
IT Journal Research and Development (ITJRD)
Vol.6, No.1, August 2021, E-ISSN : 2528-4053 | P-ISSN : 2528-4061
DOI : 10.25299/itjrd.2021.vol6(1).5806 43

Journal homepage: http:/journal.uir.ac.id/index.php/ITJRD

High Availability Server Using Raspberry Pi 4 Cluster
and Docker Swarm

T. Yudi Hadiwandra1, Feri Candra2
Department of Informatics Engineering, Universitas Riau1,2

tyudihw@lecturer.unri.ac.id1, feri@eng.unri.ac.id2

Article Info ABSTRACT

Article history:

Received Nov 11, 2020
Revised Dec 1, 2020
Accepted July 6, 202110

 In the Industrial 4.0 era, almost all activities and transactions are
carried out via the internet, which basically uses web technology. For
this reason, it is absolutely necessary to have a high-performance web
server infrastructure capable of serving all the activities and
transactions required by users without any constraints. This research
aims to design a high-performance (high availability) web server
infrastructure with low cost (low cost) and energy efficiency. low
power) using Cluster Computing technology on the Raspberry Pi
Single Board Computing and Docker Container technology. The
cluster system is built using five raspberry Pi type 4B modules as
cluster nodes, and the Web server system is built using docker
container virtualization technology. Meanwhile, cluster management
uses Docker Swarm technology. Performance testing (Quality of
Service) of the cluster system is done by simulating a number of loads
(requests) and measuring the response of the system based on the
parameters of Throughput and Delay (latency). The test results show
that the Raspberry Pi Cluster system using Docker Swarm can be used
to build a High Availability Server system that is able to handle very
high requests that reach Throughput = 161,812,298 requests / sec with
an Error rate = 0%.

Keyword:

Cluster Computing
Docker Swarm
High Availability
Raspberry Pi
Web Server

© This work is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.

Corresponding Author:

T. Yudi Hadiwandra,
Department of Informatics Engineering
Universitas Riau,
Kampus Bina Widya Km. 12,5 Simpang Baru, Pekanbaru, Indonesia, 28293
Email: tyudihw@lecturer.unri.ac.id

1. INTRODUCTION

In the Industrial 4.0 era, almost all activities and transactions are carried out via the internet,
which basically uses web technology. The high activity and transaction of requests for services from
users can cause the web server to fail to serve the user needs. Therefore, it is absolutely necessary to
have a high-performance web server infrastructure that capable to serving all the activities and
transactions required by the user without any constraints. In the era of cloud computing, a distributed
computing system is needed that can abstract the capabilities of the hardware in carrying out a
computation process called Virtualization [1]. With virtualization, hardware resources that exist in a
cloud computing service can share and run a variety of different application environments. There are
two types of technology commonly used in hardware virtualization, namely Hypervisor and
Container [2]. Efficient use of hardware resources, replication of processes for high availability, and

 IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

 T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

44

the demand for systems that are more tolerant of system errors drive the development of this
virtualization system. In a study it was reported that the use of virtualization technology in a data
center can reduce carbon emissions by about 30% compared to using physical infrastructure [3].

Virtualization technology is also growing following the abstraction needs of the computational
process. Traditional virtualization techniques are considered to consume too much hardware
resources to run computational processes, so the lighter container-based virtualization techniques can
be an attractive option. The giant technology companies such as Microsoft, Google and Facebook
also use container technology in their datacentre services [4]. Compared to the traditional approach
that uses virtual machines as the basis for the development and deployment of applications running
on a cloud-based infrastructure, container technology provides a higher level of portability and
availability that enables developers to build and deploy their applications more widely in efficient
and flexibility manner. [5].

Container technology is a modern virtualization technology that is gaining popularity. One of
the most adopted container-based virtualization technologies is Docker [6]. Docker is an open source
project which is an implementation of a very light weight operating system level virtualization
technology. Docker was introduced in 2013, and is the industry standard for container technology.
Containers are standard units of software that allowed developers to isolate their applications from
their environment. Today, Docker is the de facto standard for building and sharing applications in
containers ranging from the desktop to the cloud [7].

This study aims to design and build a web server infrastructure with high performance (high
availability) at low cost (low cost) and energy efficient (low power) using the Raspberry Pi Single
Board Computing and Docker Container technology. In this study, several tests were also conducted
on the Quality of Service (QoS) of the system built to determine the system's ability to handle service
requests from users.

2. RESEARCH METHOD

In this study, the cluster system was built using five nodes where each node will be
implemented using the Raspberry Pi type 4B Single Board Computer (SBC) module. The Web server
system in this study was built using virtualization technology which will be implemented using
Docker containerization technology. This container system virtualization technology is different
from the virtualization technology that uses a virtual machine. A virtual machine technology
performs virtualization by emulating at the machine level while container technology emulates at the
operating system level. Each node in the cluster will be integrated into a single system using Docker
Swarm technology [8]. Docker Swarm acts as a manager in this cluster system and also has an
internal load balance system which is used to manage the distribution of workloads to each worker
node. With this load balance, the utilization of computational resources can be done efficiently and
maximally. Load balance can also minimize system failure in serving user requests.

In this study also tested the performance of the cluster system based on the parameters of
throughput and delay/latency. Throughput is a measure of the average number of successful
deliveries in a measure of time. In general, the maximum throughput can indicate the network
capacity (bandwidth) of the system. Delay or latency is the time it takes a data packet to travel from
origin to destination. In implementation, the delay value is the length of time the packet takes from
the original application to the destination application. The amount of delay can be caused by many
things. One of the factors that influence is the determination of packet priority from the scheduling
algorithm used.

2.1. Cluster Architecture Design

The architectural design of the cluster that is built can be seen as in Figure 1. The architecture
of this cluster system uses five Raspberry Pi type 4B modules with CPU specifications using Quad
core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 4GB RAM and a Gigabit ethernet port. For the
switch we using the TP-Link TL-SG1008MP Gigabit 8-port. This design uses the standard

IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

45

architecture recommendation of Docker Swarm [8] with 3 nodes as Managers and 2 nodes as
Workers as shown in Table 1.

Each node is made into a Docker Machine by installing the Docker Engine application version
19.03.12 which runs on the 32-bit version of the Raspberry Pi OS Lite version of the operating
system. To merge all nodes into one cluster, run the Docker Swarm application on all nodes and are
given the appropriate roles, namely 3 nodes as Master and 2 nodes as Workers.

Fig. 1 Cluster architectural design

Table 1. Swarm manager fault tolerance

Swarm Size Majority Fault Tolerance
1 1 0
2 2 0
3 2 1
4 3 1
5 3 2
6 4 2
7 4 3
8 5 3
9 5 4

(ssource: www.docker.com)

2.2. System Performance

Performance of the system is measured based on throughput and delay/latency parameters of
the response given by the system after being given load testing. The request load is simulated using
Apache Jmeter application [9] version 5.3 which is run from the client system in the form of a desktop
PC with intel pentium G640 processor with 2.8GHz, 6GB RAM and Ms.Windows 8.1 operating
system version 64bit. For easy observation of cluster behavior is visually used Visualizer image
container [10] which is run on the manager node of the cluster system as a web service that can be
accessed through the browser in the client machine. Some of the test scenarios performed are as
follows:
a) Scenario 1: testing the reliability of system in handling system failures due to resource

unavailability (failover). This test aims to observe and measure the availability level of the
system by providing a condition where one or more machines are no longer available to be able
to provide the services (single point of failure). And then try to access the Visualiver application
service at the same address to see if the cluster system is still capable of running the Visualizer
application service [10].

b) Scenario 2: testing the reliability of the system in handling the process of adding and reducing
the number of server nodes in anticipation of adjusting machine capacity needs (scalability). This

 IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

 T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

46

test aims to observe and measure the availability level of the system by looking at the scalability
capabilities of the system by trying to duplicate system services. In this scenario, it will be
observed how the system behaves when scaling both scale-up and scale-down. In this test we
created a static website using Hypriot image container [11] as a web service that will be in
scalling and viewed cluster behavior using Visualizer.

c) Scenario 3: testing the reliability of system in handling overload with load balancing capabilities.
This test aims to observe and measure the availability level of the system by providing a
condition where the system will be burdened with a number of service requests as shown in Table
2. In this test is used Apache Jmeter application that will simulate a number of service request
loads (requests) to the system and simultaneously measure the performance of throughput and
delay/latency of the system.

Table 2. List of test parameters in Scenario 3

#Tes #Container #Request #Tes #Container #Request
1 1 1000 11 5 1000
2 1 2500 12 5 2500
3 1 5000 13 5 5000
4 1 10000 14 5 10000
5 1 20000 15 5 20000
6 2 1000 16 10 1000
7 2 2500 17 10 2500
8 2 5000 18 10 5000
9 2 10000 19 10 10000
10 2 20000 20 10 20000

2.3. Docker

Docker is a software platform that packages the applications into a standard unit called a
container that has everything the applications needs to work including libraries, system tools, code,
and processing time. Container is one of the virtualization techniques at the operating system level
where each process or application running each container will have the same kernel while
virtualization at the machine level such as virtual machine requires a different operating system
kernel per application running [12]. Doker has two licensing models: open source Docker
Community Edition (CE) and subscription-based Docker Enterprise Edition (EE).

Fig. 2 Container and Virtual Machine Architecture [13]

Docker is an application based on open source technology that allows developers or anyone

else to create, run, test and launch applications in a container. Docker quickly packages the
applications with their components in an isolated container, allowing them to run on-premises

IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

47

infrastructure without configuring containers[14]. Docker uses a client-server architecture. The
Docker client contacts the Docker daemon, which performs the running job, and distributes the
Docker container. Both docker client and daemon can run on the same system. Docker client and
daemon communicate via sockets or via API provided by Docker[13]

Fig. 3 Docker System Architecture Scheme [13]

2.4. Docker Swarm
Docker Swarm is a tool for managing clusters and containers that are already integrated in

the Docker Engine, also known as Swarm-kits. Swarm-kit is a separate set of projects from the
opensource community of developers. Cluster swarms are a collection of multiple Docker hosts that
run swarm mode and there are acting as managers (who manage cluster members and manage
delegate tasks) and some act as workers (who implement or process services (swarm services). Any
Docker host can act as a manager, worker, or both [15].

Fig. 4 Docker Swarm Architecture [16]

3. RESULTS AND ANALYSIS
In a test experiment with Scenario 1, the initial condition of the Visualizer service was run by

the rpi2 server machine. Then we reboot the rpi2 server and try to access the Visualiver application

 IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

 T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

48

service at the same address. As seen in Figure 5. Visualizer application service can still run and this
service has been moved automatically to rpi1 server. Thus the ability of fail over on this cluster
system is able to run very quickly and without downtime. This capability is absolutely necessary in
a high availability system

(a)

(b)

Fig. 5 Visualization cluster (a) initial condition (b) reboot condition rpi2

In test scenario 2, we observed and measured system availability level based on scalability
capability of the system by trying to scale-up and scale-down the Hypriot web sever as a service
running

.

(a)

(b)

Fig. 6 (a) Hypriot web server (b) Hypriot container visualization at rpi3

(a)

(b)

 Fig. 7 Scalling container Hypriot (a) Scale-up to 10 (b) Scale-down to 5

From the test results, it can be seen that the system capability in the scale-up and scale-down
process can run well and without downtime. This capability is absolutely necessary in a high

IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

49

availability system when it comes to serving an instant increase in the number of high requests so
that the system is not overloaded.

In scenario 3 testing, we observed and measured system Availability level by providing a
number of users (samples) who perform service requests using the Apache Jmeter application that
will simulate a certain amount of service request load to the system and simultaneously measure
system performance

(a)

(b)

Fig. 8 JMeter Graph Result with 1 Container (a) 1,000 Samples (b) 10,000 Samples

Table 4. Throughput Test Results

Samples 1 Container
(request/ms)

2 Container
(request/ms)

5 Container
(request/ms)

10 Container
(request/ms)

1000 10.285.949 10.233.320 10.267.995 10.466.820
2500 24.982.512 25.118.055 25.030.036 25.092.844
5000 49.677.099 49.426.651 49.407.115 49.436.425
10000 97.181.730 97.560.976 96.786.682 96.983.804
20000 137.014.455 161.812.298 150.060.024 146.487.951

Fig. 9 Throughput Comparison by number of containers and samples

Table 5. Latency Test Results

Samples 1 Container
(ms/request)

2 Container
(ms/request)

5 Container
(ms/request)

10 Container
(ms/request)

1000 4 4 4 4
2500 3 4 4 4
5000 3 4 4 5

 IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

 T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

50

10000 4 4 4 5
20000

18 13 17 21

Fig. 10 Latency comparison based on number of containers and samples

4. CONCLUSION
From the results of this experiment it can be concluded that raspberry devices are able to run

virtualization technology well using docker. Docker virtualization technology can also be used to
create a computer cluster that supports high availability servers. Based on the test result data it
appears that raspberry cluster devices using docker are able to handle requests without any constraints
with error rate = 0%. The designed device is also capable of handling a very high number of requests
until it reaches throughput = 161,812,298 requests/sec.

From the test data obtained, it is recommended to choose the maximum number of containers
possible. Too many containers do not guarantee system reliability will improve. The more containers
will consume more CPU and Memory resources

ACKNOWLEDGEMENTS

The author thanked the Institute of Research and Community Service of Riau University for
providing financial support to this research.

REFERENCES

[1] Wikipedia, “Virtualization” [Online]. Available:https://en.wikipedia.org/wiki/Virtualization.

[Accessed: 11-Oct-2020].
[2] V. G. da Silva, M. Kirikova, and G. Alksnis, “Containers for Virtualization: An Overview,”

Appl. Comput. Syst., vol. 23, no. 1, pp. 21–27, 2018.
[3] M. Pretorius, M. Ghassemian, and C. Ierotheou, “An investigation into energy efficiency of

data centre virtualisation,” in Proceedings - International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 3PGCIC 2010, 2010, pp. 157–163.

[4] T. Gupta and A. Dwivedi, “Data storage & load balancing in cloud computing using container
clustering,” Int. J. Eng. Sci. Res. Technol., vol. 6, no. 9, pp. 656–666, 2017.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of
virtual machines and Linux containers,” in 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2015, pp. 171–172.

[6] H.-E. Yu and W. Huang, “Building a Virtual HPC Cluster with Auto Scaling by the Docker,”
Sep. 2015.

[7] Docker, “Why Docker? | Docker,” 2017. [Online]. Available: https://www.docker.com/why-

IT Jou Res and Dev, Vol.6, No.1, August 2021 : 43 - 51

T. Yudi Hadiwandra, High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm

51

docker. [Accessed: 19-Oct-2020].
[8] T. M. Mark Church, Marlon Ruiz, Andrew Seifert, “Docker - Docker Swarm Reference

Architecture: Exploring Scalable, Portable Docker Container Networks,” 2019. [Online].
Available: https://success.docker.com/article/networking#whatyouwilllearn. [Accessed: 03-
Aug-2020].

[9] Apache, “Apache JMeter - Apache JMeterTM,” Apache Jm., p. 2019, 2014.
[10] Miranda,et.all, “GitHub - dockersamples/docker-swarm-visualizer: A visualizer for Docker

Swarm Mode using the Docker Remote API, Node.JS, and D3.” [Online]. Available:
https://github.com/dockersamples/docker-swarm-visualizer. [Accessed: 29-Oct-2020].

[11] Docker Team, “Getting started with Docker on your Raspberry Pi · Docker Pirates ARMed
with explosive stuff.” [Online]. Available: https://blog.hypriot.com/getting-started-with-
docker-on-your-arm-device/. [Accessed: 29-Oct-2020].

[12] T. P. Kusuma, R. Munadi, and D. D. Sanjoyo, “Implementasi dan Analisis Computer
Clustering System dengan Menggunakan Virtualisasi Docker,” e-Proceeding Eng., vol. 4, no.
3, pp. 1–6, 2017.

[13] Docker, “Docker overview | Docker Documentation,” Docker.Com, 2018. [Online].
Available: https://docs.docker.com/get-started/overview/. [Accessed: 07-Nov-2020].

[14] S. Dwiyatno, E. Rakhmat, and O. Gustiawan, “Implementasi Virtualisasi Server Berbasis
Docker Container,” Prosisko, vol. 7, no. 2, pp. 165–175, 2020.

[15] Docker, “Swarm mode overview | Docker Documentation,” Docker, 2020. [Online].
Available: https://docs.docker.com/engine/swarm/. [Accessed: 07-Nov-2020].

[16] IT Solution Architects, “Containers 102: Continuing the Journey from OS Virtualization to
Workload Virtualization,” medium.com, 2017. [Online]. Available:
https://medium.com/@ITsolutions/containers-102-continuing-the-journey-from-os-
virtualization-to-workload-virtualization-54fe5576969d. [Accessed: 07-Nov-2020].

BIOGRAPHY OF AUTHORS

T. Yudi Hadiwandra obtained Bachelor Degree in Computer Engineering from Universitas
Gunadarma in 1998, obtained Master Degree in Computer Science from Universitas Gadjah
Mada in 2004. He has been a Lecturer with the Department of Informatics Engineering
Universitas Riau Indonesia since 2018. His current research interests include artificial inteligent,
internet of thing, machine learning and data science.

Feri Candra obtained Bachelor Degree in Electrical Engineering from Institute Sains dan
Teknologi Nasional in 1999, obtained Master Degree in Electrical Engineering from Universitas
Indonesia in 2002, and obtained Doctoral of Electrical Engineering from Universiti Teknologi
Malaysia in 2017. he has been a Lecturer with the Department of Informatics Engineering,
Universitas Riau Indonesia since 2002. His current research interests include signal processing,
artificial inteligent, machine learning and data science.

