/seeds (benson, 
2008a; benson, 2008b). For example, partial dehydration and cryo-
preservation reduced the number of Amaryllis belladonna excised 
zygotic embryos that produced seedlings, as well as the subsequent 
biomass of these seedlings relative to non-cryopreserved embryos 
(berjaK et al., 2010). Those authors showed that A. belladonna 
seedling produced from cryopreserved explants also exhibited 

lower CO2-assimilation rates and stomatal density, abnormal root 
growth, damage to the photosynthetic apparatus and less efficient 
adjustment of leaf water potential relative to control seedlings. Other 
studies have also reported phenotypic variation in in vitro recovery 
times, plant heights and modes of development (steinMacher et al.,  
2007) and regeneration in plants recovered from cryopreserved 
germplasm (hardinG, 2010). Similarly, our results for sorghum  
suggest that cryopreservation increased electrolyte leakage from  
seeds (Fig. 1A), and delayed germination (Fig. 1B) and seedling 
growth (Fig. 1C). Cell membranes are one of the main targets of 
numerous stress events, including cryopreservation (berjaK et al., 
2010; cLose, 1996, 1997; hardinG, 2010; sanGwan et al., 2002; 
ueMura and stePonKus, 1994).
Previously, our group has studied the effects of LN on the subsequent 
germination and growth of common bean, tomato, tobacco, maize 
and Teramnus labialis (L.F.) Spreng seeds. In brief, these studies 
showed that cryopreservation induced some morphological, physio- 
logical and biochemical (e.g. chlorophyll, carotenoids, proteins, 
malondialdehyde, other aldehydes, soluble and cell wall-linked phe-
nolics, and peroxidase and superoxide dismutase activity) changes 

B 

C

A

Fig. 2:  Effect of seed cryopreservation on seed electrolyte leakage (A), germination (B) and seedling growth (C) from 0 to 144 hours. In each moment of eva-
luation, results with the same letters are not statistically different (t-test, p>0,05). Vertical bars represent SE.
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that gradually disappeared as the plants grew (acosta et al., 2018; 
arGuedas et al., 2018a; arGuedas et al., 2018b; cejas et al., 2012; 
Pérez-rodríGuez et al., 2017; zevaLLos et al., 2014). This supports 
our present findings for sorghum where cryopreservation-induced 
declines in seedling chlorophyll a levels and consequently chloro-
phyll a/b rate, and enhanced superoxide dismutase and peroxidase 
activities did not persist in adult plants. Various markers, including 
electrolyte efflux, peroxide and superoxide oxidations, reflect the 
structural and functional integrity status of cell membranes after ex-
posure to such stressful events (duMet and benson, 2000). Various 
abiotic stresses decrease the chlorophyll content in plants (ahMad 
et al., 2012) and this decline is believed to be due to inhibition of 
important enzymes, such as δ-aminolevulinic acid dehydratase and 
protochlorophyllide reductase associated with chlorophyll biosyn-
thesis (van assche and cLijsters, 1990). However, a major finding 
of the present study is that cryopreservation did not appear to affect 
the phenotype of adult sorghum plants in terms of growth and per-
formance significantly. This report therefore demonstrates the value 
of seed cryopreservation to conserve sorghum genetic resources, 
although in large-scale field experiments, the reduced germination 
speed, seedling weight and the increase of enzyme activities may 
result in inhomogeneous field establishment and lower yield. 

Author contribution: AV, MA, DE, JM, BEZ, IC, LY, MEMM, S 
and JCL designed the research; AV, MA, DE and JM conducted the 
experiment; AV, BEZ, IC, LY, MEMM, S and JCL analyzed data; S 
and JCL wrote the paper; JCL had primary responsibility for the final 
content. All authors have read and approved the final manuscript.

Acknowledgements
This research was supported by the University of Ciego de Avila 
(Cuba), the Escuela Superior Politécnica Agropecuaria de Manabí 

Manuel Félix López (Ecuador), and the University of KwaZulu-Natal 
(South Africa). 

References
acosta, y., hernández, L., Mazorra, c., Quintana, n., zevaLLos, 

b.e., cejas, i., sershen, Lorenzo, j.c., Martínez-Montero, M.e.,  
Fontes, d., 2018: Seed cryostorage enhances subsequent plant produc-
tivity in the forage species Teramnus labialis (L.F.) Spreng. CryoLetters 
(in press).

ahMad, P., KuMar, a., GuPta, a., hu, X., azooz, M.M., sharMa, s., 
2012: Polyamines: role in plants under abiotic stress. Crop Production 
for Agricultural Improvement. Springer.

arGuedas, M., GóMez, d., hernández, L., enGeLMann, F., GarraMone, 
r., cejas, i., yabor, L., Martínez-Montero, M.e., Lorenzo, j.c., 
2018a: Maize seed cryo-storage modifies chlorophyll, carotenoid, pro- 
tein, aldehyde and phenolics levels during early stages of germination. 
Acta Physiol. Plant. 40, 118. DOI: 10.1007/s11738-018-2695-7

arGuedas, M., viLLaLobos, a., GóMez, d., hernández, L., zevaLLos, 
b., cejas, i., yabor, L., Martínez-Montero, M.e., Lorenzo, j.c., 
2018b: Field performance of cryopreserved seed-derived maize plants. 
CryoLetters 39 (6), 366-370.

benson, e., 2008a: Cryopreservation of phytodiversity: a critical appraisal 
of theory & practice. Critic. Rev. Plant Sci. 27, 141-219. 

 DOI: 10.1080/07352680802202034
benson, e.e., 2008b: Cryopreservation theory. Plant cryopreservation: A 

practical guide, 15-32.
berjaK, P., barteLs, P., benson, e., hardinG, K., MycocK, d., PaMMenter, 

n., sershen, w., 2010: Cryoconservation of South African plant genetic 
diversity. In Vitro Cell. Dev. Biol.- Plant 47, 65-81. 

 DOI: 10.1007/s11627-010-9317-4
beuLé, t., iLbert, P., adeoti, K., durand-GasseLin, t., duMet, d., 

enGeLMann, F., MorciLLo, F., 2018: Recovery of oil palm (Elaeis 

Tab. 1:  Studies of seed and seedlings from 0 to 14 days.  In each moment of evaluation (0, 7, 14 days after exposure to LN), results with the same letter are not 
statistically different (t-test, p>0.05). Intervals represent average ± SE.

 0 days  7 days 14 days
 (seeds were evaluated)  (primary leaves were evaluated)  (primary leaves were evaluated)

 Non- Cryopreserved Non- Cryopreserved Non- Cryopreserved 
 cryopreserved  seeds cryopreserved seeds cryopreserved seeds 
 seeds  seeds  seeds 

Chlorophyll a (μg · g-1 fresh weight) 16.85 ± 0.39 a 12.37 ± 0.27 b 21.37 ± 0.28 a 14.02 ± 0.18 b 25.31 ± 0.25 a 17.13 ± 0.30 b
Chlorophyll b (μg · g-1 fresh weight) 14.97 ± 0.30 b 19.17 ± 0.40 a 16.39 ± 0.31 b 19.95 ± 0.47 a 18.36 ± 0.36 b 22.93 ± 0.57 a
Chlorophyll a + b (μg · g-1 fresh weight) 31.82 ± 0.49 a 31.53 ± 0.43 a 37.76 ± 0.34 a 33.97 ± 0.58 b 43.66 ± 0.40 a 40.06 ± 0.56 b
Chlorophyll a/b 1.13 ± 0.03 a 0.65 ± 0.02 b 1.31 ± 0.04 a 0.71 ± 0.02 b 1.38 ± 0.03 a 0.75 ± 0.03 b
Protein content 5.06 ± 0.16 a 4.13 ± 0.17 b 6.76 ± 0.22 a 5.12 ± 0.15 b 7.51 ± 0.17 a 6.23 ± 0.16 b
(mg proteins · g-1 fresh weight)
Superoxide dismutase activity 1.70 ± 0.04 b 1.88 ± 0.02 a 1.83 ± 0.02 b 2.12 ± 0.02 a 1.88 ± 0.00 b 2.15 ± 0.01 a
(mg · g-1 fresh weight)
Specific superoxide dismutase activity   0.34 ± 0.02 b 0.46 ± 0.02 a 0.27 ± 0.01 b 0.42 ± 0.01 a 0.25 ± 0.01 b 0.35 ± 0.01 a
(U mg-1 proteins)
Peroxidase activity 2.43 ± 0.08 b 2.79 ± 0.07 a 2.49 ± 0.07 b 3.60 ± 0.05 a 2.71 ± 0.06 b 3.71 ± 0.03 a
(mg · g-1 fresh weight)
Specific peroxidase activity 0.48 ± 0.01 b 0.68 ± 0.02 a 0.37 ± 0.01 b 0.71 ± 0.02 a 0.36 ± 0.01 b 0.60 ± 0.01 a
(U mg-1 proteins)

Hypocotyl  length (cm) --- --- 2.79 ± 0.01 a 2.46 ± 0.04 b 6.93 ± 0.04 a 6.44 ± 0.04 b
Primary leaf length (cm) --- --- 2.91 ± 0.02 a 2.71 ± 0.03 b 7.26 ± 0.06 a 6.69 ± 0.03 b
Radicle length (cm) --- --- 4.98 ± 0.06 a 4.61 ± 0.12 b 8.00 ± 0.10 b 8.19 ± 0.13 a
Total plantlet fresh weight (mg) --- --- 0.24 ± 0.00 a 0.20 ± 0.00 b 0.51 ± 0.00 a 0.41 ± 0.00 b
Total plantlet dry weight (mg) --- --- 0.08 ± 0.00 a 0.07 ± 0.00 b 0.17 ± 0.00 a 0.13 ± 0.00 b



98 A. Villalobos, M. Arguedas, D. Escalante, J. Martínez, B.E. Zevallos, I. Cejas, L. Yabor, M.E. Martínez-Montero, Sershen, J.C. Lorenzo

guineensis Jacq.) somatic embryos cryostored for 20 years. CryoLetters 
39, 60-66.

berjaK, P., PaMMenter, n.w., 2010: Effects of cryopreservation of recal- 
citrant Amaryllis belladonna zygotic embryos on vigor of recovered 
seedlings: a case of stress ‘hangover’? Physiol. Plant. 139, 205-219. 

 DOI: 10.1111/j.1399-3054.2010.01358.x
bradFord, M., 1976: A rapid and sensitive method for the quantification of 

microgram quantities of protein utilizing the principle of protein dye 
binding. Analytical Biochemical 72, 248-254. 

 DOI: 10.1016/0003-2697(76)90527-3
breeze, e., 2018: Sweet and juicy: identification and origins of the dry 

alleles in sorghum. The Plant Cell. DOI: 10.1105/tpc.18.00748
bruce, t.j., Matthes, M.c., naPier, j.a., PicKett, j.a., 2007: Stressful 

“memories” of plants: evidence and possible mechanisms. Plant Science 
173, 603-608. DOI: 10.1016/j.plantsci.2007.09.002

cejas, i., vives, K., Laudat, t., GonzáLez-oLMedo, j., enGeLMann, 
F., Martínez-Montero, M.e., Lorenzo, j.c., 2012: Effects of cryo- 
preservation of Phaseolus vulgaris L. seeds on early stages of ger- 
mination. Plant Cell Rep. 31, 2065-2073. 

 DOI: 10.1007/s00299-012-1317-x
cLose, t.j., 1996: Dehydrins: emergence of a biochemical role of a family of 

plant dehydration proteins. Physiol. Plant. 97, 795-803. 
 DOI: 10.1111/j.1399-3054.1996.tb00546.x
cLose, t.j., 1997: Dehydrins: a commonalty in the response of plants to 

dehydration and low temperature. Physiol. Plant. 100, 291-296. 
 DOI: 10.1111/j.1399-3054.1997.tb04785.x
duMet, d., benson, e.e., 2000: The use of physical and biochemical 

studies to elucidate and reduce cryopreservation induced damage in 
hydrated/desiccated plant germplasm. In: Engelmann, F., Takagi, H. 
(eds.), Cryopreservation of Tropical Plant Germplasm: Current Research 
Progress and Application. JIRCAS/IPGRI, Tsukuba/Rome.

enGeLMann, F., raManatha, r., 2012: Major research challenges and 
directions for future research. In: Normah, M.n.,Chin, h.F., Reed, b.M. 
(eds.), Conservation of Tropical Plant Species. Springer Verlag, Berlin.

Faostat, 2017: FAO Cereal Supply and Demand Brief. Retrieved from 
Forsyth, c., staden, j.v., 1983: Germination of Tagetes minuta LI 

Temperature effects. Ann. Bot. 52, 659-666. 
 DOI: 10.1093/oxfordjournals.aob.a086622
Graça, d., correia, s., ozudoGru, e., LaMbardi, M., canhoto, j., 2018: 

Cryopreservation of tamarillo (Solanum betaceum Cav.) embryogenic 
cultures. In: Jain, S., Gupta, P. (eds.), Step Wise Protocols for Somatic 
Embryogenesis of Important Woody Plants. Forestry Sciences. Springer.

hardinG, K., 2004: Genetic integrity of cryopreserved plant cells: a review. 
CryoLetters 25, 3-22.

hardinG, K., 2010: Plant and algal cryopreservation: issues in genetic 
integrity, concepts in cryobionomics and current applications in cryo- 
biology. J. Mol. Biol. Biotech. 18, 151-154.

ista, 2005: International Rules for Seed Testing. International Seed Testing 
Association, Bassersdorf, Switzerland.

Kayodé, a.P., LinneMann, a.r., nout, M.r., hounhouiGan, j.d.,  
stoMPh, t.j., sMuLders, M.j., 2006: Diversity and food quality pro- 
perties of farmers’ varieties of sorghum from Bénin. J. Sci. Food Agric. 
86, 1032-1039. DOI: 10.1002/jsfa.2451

KuMutha, d., ezhiLMathi, K., sairaM, r., srivastava, G., deshMuKh, P., 

Tab. 2:  Growth of adult plants in a plant bed until harvest at 110 days.  Statistically significant differences were not recorded (t-test, p>0.05). Intervals represent 
average ± SE.

Days after plantings and traits measured Non-cryopreserved seeds Cryopreserved seeds

Traits evaluated in middle-aged leaves at 62 days after planting on soil (anthesis).  
Chlorophyll a (μg · g-1 fresh weight) 85.17 ± 0.37 85.63 ± 0.44
Chlorophyll b (μg · g-1 fresh weight) 56.10 ± 0.31 55.63 ± 0.44
Chlorophyll a + b (μg · g-1 fresh weight) 141.27 ± 0.41 141.26 ± 0.88
Chlorophyll a/b 1.52 ± 0.01 1.54 ± 0.00
Protein content (mg proteins · g-1 fresh weight) 8.97 ± 0.03 9.05 ± 0.03
Superoxide dismutase activity (mg · g-1 fresh weight) 3.36 ± 0.07 3.39 ± 0.07
Specific superoxide dismutase activity (U mg-1 proteins) 0.38 ± 0.01 0.37 ± 0.01
Peroxidase activity (mg · g-1 fresh weight) 15.03 ± 0.19 15.11 ± 0.18
Specific peroxidase activity (U mg-1 proteins) 1.68 ± 0.02 1.67 ± 0.02

Agricultural traits evaluated at 62 days after planting on soil (anthesis).  
Plant height (cm) 168.75 ± 0.53 169.15 ± 0.49
Number of leaves per plant 10.38 ± 0.15 10.25 ± 0.15
Middle-aged leaf length (cm) 97.99 ± 0.24 97.79 ± 0.18
Middle-aged leaf width (cm) 7.72 ± 0.03 7.70 ± 0.01
Number of stems per plant 1.00 ± 0.00 1.00 ± 0.00
Stem diameter (cm) 5.89 ± 0.02 5.88 ± 0.02
Fresh weight of plants (g) 1.10 ± 0.02 1.09 ± 0.03
Dry weight of plants (g)  0.27 ± 0.01 0.28 ± 0.01

Agricultural traits evaluated at at 110 days after planting on soil (harvest).  
Panicula length (cm) 17.91 ± 0.03 17.88 ± 0.02
Panicula width (cm) 6.07 ± 0.02 6.06 ± 0.01
Number of branches per panicula 29.80 ± 0.15 29.83 ± 0.09
Number of grains per panicula branch 37.43 ± 0.77 37.93 ± 0.67
Number of grains per panicula 1119.15 ± 27.93 1131.58 ± 20.96
Fresh weight of 1000 grains (g) 27.98 ± 0.70 28.29 ± 0.52
Dry weight of 1000 grains (g) 5.13 ± 0.07 5.15 ± 0.07



 Cryopreservation of sorghum seeds 99

Meena, r., 2009: Waterlogging induced oxidative stress and antioxidant 
activity in pigeonpea genotypes. Biologia Plantarum 53, 75-84. 

 DOI: 10.1007/s10535-009-0011-5
KvaaLen, h., johnsen, Ø., 2008: Timing of bud set in Picea abies is regu- 

lated by a memory of temperature during zygotic and somatic em- 
bryogenesis. New Phytol. 177, 49-59. 

 DOI: 10.1111/j.1469-8137.2007.02222.x
Labeyrie, v., deu, M., dussert, y., rono, b., LaMy, F., MaranGu, c., 

KiaMbi, d., caLatayud, c., coPPens d’eecKenbruGGe, G., robert, t., 
2016: Past and present dynamics of sorghum and pearl millet diversity in 
Mount Kenya region. Evol. Appl. 9, 1241-1257. DOI: 10.1111/eva.12405

ManzeLLi, M., benedetteLLi, s., vecchio, v., 2006: Agro-biodiversity 
in subsistence farming systems of South Somalia-Collection and agro-
nomic assessment of Somali sorghum (Sorghum bicolor (L.) Moench) 
germplasm. Tropicultura 24, 213.

Martínez-Montero, M.e., Mora, n., Quiñones, j., GonzáLez-arnao, 
M.t., enGeLMann, F., Lorenzo, j.c., 2002: Effect of cryopreservation 
on the structural and functional integrity of cell membranes of sugarcane 
(Saccharum sp.) embryogenic calluses. Cryoletters 23, 237-244.

Mathew, L., McLachLan, a., jibran, r., burritt, d.j., Pathirana, 
r., 2018: Cold, antioxidant and osmotic pre-treatments maintain the 
structural integrity of meristematic cells and improve plant regeneration 
in cryopreserved kiwifruit shoot tips. Protoplasma 255, 1065-1077. 

 DOI: 10.1007/s00709-018-1215-3
Mathur, s., uMaKanth, a., tonaPi, v., sharMa, r., sharMa, M.K., 2017: 

Sweet sorghum as biofuel feedstock: recent advances and available 
resources. Biotechnol. Biof. 10, 146. DOI: 10.1186/s13068-017-0834-9

McGuire, s.j., 2008: Securing access to seed: Social relations and sorghum 
seed exchange in eastern Ethiopia. Hum. Ecol. 36, 217-229. 

 DOI: 10.1007/s10745-007-9143-4
MycocK, d., 1999: Addition of calcium and magnesium to a glycerol and 

sucrose cryoprotectant solution improves the quality of plant embryo 
recovery from cryostorage. CryoLetters 20(2), 77-82.

otieno, G., Lacasse, h., adoKorach, j., MuLuMba, j.w., recha, j.w., 
reynoLds, t.w., Fadda, c., 2018: Social seed networks for climate 
change adaptation in Uganda: Strategies to improve access to genetic 
diversity and information. Results from a study to better understand 
farmers’ primary sources of seed and information in the Hoima Climate-
Smart Villages. CGIAR: https://hdl.handle.net/10568/93207.

Pan, c., Liu, j., bi, w.-L., chen, h., enGeLMann, F., wanG, Q.-c., 2018: 
Cryopreservation of small leaf squares-bearing adventitious buds of 
Lilium Oriental hybrid ‘Siberia’ by vitrification. Plant Cell Tiss. Org. 
Cult. 133, 159-164. DOI: 10.1007/s11240-017-1363-8

Panis, b., 2018: 60 years of plant cryopreservation: from freezing hardy 
mulberry twigs to establishing reference crop collections for future 
generations. 2018-01; The Third International Symposium on Plant 
Cryopreservation, Bangkok, Thailand.

Paterson, a.h., bowers, j.e., bruGGMann, r., dubchaK, i., GriMwood, 
j., GundLach, h., haberer, G., heLLsten, u., Mitros, t., PoLiaKov, 
a., schMutz, j., sPannaGL, M., tanG, h., wanG, X., wicKer, t., 
bharti, a.K., chaPMan, j., FeLtus, F.a., GowiK, u., GriGoriev, i.v., 
Lyons, e., Maher, c.a., Martis, M., narechania, a., otiLLar, 
r.P., PenninG, b.w., saLaMov, a.a., wanG, y., zhanG, L., carPita, 
n.c., FreeLinG, M., GinGLe, a.r., hash, c.t., KeLLer, b., KLein, P., 
Kresovich, s., Mccann, M.c., MinG, r., Peterson, d.G., Mehboob 
ur, r., ware, d., westhoFF, P., Mayer, K.F.X., MessinG, j., roKhsar, 
d.s., 2009: The Sorghum bicolor genome and the diversification of 
grasses. Nature 457, 551. DOI: 10.1038/nature07723

PeacocK, j., 1990: Investigación del ICRISAT sobre Sorgo en los trópicos 
semiáridos. ICRISAT 17.

Pérez-rodríGuez, j.L., escriba, r.c.r., GonzáLez, G.y.L., oLMedo, 
j.L.G., Martínez-Montero, M.e., 2017: Effect of desiccation on phy- 
siological and biochemical indicators associated with the germination 
and vigor of cryopreserved seeds of Nicotiana tabacum L. cv. Sancti 
Spíritus 96. In Vitro Cell. Dev. Biol.-Plant, 1-9. 

 DOI: 10.1007/s11627-017-9857-y.
Porra, r., 2002: The chequered history of the development and use of 

simultaneous equations for the accurate determination of chlorophylls 
a and b. Photosynth. Res. 73, 149-156. DOI: 10.1023/A:1020470224740

saGiv, j., bar-aKiva, a., 1972: Visual demonstration of differences in per- 
oxidase activity in iron and manganese deficient citrus leaves. Experien- 
tia 28, 645-646. DOI: 10.1007/BF01944952

sanGwan, v., Örvar, b.L., dhindsa, r.s., 2002: Early events during low 
temperature signaling.  Plant Cold Hardiness. Springer.

sMaLe, M., assiMa, a., KerGna, a., thériauLt, v., weLtzien, e., 2018: 
Farm family effects of adopting improved and hybrid sorghum seed in 
the Sudan Savanna of West Africa. Food Pol. 74, 162-171. 

 DOI: 10.1016/j.foodpol.2018.01.001
stanwood, P., bass, L., 1981: Seed germplasm preservation using liquid 

nitrogen. Seed Sci. Technol. 9, 423.
steinMacher, d.a., saLdanha, c.w., cLeMent, c.r., Guerra, M.P., 

2007: Cryopreservation of peach palm zygotic embryos. CryoLetters 28, 
13-22.

ueMura, M., stePonKus, P.L., 1994: A contrast of the plasma membrane 
lipid composition of oat and rye leaves in relation to freezing tolerance. 
Plant Physiol. 104, 479-496.

van assche, F., cLijsters, h., 1990: Effects of metals on enzyme activity in 
plants. Plant Cell Environ. 13, 195-206. 

 DOI: 10.1111/j.1365-3040.1990.tb01304.x
wesLey-sMith, j., waLters, c., PaMMenter, n., berjaK, P., 2001: Inter- 

actions among water content, rapid (nonequilibrium) cooling to -196 °C, 
and survival of embryonic axes of Aesculus hippocastanum L. seeds. 
Cryobiology 42, 196-206. DOI: 10.1006/cryo.2001.2323

zevaLLos, b., cejas, i., enGeLMann, F., carPuto, d., aversano, r., 
scarano, M., yanes, e., Martínez-Montero, M., Lorenzo, j.c., 
2014: Phenotypic and molecular characterization of plants regenerated 
from non-cryopreserved and cryopreserved wild Solanum lycopersicum 
Mill. seeds. CryoLetters 35, 216-225.

Address of the authors:
Ariel Villalobos; Melissa Arguedas; Doris Escalante; Julia Martínez; Inaudis 
Cejas; Lourdes Yabor; Marcos Edel Martínez-Montero; José Carlos Lorenzo, 
Laboratory for Plant Breeding and Conservation of Genetic Resources, 
Centro de Bioplantas, Universidad de Ciego de Ávila, Ciego de Ávila 69450, 
Cuba
E-mail: jclorenzo@bioplantas.cu
Byron E. Zevallos, Escuela Superior Politécnica Agropecuaria de Manabí 
Manuel Félix López (ESPAMMFL), Campus Politécnico El Limón, Carrera 
de Ingeniería Agrícola, Calceta, Manabí, Ecuador
Sershen, School of Life Sciences, University of Kwazulu-Natal, Durban, 
4001, South Africa

© The Author(s) 2019.
 This is an Open Access article distributed under the terms of  
the Creative Commons Attribution 4.0 International License (https://creative-
commons.org/licenses/by/4.0/deed.en).


