
OPENSEARCH AND SRU | LEVAN  151

Not all library content can be exposed as HTML pages 

for harvesting by search engines such as Google and 

Yahoo!. If a library instead exposes its content through 

a local search interface, that content can then be found 

by users of metasearch engines such as A9 and Vivísimo. 

The functionality provided by the local search engine 

will affect the functionality of the metasearch engine 

and the findability of the library’s content. This paper 

describes that situation and some emerging standards in 

the metasearch arena that choose different balance points 

between functionality and ease of implementation.

Editor's Note: This article was submitted in honor of the 
fortieth anniversaries of LITA and ITAL.

 The content provider’s dilemma

Consider the increasingly common situation in which a 
library wants to expose its digital content to its users. Sup-
pose it knows that its users prefer search engines that 
search the contents of many sites simultaneously, rather 
than site-specific engines such as the one on the library’s 
Web site. In order to support the preferences of its users, 
this library must make its contents accessible to search 
engines of the first type. 

The easiest way to do this is for the library to convert 
its contents to HTML pages and let the harvesting search 
engines such as Google and Yahoo! collect those pages and 
provide searching on them. However, a serious problem 
with harvesting search engines is that they place limits 
on how much data they will collect from any one site. 
Google and Yahoo! will not harvest a 3-million-record book 
catalog, even if the library can figure out how to turn the 
catalog entries into individual Web pages.

An alternative to exposing library content to harvest-
ing search engines as HTML pages is to provide a local 
search interface and let a metasearch engine combine 
the results of searching the library’s site with the results 
from searching many other sites simultaneously. Users of 
metasearch engines get the same advantage that users of 
harvesting search engines get (i.e., the ability to search the 
contents of many sites simultaneously) plus those users 
get access to data that the harvesting search engines do not 
have. The issue for the library is determining how much 
functionality it must provide in its local search engine so 
that the metasearch engine can, in turn, provide accept-
able functionality to its users. The amount of functionality 
that the library provides will determine which metasearch 
engines will be able to access the library’s content.

Metasearch engines, such as A9 and Vivísimo, are 

search engines that take a user’s query, send it to other 
search engines, and integrate the responses.1 The level of 
integration usually depends on the metasearch engine’s 
ability to understand the responses it receives from the 
various search engines it has queried. If the response 
is HTML intended for display on a browser, then the 
metasearch engine developers have to write code to parse 
through the HTML looking for the content. In such a case, 
the perceived value of the content determines the level of 
effort that the metasearch engine developers put into the 
parsing task; low-value content will have a low priority for 
developer time and will either suffer from poor integration 
or be excluded.

For metasearch engines to work, they need to know 
how to send a search to the local search engine and how to 
interpret the results. Metasearch engines such as Vivísimo 
and A9 have staffs of programmers who write code to 
translate the queries they get from users into queries that 
the local search engines can accept. Metasearch engines 
also have to develop code to convert all the responses 
returned by the local search engines into some common 
format so that those results can be combined and displayed 
to the user. This is tedious work that is prone to breaking 
when a local search engine changes how it searches or how 
it returns its response. The job of the metasearch engine is 
made much simpler if the local search engine supports a 
standard search interface such as SRU (Search and Retrieve 
URL) or OpenSearch.

 What does a metasearch engine 

need in order to use a local 

search engine?

The search process consists of two basic steps. First, the 
search is performed. Second, records are retrieved.

To do a search, the metasearch engine needs to 
know:

  1. The location of the local search engine
2. The form of the queries that the local search engine 

expects
3. How to send the query to the local search engine

To retrieve records, the metasearch engine needs to know:

4. How to find the records in the response
  5. How to parse the records

OpenSearch and SRU: 

A Continuum of Searching Ralph LeVan

Ralph LeVan (levan@oclc.org) is a Research Scientist at OCLC 
Online Computer Library Center in Dublin, Ohio.



152   INFORMATION TECHNOLOGY AND LIBRARIES | SEPTEMBER 2006


Four protocols

This paper will discuss four search protocols: OpenSearch, 
OpenSearch 1.1, SRU, and the MetaSearch XML Gateway 
(MXG).2

OpenSearch was initially developed for the A9 meta-
search engine. It provides a mechanism for content providers 
to notify A9 of their content. It also allows RSS (Really Simple 
Syndication) browsers to display the results of a search.3

OpenSearch 1.1 has just been released. It extends the 
original specification based on input from a number of 
organizations, Microsoft being prominent among them.

SRU was developed by the Z39.50 community.4

Recognizing that their standard (now eighteen years old) 
needed updating, they simplified it and created a new Web 
service based on an XML encoding carried over HTTP.

The MXG protocol is the product of the NISO 
MetaSearch Initiative, a committee of metasearch engine 
developers, content providers, and users.5 MXG uses SRU 
as a starting place, but eases the requirement for support 
of a standard query grammar.

 Functionality versus ease 

of implementation

A library rarely has software developers. The library’s area of 
expertise is, first of all, the management of content and, sec-
ondarily, content creation. Librarians use tools developed by 
other organizations to provide access to their content. These 
tools include the library’s OPAC, the software provided to 
search any licensed content, and the software necessary to 
build, maintain, and access local digital repositories.

For a library, ease of adoption of a new search protocol 
is essential. If support for the search protocol is built into the 
library’s tools, then the library will use it. If a small piece of 
code can be written to convert the library’s existing tools to 
support the new protocol, the library may do that. Similarly, 
the developers of the library’s tools will want to expend the 
minimum effort to support a new search protocol.

The tool developer’s choice of search protocol to sup-
port will depend on the tension between the functionality 
needed and the level of effort that must be expended to 
provide and maintain it. If low functionality is acceptable, 
then a small development effort may be acceptable. High 
functionality will require a greater level of effort.

The developers of the search protocols examined here 
recognize this tension and are modifying their protocols to 
make them easier to implement. The new OpenSearch 1.1 
will make it easier for some local search-engine providers 
to implement by easing some of the functionality require-
ments of version 1.0. Similarly, the NISO Metasearch 
Committee has defined MXG, a variant of SRU that eases 
some of the requirements of SRU.6

 Search protocol basics

Once again, the five basic pieces of information that a 
metasearch engine needs in order to communicate effec-
tively with a local search engine are: (1) local search engine 
location, (2) the query-grammar expected, (3) the request 
encoding, (4) the response encoding, and (5) the record 
encoding. The four protocols provide these pieces of infor-
mation to one degree or another (see table 1).

The four protocols expose a site’s searching functional-
ity and return responses in a standard format. All of these 
protocols have some common properties. They expect that 
the content provider will have a description record that 
describes the search service. All of these services send 
searches via HTTP as simple URLs, and the responses are 
sent back as structured XML. To ease implementation, 
OpenSearch 1.1 allows the content provider to return 
HTML instead of XML.

All four protocols use a description record to describe 
the local search engine. The OpenSearch protocols define 
what a description record looks like, but not how it is 
retrieved. The location of the description record is dis-
covered by some means outside the protocol (a priori 
knowledge). The description record specifies the location 
of the local search engine. The SRU protocols define what 
a description record looks like and specifies that it can be 
obtained from the local search engine. The location of the 
local search engine is provided by a means outside the 
protocol (a priori knowledge again).

Each protocol defines how to formulate the search URL. 
OpenSearch does this by having the local search-engine
provider supply a template of the URL in the description 
record. SRU does this by defining the URL.

OpenSearch and MXG do not define how to formu-
late the query. The metasearch engine can either pass the 
user’s query along to the local search engine unchanged 
or reformulate the query based on information about the 
local search engine’s query language that it has gotten 
by outside means (more a priori knowledge). In the first 
case, the metasearch engine has to hope that some magic 
will happen and the local search engine will do something 
useful with the query. In the latter case, the metasearch 
engine’s staff has to develop a query translator.

SRU specifies a standard query grammar: CQL 
(Common Query Language).7 This means that the meta-
search engine only has to write one translator for all the 
SRU local search engines in the world. But it also means 
that all the SRU local search engines have to support the 
CQL query grammar. Since there are no local search  engines 
that support CQL as their native query grammar, the con-
tent provider is left with the task of translating CQL que-
ries into their native query grammar. The query translation 
task has moved from the metasearch engine to the content 
provider.



OPENSEARCH AND SRU | LEVAN  153

OpenSearch 1.0, MXG, 
and SRU define the struc-
ture of the query response. 
In the case of OpenSearch, 
the response is returned 
as an RSS message, with 
a couple of extra elements 
added. MXG and SRU 
define an  XML schema for 
their responses.

OpenSearch 1.1 allows 
the local search engine 
to return the response as 
unstructured HTML. This 
moves the requirement of 
creating a standard response from the content provider and 
leaves the metasearch engine with the much tougher task of 
finding the content embedded in HTML. If the metasearch 
engine doesn’t write code to parse the response, then all it 
can do is display the response. It will not be able to combine 
the response from the local search engine with the responses 
from other engines.

SRU and MXG require that records be returned in XML 
and that the local search engine must specify the schema 
for those records in the response. This leaves the content 
provider with the task of formatting the records according 
to the schema of their choice, a task that the content provider 
is probably best able to do. In turn, the metasearch engine 
can convert the returned records into some common format 
so that the records from multiple local search engines can 
be combined into a single response. Because the records are 
encoded in XML, it is assumed that standard XML format-
ting tools can be used for the conversion.

OpenSearch does not define how records should be 
structured. The OpenSearch response has a place for the 
title of the record and a URL that points to the record. 
The structure of the record is undefined. This leaves the 
metasearch engine with the task of parsing the record that 
is returned. Again, the effort moves from the content pro-
vider to the metasearch engine. If the metasearch engine 
does not or cannot parse the records, then it can at least 
display the records in some context, but it cannot combine 
them with the records from another local search engine.

 Conclusion

These protocols sit on a spectrum of complexity, trading 
the content provider’s complexity for that of the search 
engine. However, with lessened complexity for the 
metasearch engine comes increased functionality for the 
user. Metasearch engines have to choose what content 
providers they will search. Those that provide a high level 
of functionality can be easily combined with their existing 

local search engines. Content providers with a lower level 
of functionality will either need additional development 
by the metasearch engine or will not be searched. Not all 
metasearch engines require the same level of functionality, 
nor will they be prepared to accept content with a low level 
of functionality. Content providers, such as digital librar-
ies and institutional repositories, will have to choose the 
functionality they need to support to reach the metasearch 
engines they desire.

References and notes

1. Joe Barker, “Meta-Search Engines,” in Finding Information 

on the Internet: A Tutorial (U.C. Berkeley: Teaching Library Inter-

net Workshops, Aug. 23, 2005 [last update]), www.lib.berkeley.

edu/TeachingLib/Guides/Internet/MetaSearch.html (accessed 

May 8, 2006).

2.  A9.com, “OpenSearch Specification,” http://opensearch

.a9.com/spec/ (accessed May 8, 2006); A9.com, “OpenSearch 1.1,” 

http://opensearch.a9.com/spec/1.1/ (accessed May 8, 2006).

3. Mark Pilgrim, “What is RSS?” O’Reilly XML.com, Dec. 18, 

2002, www.xml.com/pub/a/2002/12/18/dive-into-xml.html 

(accessed May 8, 2006).

4. The Library of Congress Network Development and 

MARC Standards Office, “Z39.50 Maintenance Agency Page,” 

www.loc.gov/z3950/agency/ (accessed May 8, 2006).

5. National Information Standards Organization, 

“NISO MetaSearch Initiative,” www.niso.org/committees/

MS_initiative.html (accessed May 8, 2006).

6. NISO Metasearch Initiative Task Group 3, “NISO MetaSe-

arch XML Gateway Implementors Guide, Version 0.2,” May 

16, 2005, [Microsoft Word Document] www.lib.ncsu.edu/niso-

mi/images/0/06/NISO_Metasearch_Initiative_XML _Gateway

_Implementors_Guide.doc (accessed May 8, 2006); The Library 

of Congress, “SRU: Search and Retrieve via URL; SRU Version 

1.1 13 February 2004,” www.loc.gov/standards/sru/index.html  

(accessed May 8, 2006).

7. The Library of Congress, “Common Query Language; 

CQL Version 1.1 13th February 2004.” [Web page] www.loc

.gov/standards/sru/cql/index.html (accessed May 8, 2006).

Table 1. Comparison of requirements of four metasearch protocols for effective communication with local 
search engines

Protocol Feature OpenSearch 1.1 OpenSearch 1.0 MXG SRU

Local search engine 

location

A priori A priori A priori A priori

Request encoding Defined Defined Defined Defined

Response encoding None RSS XML XML

Record encoding None None XML XML

Query grammar None None None CQL


