
METHODS OF RANDOMIZATION OF LARGE FILES
WITH HIGH VOLATILITY

79

Patrick C. MITCHELL: Senior Programmer, Washington State University,
Pullman, Washington, and
Thomas K. BURGESS: Project Manager, Institute of Library Research,
University of California, Los Angeles, California

Key-to-address conversion algorithms which have been used for a large,
direct access file are compared with respect to record density and access
time. Cumulative distribution functions are plotted to demonstrate the
distribution of addresses generated by each method. The long-standing
practice of counting address collisions is shown to be less valuable in
fudging algorithm effectiveness than considering the maximum number
of contiguously occupied file locations.

The random access disk file used by the Washington State University
Library Acquisition sub-system is a large file with a sizable number of
records being added and deleted daily. This file represents not only mate
rials on order by the Acquisitions Section, but all materials which are in
process within the Technical Services area of the Library. The size of
the file currently varies from approximately 12,000 to 15,000 items and
has a capacity of 18,000 items. Over 40,000 items are added and purged
annually. Each record consists of both fixed length fields and variable
length fields. Fixed fields primarily contain quantity and accounting in
formation; the variable length fields represent bibliographic data. Records
are blocked at 1,000 characters for file structuring purposes; however the
variable length information is treated as strings of characters with delimi
ters. The key to the file is a 16-character structure which is developed
from the purchase order number. The structure of the key is as follows:
six digits of the original purchase order number, two digits of partial
order and credit information, and eight digits containing the computed
relative record address. Proper development of this key turns out to be

80 Journal of Library Automation Vol 3/1 March, 1970

the most important factor in achieving efficiency in both file access time
and record density within the file.

The W.S.U. purchase order numbering system, developed from a basic
six-digit purchase order number, allows up to one million entries. Of these,
the Library currently uses four blocks: one block for standing orders, one
block for orders originating from the University after the system becomes
operational, another block used by the systems people in prototype testing
of the system, and a fourth block which was given to one vendor who
operates an approval book program.

In mapping a possible million numbers into eighteen thousand disk lo
cations, there is a high probability that the disk addresses for more than
one record will be the same. Disk location, also called disk address, home
position, and relative record address (RRA) in this paper, refers to the
computed offset address of a record in the file, relative to the starting
address of the file. Currently, the file resides on an IBM 2316 disk pack
which can store six 1000-character records per track. Thus if the starting
address of the file is track 40, a record with RRA = 5 would have its home
position on track 40, while a record with RRA = 6 would have its home
position on track 41. It should be noted that routines in this system are
required to calculate neither absolute track address nor relative track
address and therefore the file could be moved to any direct access device
supported by OS/BDAM without program modification.

When two records map into the same address, it is called a collision.
For a WRITE statement under the IBM 360 Operating System, Basic
Direct Access Methods, the system locates that disk address generated
and if another record is found there, it sequentially searches from that
point forward until a vacant space is found and then stores the new rec
ord in that space. The sequential search is done by a hardware program
in the I/ 0 channel and proceeds at the rotational speed of the device
on which the file resides. The CPU is free during this period to service
other users. Similarily, when searching for a record, the system locates
the disk address and matches keys; if they do not match, it sequentially
searches forward from that point. Long sequential searches sharply de
grade the operating efficiency of on-line systems.

In initial experimentation with this file, it was discovered that some
records were 2,500 disk positions away from their computed locations.
This seriously reduced response time to the terminals which were operat
ing against those records. The necessity to develop a method for placing
each record close to its calculated location became quite obvious. How
ever, the methodology for doing this was not as clear.

The upper bound delay for a direct access read/write operation can be
defined as the largest number of contiguously occupied record locations
within the file. The problem of minimizing this upper bound for a par
ticular file is equivalent to finding an algorithm which maps the keys in
such a way that unoccupied locations are interspersed throughout the

Randomization of Large Files/MITCHELL and BURGESS 81

file space. One method for doing this is to triple the amount of space
required for the file. This has been a traditional approach but is unsatis
factory in terms of its efficiency in space utilization.

The method first used by the Library was motivated by the necessity
to "get on the air." Its requirements were that it be easily implemented
and perform to a reasonable degree. The prime modulo scheme seemed
to qualify and was selected. As this algorithm was used, the largest prime
number within the file size was divided into the purchase order number
and the modulo remainder was used as an address; that is, RRA = [Po
Modulo Pr] where RRA is the relative record address, Po is the Purchase
Order Number, and Pr is a prime number. During the initial period file
size grew to about 8,000 records. Because the Acquisitions Section was
converting from its manual operation, the file continued to grow in size
and the collision problem became pronounced. When the file reached
about 70% capacity-that is when 70% of the space allocated for the
file was being occupied by records-this method became unusable; rec
ords were then located so far from their original addresses that terminal
response times became degraded and batch process routines began to
have significant increases in run times.

With no additional space available to expand the size of the file, it
became necessary to increase the record density within the existing file
bounds. Therefore an adaptation of the original algorithm was developed.
In addition to generating the original number by dividing a prime num
ber into the purchase order number and keeping the modulo remainder,
the purchase order number was multiplied by 300 and divided by that
same prime number to get an additional modulo remainder; the latter
was added to the first modulo remainder and the sum then divided by 2:

(Po Modulo Pr) + (300 • Po Modulo Pr)
2 RRA =

Again this scheme brought some relief, but the file continued to grow
as the system was implemented, and it became obvious that this procedure
would also fail because of over-crowded areas in the file.

A search of the literature using W. B. Climenson's chapter on file struc
ture (2) as a start provided some other methods for reducing the colli
sion problem (1, 3, 4, 5, 6). Several randomization or hashing schemes
were examined. However, none of these methods appeared to be particu
larly pertinent to the set of conditions at Washington State.

In order to bring relief from the continuing problem of file and pro
gram maintenance involved with changing the file-mapping algorithm,
research was initiated to devise an algorithm which would, independent
of the input data, map records uniformly across the available file space.

The algorithm which resulted utilizes a pseudo-random number gen
erator, RAND (7) developed at the W.S.U. Computing Center RANDL,
Program 360L-13.5.004, Computing Center Library, Computing Center,

82 Journal of Library Automation Vol 3/ 1 March, 1970

Washington State University, Pullman, Washington. The normal use of
RAND is to generate a sequence of uniformly distributed integers over
the interval [1, M], where M is a specified upper bound in the interval
[1, 231 -1]. In addition to M, RAND has a second input parameter: N,
which is the last number generated by RAND. Given M and N, RAND
generates a result R. RAND is used by the algorithm to generate relative
disk addresses by setting M to the size or capacity of the file, by setting
N to the purchase order number of the record to be located, and by using
R as the relative address of the record. RRA =RAND (Po, M).

In order to test the effectiveness of this algorithm and others which
might be devised, a file simulation program was written BDAMSIM, Pro
gram 360L-06.7.008, Computing Center Library, Computing Center,
Washington State University, Pullman, Washington. Inputs to this pro
gram are: a) an algorithm to generate relative record locations; b) a
sequential file which contains the input data for "a"; c) various scalar
values such as file capacity, approximate number of records in the file,
title of output, etc.

The program analyzes the numbers generated by "a" operating on "b"
within the constraints of "c". The outputs of the program are some sta
tistical results and a graphical plot showing the cumulative distribution
function of the generated addresses.

Figures 1, 2, and 3 show the plotted output of the three algorithms
operating against the current acquisitions file. The abscissas of the plots
8 •
)!! II!
li 1i

:;! 5I
::! !':!

~ ~
N N

~~ a= .. -
~, ,~

-' -'

~)11 I'! a;
·:5

~li Ma!
0.. 0..

.. ..
it ,::

~ ~

~--~~~~-±~~~--~~~~~~~~--~--~--~--~~0
21 , 10 '12.20 83.30 111,'10 105.51 I:M.61 1~7.71 1811,81 IM.tl 211.01 2$!,11 253.2f

RELRT IVE RECORD ADDRESSES lXI02 l

Fig. 1. RRA =Po Modulo Pr

Randomization of Large Files/ MITCHELL and BURGESS 83

Fig. 2. RRA = ((Po Modulo Pr) + (300 x Po Modulo Pr))/ 2.

8
i

)C II!
~ ~

Z! 5I
Fl !!

l':! I<;
~

;;;

:::::: ;:::

~8
z

8:::
.; .;

::~
~ ,..

~
..J ..J

~~ ~iii
~M :ti~
a: a:
"- "-

"' "'
~ ~

~ ~

Fig. 3. RRA =RAND (Po, Pr).

84 Journal of Library A<Utomation Vol. 3/ 1 March, 1970

represent disk addresses which were generated. The ordinates represent
the probability of generating disk addresses less than or equal to ad
dresses on the abscissas. The ideal algorithm will uniformly distribute the
records throughout the file and its plot will be a straight line from the
lower left comer of the plot to the upper right comer. The density of the
file is represented by the slope of the plot. A steep (vertical) slope rep
resents many records clustered together; a mild (horizontal) slope repre
sents a less densely populated area; a slope of 1 represents a uniform
distribution.

In Table 1 the three mapping methods are compared with respect to
the number of collisions and the upper-bound read/write delay. These
statistics are based on the current acquisitions file at 90% capacity
(12,913 records and 14,347 locations) . Looking at only the collision sta
tistics, it would appear that method I, RRA =[Po Mod Pr], would provide
the best mapping. However, its upper-bound read/ write delay indicates
that one area of 8,823 locations is contiguously occupied. Any new record
to be inserted near the beginning of this area would necessarily be stored
over 8,800 locations away from its computed address. Method II would
be a less effective algorithm for use with the current acquisitions file, as
it has a larger (11,585) upper bound read/ write delay than method I
and has fewer records in their home positions. When method II was im
plemented, it represented an improvement over method I. Since that
time, the data base contents have changed and so have the comparative
performance statistics of the methods. This illustrates the dependence of
the effectiveness of these methods upon the data base itself. The statistics
for method III, RRA= [RAND (Po, Pr)], indicate that more records are
located a short distance from their computed addresses than in method
I. However, no record is more than 338 locations away.

TABLE 1. Comparison of Three Mapping Methods

RRA Percent of Records Having 0-6 Collisions Upper
Bound

Read/ Write
Delay

0 1 2 3 4 5 6
I Po Mod

Pr 44.24 42.48 11.04 1.95 .23 .05 8,823

II (Po Mod
Pr + 300
Po Mod
Pr) / 2 31.31 40.44 19.56 6.72 1.66 .19 .11 11,585

III RAND
(Po, Pr) 37.02 35.34 19.61 6.70 1.08 .23 .11 388

Randomization of Large Files/MITCHELL and BURGESS 85

Table 1 can be understood by considering a simple example. Suppose
there are six records to map into a direct access file of eight locations. Sup
pose that RRA generator A assigns home positions ~ 2, 4, 3, 4, 3, 2} to
the records and RRA generator B assigns home positions of ~ 0, 4, 0, 4,
4, 0~. If E denotes an empty, or non-occupied position in the file, the
corresponding file maps would actually appear as:

0 1 2 3 4 5 6 7
A IE IE 1213141413121
BIOIOIOIEI41414IEI

On the basis of Table 1, and with X representing the number of collisions,
the statistics would be as follows:

X= 1 X=2 UBRWD
A I 100 6 I
B ,__I __ __..!. __ 100 _ __,__ __ 3_----'1

While method A provides fewer collisions, it has saturated one area of
the file space, indicated by the high UBRWD. Method B provides a su
perior mapping in that file saturation has been minimized.

The acquisitions file is contained on an IBM 2316 disk pack. It has
been found that a read/write delay of 200 locations is about equivalent
to one second. Hence method I represents a maximum delay of 44 sec
onds, method II a maximum delay of 58 seconds, and method III a maxi
mum delay of 2 seconds. The Library systems group, together with the
Library staff, have arbitrarily set the maximum delay for terminal response
time at 23~ seconds. Utilizing methods I or II, this limit was reached
when the file was 60-80% full. With method III, the limit is not reached
until the file is 90-95% full.

From these data it can be seen that the method utilizing the random
number generator is clearly an improvement over the other methods
tested. This simulation has been performed against the acquisitions file
at regular intervals to see if it would continue to be uniformly populated.
It has been found that even under highly volatile conditions, the records
in the file remain uniformly distributed throughout the available file space.

REFERENCES
1. Burgess, T. K.; Ames, J. L.: LOLA, Library On-Line Acquisition

Sub-System, (Washington State University Library, 1968).
2. Climenson, W. D.: "File Organization and Search Techniques," An

nual Review of Information Science and Technology, 1 (New York:
Interscience, 1966), 107-135.

/

86 Journal of Library Automation Vol. 3/1 March, 1970

3. Hanan, M.; Palermo, F. P.: "An Application of Coding Theory to a
File Address Problem," IBM Journal of Research and Development,
7 (April, 1963), 127-129.

4. Hayes, R. M.: "A Theory for File Organization," On-Line Computing,
(New York: McGraw-Hill, 1967), pp. 264-289.

5. Kaimann, R. A.: "Entry to the File, Randomize or Index," Data
Processing Magazine, 10 (December, 1968), 24-27.

6. Lefkovitz, David: File Structures for On-Line Systems, (New York:
Spartan, 1969).

7. Payne, W. H., et. al.: "Coding the Lehmer Pseudo-Random Number
Generator," Communications of the ACM, 12 (February 1969), 85-86.

