
44 inFoRmation tEcHnoLoGY anD LiBRaRiEs | junE 2007

Author ID box for 3 column layout

Column Title

44 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

Communications James Feher and Tyler Sondag

Administering
an Open-Source
Wireless Network

This tutorial presents enhancements to
an open-source wireless network dis-
cussed in the June 2007 issue of ITAL that
should reduce its administrative burden.
In addition, it will demonstrate an open-
source monitoring script written for the
wireless network.

As it has become increasingly impor-
tant to provide wireless Internet
access for their patrons, libraries and
colleges are almost expected to offer
this service. Inexpensive methods of
providing wireless access—such as
adding a commodity wireless access
point to an existing network—can
suffer from security issues, access
by external entities, and bandwidth
abuses. Designs that address these
issues often involve more costly pro-
prietary hardware as well as expertise
and effort that are often not readily
available. A wireless network built
with open-source software and com-
modity hardware that addressed the
cost, security, and equal access issues
mentioned above was presented in the
June 2007 issue of ITAL.1 This tutorial
highlights enhancements to the pre-
vious design that help to explain the
technical hurdles in implementation,
and includes a program that monitors
the status of the various software and
hardware components, helping to
reduce the time required to administer
the network.

The wireless network presented
requires several different pieces of soft-
ware that must work together. Because
each of the required software programs
are frequently updated, slight changes
to the implementation may also be
needed. A few issues that have arisen
since the previous paper was written
are addressed. A note is provided
explaining the significance of setting
the correct Media Access Control
(MAC) address for the radius server
and for Wireless Distribution System

(WDS) when configuring the system.
In addition, in order to provide secure
exchange of authentication credentials
(username and password), the Secure
Socket Layer was used. A brief expla-
nation of how to install a registered
certificate on the gateway server is
provided. Lastly, a program that moni-
tors the status of the network, provides
a Web page displaying the status of
the various hardware and software
components, and e-mails administra-
tors with any changes to the network
status—along with information on
how this program is to be deployed
within the network—is presented.

Configuration changes
for previous design

As new exploits are discovered and
patched on a continual basis, any
system should be regularly updated
to insure that the most recent software
is being used. The network design
provided in the previous article used
many different software components
including, but not limited to:

Access Point Software
 OpenWRT—Whiterussian rc3

DNS Cache
 Dnsmasq v2.32

Gateway
 Chillispot v1.0

Operating System
 Fedora Core 4

RADIUS Server
 Free Radius v1.0.4

Web Caching Server
 Squid v2.5

Web Server
 Apache 2.2.3

Many of these components can be
kept up-to-date by using the Yellow
dog Updater, Modified (yum). 2 For
example, to update a given package,
with root access, at the command
line enter:

yum update packageName

The yum command may also be
used to update each package that
has an available update by simply
removing the package name from the
yum update command and entering
the following:

yum update

Yum may also be used to upgrade
the entire operating system.3

Keep in mind that with any change
in software, the configuration of any
particular package may change as
well. For example, the newest version
of Squid is currently 2.6. Appendix D
in the previous paper explained how
to allow transparent relay of Web
requests so that client browsers did
not have to be reconfigured. So, while
version 2.5 required four changes
to allow the transparent relay, the
current version—found in appendix
A—requires only one. In addition to
changes in software, occasionally even
entire websites move, as happened
with Chillispot.4

Another change involved the con-
figuration of the Linksys WRT54GS
access points. The newer versions
of this access point/router sold by
Linksys have half the flash memory
and half of the RAM of the older ver-
sions.5 While the newer versions of the
Linksys WRT54GS can be flashed with
custom firmware,6 the firmware that
will fit on the newer unit lacks all the
capability of the standard firmware.
Given this, those wishing to imple-
ment such a wireless network should
investigate the capability of models
to be deployed, as well as the version
numbers for the access points chosen.
The current version of the Linksys
WRT54GL and WRTSL54GS units
retain enough flash memory and RAM
to be updated with the standard firm-
ware mentioned in the previous article.7

james Feher (jdfeher@mckendree.edu) is
Associate Professor of Computer Science
and Computer Information Systems at
McKendree University, Lebanon, Illinois.
tyler sondag (sondag@cs.iastate.edu)
is a PhD candidate in Computer Science
at Iowa State University, Ames.

intRoDucinG zoomiFY imaGE | smitH 45aDministERinG an opEn-souRcE wiRELEss nEtwoRK | FEHER anD sonDaG 45

In addition, the procedure for upgrad-
ing the firmware for the WRTSL54GS
is simpler than the procedure outlined
in appendix I of the previous paper.
The factory-installed firmware on
version 1.1 can be flashed directly
using the Web interface provided
by Linksys.

So, while this tutorial and the
previous paper outline the design
of a network, the administrator will
need to be vigilant in updating the
packages used and keep in mind that
the configuration specifications may
also change with those updates. The
administrator for the network must
also investigate the capability of the
standard hardware used to insure that
it retains the functionality required for
the system.

Choosing the correct
MAC address for the
access point

The access points used will have more
than one interface and as such more
than one MAC address. When enter-
ing the MAC address of a given access
point into either the users file for the
Radius server or the access points that
use the WDS, use the MAC address
associated with the wireless interface.8
Using the incorrect MAC address will
result in problems when communicat-
ing with the various access points. For
the Radius server, the access point
will not get the correct IP address,
which will prohibit the possibility
of remotely administering the unit.
Incorrect MAC addresses that are
used for the WDS settings will cause
even worse problems, as the unit will
not be able to relay data from users
who connect to this access point.

Installation of a
registered SSL
certificate

As users are required to enter their
authentication credentials to gain

access to the Internet, the exchange of
this data is encrypted using the Secure
Socket Layer.9 While administrators
can self-sign the certificates used for
their Web servers, it is recommended
that a registered certificate be obtained
and installed for the system. This can
help prevent common attacks and
has the added benefit of eliminating
warnings for the client browsers when
they detect unregistered certificates
being used by the SSL. A search of
“SSL certificate” will yield any number
of commercial vendors from which a
certificate can be obtained. Generally
the installation of a certificate is fairly
straightforward. The openssl com-
mand line utility can be used to gener-
ate a SSL key and Certificate Signing
Request (CSR).10 Once the CSR is
generated, pick a vendor/Certificate
Authority who can sign your key.

It should be noted that the design
presented required the authentica-
tion gateway to be behind the main
router. This required a certificate to be
signed for a server within an intranet
that does not have a fully qualified
domain name. So, when generating
the SSL key and CSR, make sure
to use GATEWAYHOSTNAME.localnet
as the common name of your server.
Of course, GATEWAYHOSTNAME
is whatever you choose as the name
of your gateway host. The term
localnet is used to refer to the server
existing within an intranet. Then
make sure to place an entry for
GATEWAYHOSTNAME.localnet into
the hosts file of the server that is pro-
viding Domain Name Service for your
network. An example entry for the
hosts file which is in the /etc directory
of a standard Fedora Core installation
is found in appendix B.

Monitoring script for
wireless network

As the wireless network has many
separate hardware and software
components, many possible points
of failure exist for the system. The
script from appendix C, which was

written in Perl,11 uses Ping to test if
each access point is still connected to
the network and nmap to test whether
the port associated with a given net-
work service is still available.12 This
program can be run manually or, even
better, run automatically through the
Unix cron utility to update a webpage
that displays the current state of all
the network components. The web-
page generated by this script for the
McKendree College wireless network
may be found at http://lance.mcken-
dree.edu/cgi-bin/wireless/status.cgi.
(Additionally, a sample of this page is
available as a figure in appendix D.)

This script actually contains a
script within a script. The main script
must be run on the gateway machine,
Chilli on the diagram in appendix
E, as only this machine has access
to ping the access points. When the
script determines that an access point
or daemon is down, it will e-mail
the system administrator. When an
access point is down, in addition to
sending the system administrator an
e-mail, it can also send notification to
an e-mail address associated with that
device. This allows for someone other
than the system administrator—who
may have closer physical access to
the unit—to check the access point
on behalf of the administrators for
simple issues, such as an access point
losing power.

This script then generates another
CGI script that can be transmitted to
an external server that can be reached
from anywhere on the Internet. In
this case, this generated script can
be run as a Web-based application
or by the system itself using the cron
utility. If run as by the cron daemon,
it will also e-mail the administrators
if the script has not been updated
recently. The script requires the use of
several Perl modules that will need to
be installed.

n Expect
n Mail::Mailer
n Net::Ping

The script has been released using
the GNU General Public License,

46 inFoRmation tEcHnoLoGY anD LiBRaRiEs | junE 200846 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

Version 2 (GPL).13 The first portion
of the script contains a reference
to the GPL, followed by a brief
explanation of the script as well as
a set of parameters that should be
changed to fit the specifications of the
network designed.

Conclusion

Administrators should be vigilant in
updating the entire system to assure
security, keeping in mind that new
versions of software or hardware may
necessitate changes in the overall con-
figuration of the system. In addition,
while the monitoring script provides
a useful aid in monitoring the net-
work, it could be further expanded to
include a more comprehensive review
of level of use for various access
points by the different users. It is felt
that this would be best done through
a database, which would require a
higher level of administrative effort.
A brief frequently asked questions
list along with the script and link to
the code for the script can be found

at http://lance.mckendree.edu/csi/
wirelessfaq.html.

References

 1. Sondag, Tyler and James Feher,
“Open Source Wifi Hotspot Implementa-
tion,” Information Technology and Libraries
26, no. 2: 35–43, http://ala.org/ala/lita/
litapublications/ital/262007/2602jun/
toc.cfm (accessed July 24, 2008).

 2. Linux@DUKE, “Yum: Yellow dog
Updater, Modified,” http://linux.duke
.edu/projects/yum (accessed July 24,
2008)

 3. Upgrading Fedora Using Yum Fre-
quently Asked Questions, http://fedora
project .org/wiki/YumUpgradeFaq
(accessed Mar. 16, 2007).

 4. ChilliSpot—Open Source Wire-
less LAN Access Point Controller, “Spice
up your HotSpot with Chilli,” www
.chillispot.info/ (accessed May 22, 2008).

 5. OpenWrtDocs/Hardware/Linksys
/WRT54GS—OpenWrt, http://wiki.open
wrt.org/OpenWrtDocs/Hardware/Link
sys/WRT54GS (accessed July 24, 2008).

 6. Bitsum Technologies Wiki—
WRT54G5 CFE, http://bitsum.com/
openwiking/owbase/ow.asp?WRT54G5_

CFE (accessed July 24, 2008).
 7. OpenWrtDocs/Hardware/Link-

sys/WRTSL54GS—OpenWrt, http://
wiki.openwrt.org/OpenWrtDocs/Hard
ware/Linksys/WRTSL54GS (accessed
July 24, 2008).

 8. OpenWrtDocs/WhiteRussian/
Configuration, Wireless Distribution Sys-
tem (WDS)/Repeater/Bridge. http://
wiki.openwrt.org/OpenWrtDocs/White
Russian/Configuration (accessed July 24,
2008).

 9. Viega, John, Matt Messier, and
Pravir Chandra, Network Security with
OpenSSL Cryptography for Secure Commu-
nications. (Sebastopol, Calif.: O’Reilly and
Associates, 2002).

 10. Generating a Key Pair and CSR
for an Apache Server with modssl. www
.verisign.com/support/tlc/csr/modssl/
v00.html (accessed Feb. 20, 2007).

 11. Wall, Larry, Tom Christiansen,
and Randal Schwartz, Programming Perl,
Third Edition (Sebastopol, Calif.: O’Reilly
and Associates).

 12. Nmap—Free Security Scanner
For Network Exploration and Security
Audits. http://insecure.org/nmap/
(accessed Feb. 20, 2007).

 13. GNU General Public License Ver-
sion 2, June 2007. www.gnu.org/licenses/
gpl.txt.

APPENDIx A. Squid configuration changes

changes made to squid.conf
Lines needed for Squid 2.5
#httpd_accel_port 80
#httpd_accel_host virtual
#httpd_accel_with_proxy on
#httpd_accel_uses_host_header on
#
One line needed in version 2.6
http_port 3128 transparent

APPENDIx B. /etc/hosts entry on marla for localnet entry

127.0.0.1 marla localhost.localdomain localhost
66.128.109.60 bob
66.99.172.252 lance.mckendree.edu lance
next line is for the ssl certificate to work properly
192.168.176.1 chilli.localnet chilli

intRoDucinG zoomiFY imaGE | smitH 47aDministERinG an opEn-souRcE wiRELEss nEtwoRK | FEHER anD sonDaG 47

APPENDIx C. Monitoring script

#!/usr/bin/perl
###
Code released 03/22/07 under:
the GNU GENERAL PUBLIC LICENSE, Version 2
http://www.gnu.org/licenses/gpl.txt

It is recommended that this script is run as a cron
job frequently to find changes in the network. This
script will check the status of the wireless access
points/routers as well as the daemons necessary to
run the network. It will then output the results to
another perl file that is copied to a remote
webserver. When the script observes a change in the #
availability of any access point or daemon, email
will be sent to the specified administrator
address(es). The option exists to send an email to
to an additional person for each access point.

Additionally, the output file on the remote webserver
will check when it was last updated, if that script
is run from the command line or via cron. If it has
not been updated for a specified number of minutes,
it will send an email to the administrator. It is
also recommended that this output script be run as a
cron jobr. This output script can also be executed
as a cgi program to generate a display of network
status. #
###

use strict;
use Expect(); # needed to scp to webserver
use Mail::Mailer; # needed to send emails if outages
use Net::Ping; # needed to check the status of aps

#variables for webserver to host status page’s
my $webServUname = “username”;
my $webServPass = “password”;
my $webServUrl = “lance.mckendree.edu”;
my $webServTarg = “/var/www/cgi-bin/wireless/”;
my $webOutputUrl =
 “http://lance.mckendree.edu/cgi-bin/wireless/status.cgi”;

my $instName = “McKendree College”;
#default background color of the status page
my $defBGColor = “#660066”;

If the page on the webserver has not been updated
in $updateMin minutes send an email that the service
is down (set to =~ 3*crontime)
my $updateMin = 10;

#email address errors will be sent to
my $fromEmail = ‘admin1@email.com’;
my $toEmail =

48 inFoRmation tEcHnoLoGY anD LiBRaRiEs | junE 200848 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

 ‘admin1@email.com, admin2@email.com’;

#file where errors will be stored on remote host
my $logFileName = “/tmp/wirelesLog.txt”;

#hash for routers/ap’s
#location is displayed on the webpage and in status emails
#owner - changes in status regarding this AP are sent to
this address as well (optional)
my %ipToLoc = (
 “192.168.182.10” => {
 “LOCATION” => “Clark 205”,
 “OWNER” => ‘’},
 “192.168.182.11” => {
 “LOCATION” => “Clark 202a”,
 “OWNER” => ‘apUser1@email.com’},
 “192.168.182.12” => {
 “LOCATION” => “PAC Lounge”,
 “OWNER” => ‘apUser2@email.com’},
 “192.168.182.20” => {
 “LOCATION” => “Library Main”,
 “OWNER” => ‘apUser3@email.com’},
 “192.168.182.21” => {
 “LOCATION” => “Library Upper”,
 “OWNER” => ‘’},
 “192.168.182.22” => {
 “LOCATION” => “Library Lower”,
 “OWNER” => ‘’},
 “192.168.182.30” => {
 “LOCATION” => “Carnegie”,
 “OWNER” => ‘apUser4@email.com’});

#hash for daemons
my %daemons = (
 “Dnsmasq - DNS Server” => {
 “IP_ADDR” =>”10.4.1.90”,
 “PORT” =>”53”,
 “PROTO” =>”TCP”},
 “Radius - Authenticate” => {
 “IP_ADDR” =>”10.4.1.90”,
 “PORT” =>”1812”,
 “PROTO” =>”UDP”},
 “Chilli - Capt. Portal” => {
 “IP_ADDR” =>”10.5.3.30”,
 “PORT” =>”0”,
 “PROTO” =>”LOCAL”},
 “Squid - Web Cache” => {
 “IP_ADDR” =>”10.4.1.90”,
 “PORT” =>”3128”,
 “PROTO” =>”TCP”},
 “Apache - Web Server” => {
 “IP_ADDR” =>”10.5.3.30”,
 “PORT” =>”80”,
 “PROTO” =>”TCP”});

intRoDucinG zoomiFY imaGE | smitH 49aDministERinG an opEn-souRcE wiRELEss nEtwoRK | FEHER anD sonDaG 49

##
#
NO CHANGES NEED TO BE MADE TO THE FOLLOWING CODE
#
##

get the current time
my $currentTime = scalar localtime();
my $startTime = time();

open old output status script to get previous status’
open(OLD, “status.cgi”);
my @tmpOldStatFile = <OLD>;
my $oldStatFile = join(“”, @tmpOldStatFile);

check routers/ap’s using ping
my $diff = ‘’;
my $allRouterStat;
foreach my $host (sort keys %ipToLoc){
 my $p = Net::Ping->new();
 my $pingResult = $p->ping($host);
 if(!$pingResult){
 sleep 10;
 $pingResult = $p->ping($host);
 }
 my $thisLastStat = ($oldStatFile =~
 m/$ipToLoc{$host}{LOCATION}<\/TD><TD\ class=”up/
);
 my $location = $ipToLoc{$host}{LOCATION};
 my $owner = $ipToLoc{$host}{OWNER};
 my ($thisStatLine, $toEmail, $tmpDiff) =
 &printStatus($location, $pingResult,
 $thisLastStat, $owner,
 $toEmail, $oldStatFile,
 $currentTime
);
 $diff .= $tmpDiff if ($tmpDiff);
 $allRouterStat .= $thisStatLine;
 $p->close();
}

#check the status of each daemon
my $allDaemonStat =’’;
foreach my $i (sort keys %daemons){
 my $thisLastStat = ($oldStatFile =~
 m/$i<\/TD><TD\ class=”up/
);
 my $currStat =
 &checkDaemon ($daemons{$i}{IP_ADDR},
 $daemons{$i}{PORT}, $i,
 $daemons{$i}{PROTO}
);
 my ($thisStatLine, $toEmail, $tmpDiff) =
 &printStatus($i, $currStat,

50 inFoRmation tEcHnoLoGY anD LiBRaRiEs | junE 200850 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

 $thisLastStat, “”,
 $toEmail, $oldStatFile,
 $currentTime
);
 $diff .= $tmpDiff if ($tmpDiff);
 $allDaemonStat .= $thisStatLine;
}

##
the following block is the perl code that will
generate the status page on the external webserver
##
my $perlOutput = <<OUTPUT_FILE_FOR_REMOTE_HOST;
#!/usr/bin/perl

use strict;
use Mail::Mailer;
use CGI qw(:standard);

my \$currentUser = \$ENV{‘USER’};
my \$lastTime = $startTime;
my \$currentTime = time();
my \$message = “”;
my \$systemStatus = “$defBGColor”;
my \$toEmail = ‘$toEmail’;

check system status (FF0000 = down)
if (\$currentTime > (\$lastTime + (60 * $updateMin))){
 \$systemStatus = “#FF0000”;
 \$message = “<H1>Status Update Failed</H1>”;
}

if this is cron running the script
if (\$currentUser =~ “$webServUname”){
 # send email if status is down & logFile doesn’t exist
 &sendEmail() if (
 (\$systemStatus =~ “#FF0000”) && !(-e “$logFileName”)
);
 # delete log file if everything is up
 unlink(“$logFileName”) if (
 (!(\$systemStatus =~ “#FF0000”)) &&
 (-e “$logFileName”)
);
}

#else apache is accessing the page (its a web request)
else{
 #print the page
 print header();
############################
start of html output
############################
 print <<WEB_OUTPUT;
 <HTML>
 <HEAD>
 <TITLE>$instName Wireless Status</TITLE>

intRoDucinG zoomiFY imaGE | smitH 51aDministERinG an opEn-souRcE wiRELEss nEtwoRK | FEHER anD sonDaG 51

 <STYLE>
 BODY {text-align:center;
 color:#FFFFFF;
 font-family:Verdana,Helvetica,sans-serif}
 H1 {font-weight:bold;
 font-size:26;
 text-align:center;}
 TABLE {width:300px;
 border:2px solid #222222;
 margin-left:auto;
 margin-right:auto}
 TD {border:1px solid #222222;
 font-size:16}
 TD.up {width:70px;
 background-color:#00DD00;
 font-weight:bold;
 text-align:center}
 TD.down {width:70px;
 background-color:#FF0000;
 font-weight:bold;
 text-align:center}
 TD.header {text-align:center;
 font-weight:bold}
 </STYLE>
 </HEAD>
 <BODY BGCOLOR=”\$systemStatus”>
 <H1>$instName Wireless Status</H1>
 \$message
 <TABLE>
 <TR>
 <TD class=”header”>Access Point</TD>
 <TD class=”header”>Status</TD>
 </TR>
 $allRouterStat
 </TABLE>

 <TABLE>
 <TR>
 <TD class=”header”>Daemon</TD>
 <TD class=”header”>Status</TD>
 </TR>
 $allDaemonStat
 </TABLE>

Last updated $currentTime

 </CENTER>
 </BODY>
 </HTML>
WEB_OUTPUT
##########################
end of html output
##########################
}#end else

sub sendEmail {
 my \$mailer = Mail::Mailer->new(“sendmail”);
 \$mailer->open({From => ‘$fromEmail’,

52 inFoRmation tEcHnoLoGY anD LiBRaRiEs | junE 200852 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

 To => [\$toEmail],
 Subject => “Wireless Problem”});
 my \$message = “The wireless system has failed to “
 .”it’s status.\n\n$webOutputUrl\n”;
 print \$mailer \$message;
 \$mailer->close();
 open(FILE, “>>$logFileName”);
 print FILE “Failed to Update system.”;
 close(FILE);
}

OUTPUT_FILE_FOR_REMOTE_HOST
##
end of script output block
##

#write output code to the file
my $perlOutputFile = “status.cgi”;
open (OUT, “>$perlOutputFile”);
print OUT $perlOutput;
close (OUT);
chmod 0755, $perlOutputFile;

#send email is necessary
&sendEmail($diff, $webOutputUrl, $fromEmail, $toEmail)
 if ($diff);

#send perl file to webserver
&scpFile($perlOutputFile, $webServUname, $webServPass,
 $webServUrl, $webServTarg);

##
#
END MAIN CODE BLOCK, START FUNCTIONS
#
##

given the name and status of something (ap or
daemon), this returns a string for the table
row for displaying the status of the ap/daemon
sub printStatus {
 my ($service, $status, $oldStatus,
 $owner, $toEmail,$oldStatusFile,
 $currentTime) = @_;
 my $msg = “”;
 my $statusLine =
 “\n <TR><TD>$service</TD><TD class=\””;
 # if current status is up
 if ($status){
 ### -- NOTE: This comment holds the previous -- ###
 ### status & status previous to that -- ###
 $statusLine .=
 “up\”>UP<!--($service)-$status-$oldStatus-->”;

intRoDucinG zoomiFY imaGE | smitH 53aDministERinG an opEn-souRcE wiRELEss nEtwoRK | FEHER anD sonDaG 53

 # if last two status’ were down
 if ($oldStatusFile =~ m/\($service\)-0--->/){
 $msg = “$service back up at $currentTime\n”;
 # if service has owner & not already in mail list,
 # add owner to mail list
 $toEmail .= “, \’$owner\’”
 if ($owner && (!($toEmail =~ $owner)));
 }
 }
 #else current status is down
 else{
 $statusLine .=
 “down\”>DOWN<!--($service)-$status-$oldStatus-->”;
 # if last status was down & before that status was up
 if ($oldStatusFile =~ m/\($service\)-0-1-->/){
 $msg = “$service down at $currentTime\n”;
 # if service has owner & not already in mail list,
 # add owner to mail list
 $toEmail .= “, \’$owner\’”
 if ($owner && (!($toEmail =~ $owner)));
 }
 }
 $statusLine .= “</TD></TR>”;
 return ($statusLine, $toEmail, $msg);
}#end printStatus function

checks the status for the given daemon
takes in IP, port to check, daemon name, and protocol
(tcp/udp). if given port=0 it checks for local daemon
sub checkDaemon {
 my ($ip, $port, $daemon, $proto) = @_;
 my $dStat = 0;
 if ($proto !~ /LOCAL/){
 #sU checks for udp ports
 my $com = ($proto =~ “TCP”)
 ? (“nmap -p $port $ip | grep $port”)
 : (“nmap -sU -p $port $ip | grep $port”);
 open(TMP, “$com|”);
 my $comOut = <TMP>;
 close(TMP);
 if ($comOut =~ /open/){
 $dStat = 1; #if port is open, status is up
 }
 }
 else{
 $daemon =~ s/ +.*//g;
 #\l lowercases the first letter of $daemon
 my $com = “which \l$daemon”;
 open(TMP, “$com|”);
 my $comOut = <TMP>;
 close(TMP);
 $com = “ps aux | awk ‘{print \$11}’ | grep $comOut”;
 open(TMP, “$com|”);
 $comOut = <TMP>;
 close(TMP);
 $dStat = 1 if ($comOut);

54 inFoRmation tEcHnoLoGY anD LiBRaRiEs | junE 200854 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

 }
 return $dStat;
} # end checkDaemon function
send the output perl status file to the webserver
sub scpFile {
 my ($filePath, $webServUname, $webServPass,
 $webServUrl, $webServTarg) = @_;
 my $command = “scp $filePath $webServUname”
 .”\@$webServUrl:$webServTarg”;
 my $exp1 = Expect->spawn ($command);
 # the first argument “30” may need to be adjusted
 # if your system has very high latency
 my $ret = $exp1->expect(30, “word:”);
 print $exp1 “$webServPass\r”;
 my $ret = $exp1->expect(undef);
 $exp1->close();
} # end scpFile function

send an email to the admin & append error to log file
sub sendEmail {
 my ($errorList, $webOutputUrl, $fromEmail,
 $toAddresses) = @_;
 my $mailer = Mail::Mailer->new(“sendmail”);
 $mailer->open({From => “$fromEmail”,
 To => [$toAddresses],
 Subject => “Wireless Problem”});
 $errorList .= “\n\n$webOutputUrl”;
 print $mailer $errorList;
 $mailer->close();
} # end sendEmail function

APPENDIx D. Script output page APPENDIx E. Diagram of network

LITA cover 2, cover 3, cover 4

Index to Advertisers

