
8 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

T. Michael Silver

Monitoring Network and Service
Availability with Open-Source Software

Silver describes the implementation of a monitoring sys-
tem using an open-source software package to improve the
availability of services and reduce the response time when
troubles occur. He provides a brief overview of the litera-
ture available on monitoring library systems, and then
describes the implementation of Nagios, an open-source
network monitoring system, to monitor a regional library
system’s servers and wide area network. Particular atten-
tion is paid to using the plug-in architecture to monitor
library services effectively. The author includes example
displays and configuration files.

Editor’s note: This article is the winner of the LITA/Ex
Libris Writing Award, 2009.

L ibrary IT departments have an obligation to provide
reliable services both during and after normal busi-
ness hours. The IT industry has developed guide-

lines for the management of IT services, but the library
community has been slow to adopt these practices. The
delay may be attributed to a number of factors, including
a dependence on vendors and consultants for technical
expertise, a reliance on librarians who have little formal
training in IT best practices, and a focus on automation
systems instead of infrastructure. Larger systems that
employ dedicated IT professionals to manage the orga-
nization’s technology resources likely implement best
practices as a matter of course and see no need to discuss
them within the library community.

In The Practice of System and Network Administration,
Thomas A. Limoncelli, Christine J. Hogan, and Strata R.
Chalup present a comprehensive look at best practices in
managing systems and networks. Early in the book they
provide a short list of first steps toward improving IT ser-
vices, one of which is the implementation of some form
of monitoring. They point out that without monitoring,
systems can be down for extended periods before admin-
istrators notice or users report the problem.1 They dedi-
cate an entire chapter to monitoring services. In it, they
discuss the two primary types of monitoring—real-time
monitoring, which provides information on the current
state of services, and historical monitoring, which pro-
vides long-term data on uptime, use, and performance.2
While the software discussed in this article provides both
types of monitoring, I focus on real-time monitoring and
the value of problem identification and notification.

Service monitoring does not appear frequently in
library literature, and what is written often relates to
single-purpose custom monitoring. An article in the
September 2008 issue of ITAL describes the development
and deployment of a wireless network, including a Perl
script written to monitor the wireless network and asso-
ciated services.3 The script updates a webpage to display
the results and sends an e-mail notifying staff of problems.
An enterprise monitoring system could perform these
tasks and present the results within the context of the
complete infrastructure. It would require using advanced
features because of the segregation of networks discussed
in their article but would require little or no extra effort
than it took to write the single-purpose script.

Dave Pattern at the University of Huddersfield shared
another Perl script that monitors OPAC functionality.4
Again, the script provided a single-purpose monitoring
solution that could be integrated within a larger model.
Below, I discuss how I modified his script to provide
more meaningful monitoring of our OPAC than the stock
webpage monitoring plug-in included with our open-
source networks monitoring system, Nagios.

Service monitoring can consist of a variety of tests.
In its simplest form, a ping test will verify that a host
(server or device) is powered on and successfully con-
nected to the network. Feher and Sondag used ping tests
to monitor the availability of the routers and access points
on their network, as do I for monitoring connectivity
to remote locations.5 A slightly more meaningful check
would test for the establishment of a connection on a
port. Feher and Sondag used this method to check the
daemons in their network.6 The step further would be
to evaluate a service response, for example checking the
status code returned by a Web server. Evaluating content
forms the next level of meaning. Limoncelli, Hogan, and
Chalup discuss end-to-end monitoring, where the moni-
toring system actually performs meaningful transactions
and evaluates the results.7

Pattern’s script, mentioned above, tests OPAC func-
tionality by submitting a known keyword search and
evaluating the response.8 I implemented this after an
incident where Nagios failed to alert me to a problem
with the OPAC. The Web server returned a status code
of 200 to the request for the search page. Users, however,
want more from an OPAC, and attempts to search were
unsuccessful because of problems with the index server.
Modifying Pattern’s original script, I was able to put
together a custom check command that verifies a greater
level of functionality by evaluating the number of results
for the known search.

n Software selection

Limoncelli, Hogan, and Chalup do not address specific

t. Michael silver (michael.silver@ualberta.ca) is an MLiS stu-
dent, School of Library and information Studies, University of Al-
berta, Edmonton, Alberta, Canada.

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 9

how-to issues and rarely mention specific products. Their
book provides the foundational knowledge necessary to
identify what must be done. In terms of monitoring, they
leave the selection of an appropriate tool to the reader.9
Myriad monitoring tools exist, both commercial and
open-source. Some focus on network analysis, and some
even target specific brands or model lines. The selection
of a specific software package should depend on the ser-
vices being monitored and the goals for the monitoring.

Wikipedia lists thirty-five different products, of which
eighteen are commercial (some with free versions with
reduced functionality or features); fourteen are open-
source projects under a General Public License or similar
license (some with commercial support available but
without different feature sets or licenses); and three offer
different versions under different licenses.10 Von Hagen
and Jones suggest two of them: Nagios and Zabbix.11

I selected the Nagios open-source product (http://
www.nagios.org). The software has an established his-
tory of active development, a large and active user
community, a significant number of included and user-
contributed extensions, and multiple books published
on its use. Commercial support is available from a
company founded by the creator and lead developer as
well as other authorized solution providers. Monitoring
appliances based on Nagios are available, as are sensors
designed to interoperate with Nagios. Because of the
flexibility of a software design that uses a plug-in archi-
tecture, service checks for library-specific applications
can be implemented. If a check or action can be scripted
using practically any protocol or programming language,
Nagios can monitor it. Nagios also provides a variety of
information displays, as shown in appendixes A–E.

n Installation

The Nagios system provides an extremely flexible solu-
tion to monitor hosts and services. The object-orientation
and use of plug-ins allows administrators to monitor any
aspect of their infrastructure or services using standard
plug-ins, user-contributed plug-ins, or custom scripts.
Additionally, the open-source nature of the package allows
independent development of extensions to add features or
integrate the software with other tools. Community sites
such as MonitoringExchange (formerly Nagios Exchange),
Nagios Community, and Nagios Wiki provide repositories
of documentation, plug-ins, extensions, and other tools
designed to work with Nagios.12 But that flexibility comes
at a cost—Nagios has a steep learning curve, and user-
contributed plug-ins often require the installation of other
software, most notably Perl modules.

Nagios runs on a variety of Linux, Unix, and Berkeley
Software Distribution (BSD) operating systems. For

testing, I used a standard Linux server distribution
installed on a virtual machine. Virtualization provides
an easy way to test software, especially if an alternate
operating system is needed. If given sufficient resources,
a virtual machine is capable of running the production
instance of Nagios.

After installing and updating the operating system, I
installed the following packages:

 n Apache Web server
 n Perl
 n GD development library, needed to produce graphs

and status maps
 n libpng-devel and libjpeg-devel, both needed by the GD

library
 n gcc and GNU make, which are needed to compile

some plug-ins and Perl modules

Most major Linux and BSD distributions include
Nagios in their software repositories for easy instal-
lation using the native package management system.
Although the software in the repositories is often not the
most recent version, using these repositories simplifies
the installation process. If a reasonably recent version of
the software is available from a repository, I will install
from there. Some software packages are either outdated
or not available, and I manually install these. Detailed
installation instructions are available on the Nagios web-
site, in several books, and on the previously mentioned
websites.13 The documentation for version 3 includes a
number of quick-start guides.14 Most package managers
will take care of some of the setup, including modifying
the Apache configuration file to create an alias available
at http://server.name/nagios. I prepared the remainder
of this article using the latest stable versions of Nagios
(3.0.6) and the plug-ins (1.4.13) at the time of writing.

n Configuration

Nagios configuration relies on an object model, which
allows a great deal of flexibility but can be complex.
Planning your configuration beforehand is highly recom-
mended.

Nagios has two main configuration files, cgi.cfg and
nagios.cfg. The former is primarily used by the Web inter-
face to authenticate users and control access, and it defines
whether authentication is used and which users can access
what functions. The latter is the main configuration file
and controls all other program operations. The cfg_file and
cfg_dir directives allow the configuration to be split into
manageable groupsusing additional recourse files and the
object definition files (see figure 1). The flexibility offered
allows a variety of different structures. I group network

10 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

devices into groups but
create individual files for
each server.

Nagios uses an object-
oriented design. The
objects in Nagios are dis-
played in table 1.

A complete review of
Nagios configuration is
beyond the scope of this
article. The documenta-
tion installed with Nagios
covers it in great detail.
Special attention should
be paid to the concepts
of templates and object
inheritance as they are
vital to creating a man-

ageable configuration. The discussion below provides a
brief introduction, while appendixes F–J provide concrete
examples of working configuration files.

n cgi.cfg

The cgi.cfg file controls the Web interface and its asso-
ciated CGI (Common Gateway Interface) programs.
During testing, I often turn off authentication by setting
use_authentication to 0 if the Web interface is not accessible
from the Internet. There also are various configuration
directives that provide greater control over which users
can access which features. The users are defined in the
/etc/nagios/htpasswd.users file. A summary of com-
mands to control entries is presented in table 2.

The Web interface includes other features, such as
sounds, status map displays, and integration with other
products. Discussion of these directives is beyond the
scope of this article. The cgi.cfg file provided with the
software is well commented, and the Nagios documen-
tation provides additional information. A number of
screenshots from the Web interface are provided in the
appendixes, including status displays and reporting.

n nagios.cfg

The nagios.cfg file controls the operation of everything
except the Web interface. Although it is possible to have
a single monolithic configuration file, organizing the con-
figuration into manageable files works better. The two
main directives of note are cfg_file, which defines a single
file that should be included, and cfg_dir, which includes
all files in the specified directory with a .cfg extension. A

third type of file that gets included is resource.cfg, which
defines various macros for use in commands.

Organizing the object files takes some thought. I
monitor more than one hundred services on roughly
seventy hosts, so the method of organizing the files was
of more than academic interest. I use the following con-
figuration files:

 n commands.cfg, containing command definitions
 n contacts.cfg, containing the list of contacts and

associated information, such as e-mail address,
(see appendix H)

 n groups.cfg, containing all groups—hostgroups, ser-
vicegroups, and contactgroups, (see appendix G)

 n templates.cfg, containing all object templates, (see
appendix F)

 n timeperiods.cfg, containing the time ranges for
checks and notifications

All devices and servers that I monitor are placed in
directories using the cfg_dir directive:

Servers—Contains server configurations. Each file
includes the host and service configurations for a
physical or virtual server.

Devices—Contains device information. I create indi-
vidual files for devices with service monitoring
that goes beyond simple ping tests for connectiv-

Table 1. Nagios objects

Object Used for

hosts servers or devices being
monitored

hostgroups groups of hosts

services services being monitored

servicegroups groups of services

timeperiods scheduling of checks and
notifications

commands checking hosts and services

notifying contacts

processing performance data

event handling

contacts individuals to alert

contactgroups groups of contacts

Figure 1. Nagios configura-
tion relationships. Copyright ©
2009 Ethan Galstead, Nagios
Enterprises. Used with permis-
sion.

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 11

ity. Devices monitored solely for connectivity are
grouped logically into a single file. For example, we
monitor connectivity with fifty remote locations,
and all fifty of them are placed in a single file.

The resource.cfg file uses two macros to define the
path to plug-ins and event handlers. Thirty other macros
are available. Because the CGI programs do not read the
resource file, restrictive permissions can be applied to
them, enabling some of the macros to be used for user-
names and passwords needed in check commands. Placing
sensitive information in service configurations exposes
them to the Web server, creating a security issue.

n Configuration

The appendixes include the object configuration files for a
simple monitoring situation. A switch is monitored using
a simple ping test (see appendix J), while an opac server
on the other side of the switch is monitored for both Web
and Z39.50 operations (see appendix I). Note that the
opac configuration includes a parents directive that tells
Nagios that a problem with the gateway-switch will affect
connectivity with the opac server. I monitor fifty remote
sites. If my router is down, a single notification regarding
my router provides more information if it is not buried in
a storm of notifications about the remote sites.
The Web port, Web service, and opac search services demon-
strate different levels of monitoring. The Web port simply
attempts to establish a connection to port 80 without evalu-
ating anything beyond a successful connection. The Web
service check requests a specific page from the Web server
and evaluates only the status code returned by the server.
It displays a warning because I configured the check to
download a file that does not exist. The Web server is run-
ning because it returns an error code, hence the warning
status. The opac search uses a known search to evaluate the
result content, specifically whether the correct number of
results is returned for a known search.

I used a number of templates in the creation of this
configuration. Templates reduce the amount of repeti-
tive typing by allowing the reuse of directives. Templates
can be chained, as seen in the host templates. The opac

definition uses the Linux-server template, which in turn
uses the generic-host template. The host definition inher-
its the directives of the template it uses, overriding any
elements in both and adding new elements. In practical
terms, generic-host directives are read first. Linux-server
directives are applied next. If there is a conflict, the Linux-
server directive takes precedence. Finally, opac is read.
Again, any conflicts are resolved in favor of the last con-
figuration read, in this case opac.

n Plug-ins and service checks

The nagios plugins package provides numerous plug-ins,
including the check-host-alive, check_ping, check_tcp, and
check_http commands. Using the plug-ins is straightfor-
ward, as demonstrated in the appendixes. Most plug-
ins will provide some information on use if executed
with—help supplied as an argument to the command.
By default, the plug-ins are installed in /usr/lib/nagios/
plugins. Some distributions may install them in a differ-
ent directory.

The plugins folder contains a subfolder with user-
contributed scripts that have proven useful. Most
of these plug-ins are Perl scripts, many of which
require additional Perl modules available from the
Comprehensive Perl Archive Network (CPAN). The
check_hip_search plug-in (appendix K) used in the exam-
ples requires additional modules. Installing Perl mod-
ules is best accomplished using the CPAN Perl module.
Detailed instructions on module installation are avail-
able online.15 Some general tips:

 n Gcc and make should be installed before trying to
install Perl modules, regardless of whether you are
installing manually or using CPAN. Most modules
are provided as source code, which may require
compiling before use. CPAN automates this pro-
cess but requires the presence of these packages.

 n Alternately, many Linux distributions provide Perl
module packages. Using repositories to install usu-
ally works well assuming the repository has all the
needed modules. In my experience, that is rarely
the case.

Table 2. Sample commands for managing the htpasswd.users file

Create or modify an entry, with password entered at a prompt: htpasswd /etc/nagios/htpasswd.users <username>

Create or modify an entry using password from the command line: htpasswd -b /etc/nagios/htpasswd.users
<username> <password>

Delete an entry from the file: htpasswd -D /etc/nagios/htpasswd.users <username>

12 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

 n Many modules depend on other modules, some-
times requiring multiple install steps. Both CPAN
and distribution package managers usually satisfy
dependencies automatically. Manual installation
requires the installer to satisfy the dependencies
one by one.

 n Most plug-ins provide information on required
software, including modules, in a readme file or
in the source code for the script. In the absence
of such documentation, running the script on the
command line usually produces an error contain-
ing the name of the missing module.

 n Testing should be done using the nagios user. Using
another user account, especially the root user, to
create directories, copy files, and run programs
creates folders and files that are not accessible to
the nagios user. The best practice is to use the nagios
user for as much of the configuration and testing
as possible. The lists and forums frequently include
questions from new users that have successfully
installed, configured, and tested Nagios as the root
user and are confused when Nagios fails to start or
function properly.

n Advanced topics

Once the system is running, more advanced features can
be explored. The documentation describes many such
enhancements, but the following may be particularly use-
ful depending on the situation.

 n Nagios provides access control through the combi-
nation of settings in the cgi.cfg and htpasswd.users
files. Library administration and staff, as well as
patrons, may appreciate the ability to see the sta-
tus of the various systems. However, care should
be taken to avoid disclosing sensitive information
regarding the network or passwords, or allowing
access to CGI programs that perform actions.

 n Nagios permits the establishment of dependency
relationships. Host dependencies may be useful
in some rare circumstances not covered by the
parent–child relationships mentioned above, but
service dependencies provide a method of connect-
ing services in a meaningful manner. For example,
certain OPAC functions are dependent on ILS ser-
vices. Defining these relationships takes both time
and thought, which may be worthwhile depending
on any given situation.

 n Event handlers allow Nagios to initiate certain
actions after a state change. If Nagios notices that
a particular service is down, it can run a script or
program to attempt to correct the problem. Care
should be taken when creating these scripts as ser-

vice restarts may delete or overwrite information
critical to solving a problem, or worsen the actual
situation if an attempt to restart a service or reboot
a server fails.

 n Nagios provides notification escalations, permit-
ting the automatic notification of problems that
last longer than a certain time. For example, a
service escalation could send the first three alerts
to the admin group. If properly configured, the
fourth alert would be sent to the managers group
as well as the admin group. In addition to escalating
issues to management, this feature can be used to
establish a series of responders for multiple on-call
personnel.

 n Nagios can work in tandem with remote machines.
In addition to custom scripts using Secure Shell
(SSH), the Nagios Remote Plug-in Executor (NRPE)
add-on allows the execution of plug-ins on remote
machines, while the Nagios Service Check Acceptor
(NSCA) add-on allows a remote host to submit
check results to the Nagios server for processing.
Implementing Nagios on the Feher and Sondag
wireless network mentioned earlier would require
one of these options because the wireless network
is not accessible from the external network. These
add-ons also allow for distributed monitoring,
sharing the load among a number of servers
while still providing the administrators with a
single interface to the entire monitored network.
The Nagios Exchange (http://exchange.nagios
.org/) contains similar user-contributed programs
for Windows.

 n Nagios can be configured to provide redundant
or failover monitoring. Limoncelli, Hogan, and
Chalup call this metamonitoring and describe
when it is needed and how it can be implemented,
suggesting self-monitoring by the host or having
a second monitoring system that only monitors
the main system.16 Nagios permits more complex
configurations, allowing for either two servers
operating in parallel, only one of which sends
notifications unless the main server fails, or two
servers communicating to share the monitoring
load.

 n Alternative means of notification increase access to
information on the status of the network. I imple-
mented another open-source software package,
QuickPage, which allows Nagios text messages to
be sent from a computer to a pager or cell phone.17
Appendix L shows a screenshot of a Firefox exten-
sion that displays host and service problems in the
status bar of my browser and provides optional
audio alerts.18 The Nagios community has devel-
oped a number of alternatives, including special-
ized Web interfaces and RSS feed generators.19

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 13

n Appropriate use

Monitoring uses bandwidth and adds to the load of
machines being monitored. Accordingly, an IT depart-
ment should only monitor its own servers and devices, or
those for which it has permission to do so. Imagine what
would happen if all the users of a service such as WorldCat
started monitoring it! The additional load would be
noticeable and could conceivably disrupt service.

Aside from reasons connected with being a good
“netizen,” monitoring appears similar to port-scanning,
a technique used to discover network vulnerabilities. An
organization that blithely monitors devices without the
owner’s permission may find their traffic is throttled back
or blocked entirely. If a library has a definite need to moni-
tor another service, obtaining permission to do so is a vital
first step. If permission is withheld, the service level agree-
ment between the library and its service provider or ven-
dor should be reevaluated to ensure that the provider has
an appropriate system in place to respond to problems.

n Benefits

The system-administration books provide an accurate
overview of the benefits of monitoring, but personally
reaping those benefits provides a qualitative background
to the experience. I was able to justify the time spent on
setting up monitoring the first day of production. One of
the available plug-ins monitors Sybase database servers.
It was one of the first contributed plug-ins I implemented
because of past experiences with our production database
running out of free space, causing the system to become
nonfunctional. This happened twice, approximately a year
apart. Each time, the integrated library system was down
while the vendor addressed the issue. When I enabled
the Sybase service checks, Nagios immediately returned a
warning for the free space. The advance warning allowed
me to work with the vendor to extend the database volume
with no downtime for our users. That single event con-
vinced the library director of the value of the system.

Since that time, Nagios has proven its worth in alert-
ing IT staff to problem situations, providing information
on outage patterns both for in-house troubleshooting and
discussions with service providers.

n Conclusion

Monitoring systems and services provides IT staff with
a vital tool in providing quality customer service and
managing systems. Installing and configuring such a
system involves a learning curve and takes both time and

computing resources. My experiences with Nagios have
convinced me that the return on investment more than
justifies the costs.

References

 1. Thomas A. Limoncelli, Christina J. Hogan, and Strata R.
Chalup, The Practice of System and Network Administration, 2nd
ed. (Upper Saddle River, N.J.: Addison-Wesley, 2007): 36.

 2. Ibid., 523–42.
 3. James Feher and Tyler Sondag, “Administering an Open-

Source Wireless Network,” Information Technology & Libraries 27,
no. 3 (Sept. 2008): 44–54.

 4. Dave Pattern, “Keeping an Eye on Your HIP,” online post-
ing, Jan. 23, 2007, Self-Plagiarism is Style, http://www.daveyp
.com/blog/archives/164 (accessed Nov. 20, 2008).

 5. Feher and Sondag, “Administering an Open-Source Wire-
less Network,” 45–54.

 6. Ibid., 48, 53–54.
 7. Limoncelli, Hogan, and Chalup, The Practice of System and

Network Administration, 539–40.
 8. Pattern, “Keeping an Eye on Your HIP.”
 9. Limoncelli, Hogan, and Chalup, The Practice of System and

Network Administration, xxv.
10. “Comparison of Network Monitoring Systems,” Wikipe-

dia, The Free Encyclopedia, Dec. 9, 2008, http://en.wikipedia
.org/wiki/Comparison_of_network_monitoring_systems
(accessed Dec. 10, 2008).

11. William Von Hagen and Brian K. Jones, Linux Server
Hacks, Vol. 2 (Sebastopol, Calif.: O’Reilly, 2005): 371–74 (Zabbix),
382–87 (Nagios).

12. MonitoringExchange, http://www.monitoringexchange.
org/ (accessed Dec. 23, 2009); Nagios Community, http://
community.nagios.org (accessed Dec. 23, 2009); Nagios Wiki,
http://www.nagioswiki.org/ (accessed Dec. 23, 2009).

13. “Nagios Documentation,” Nagios, Mar. 4, 2008, http://
www.nagios.org/docs/ (accessed Dec. 8, 2008); David Joseph-
sen, Building a Monitoring Infrastructure with Nagios (Upper
Saddle River, N.J.: Prentice Hall, 2007); Wolfgang Barth, Nagios:
System and Network Monitoring, U.S. ed. (San Francisco: Open
Source Press; No Starch Press, 2006).

14. Ethan Galstead, “Nagios Quickstart Installation Guides,”
Nagios 3.x Documentation, Nov. 30, 2008, http://nagios.source
forge.net/docs/3_0/quickstart.html (accessed Dec. 3, 2008).

15. The Perl Directory, (http://www.perl.org/) contains com-
plete information on Perl. Specific information on using CPAN is
available in “How Do I Install a Module from CPAN?” perlfaq8,
Nov. 7, 2007, http://perldoc.perl.org/perlfaq8.html (accessed
Dec. 4, 2008).

16. Limoncelli, Hogan, and Chalup, The Practice of System and
Network Administration, 539–40.

17. Thomas Dwyer III, QPage Solutions, http://www.qpage
.org/ (accessed Dec. 9, 2008).

18. Petr Šimek, “Nagioschecker,” Google Code, Aug. 12, 2008,
http://code.google.com/p/nagioschecker/ (accessed Dec. 8,
2008).

19. “Notifications,” MonitoringExchange, http://www
.monitoringexchange.org/inventory/Utilities/AddOn-Proj-
ects/Notifications (accessed Dec. 23, 2009).

14 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

Appendix A. Service detail display from
test system

Appendix B. Service details for OPAC
(hip) and ILS (horizon) servers from
production system

Appendix C. Sybase freespace trends
for a specified period

Appendix D. Connectivity history for a
specified period

Appendix E. Availability report for host
shown in Appendix D

Appendix F. templates.cfg file

##
TEMPLATES.CFG - SAMPLE OBJECT TEMPLATES
##

##
CONTACT TEMPLATES
##

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 15

Generic contact definition template - This is NOT a real contact, just
a template!
define contact{
 name generic-contact

 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r,f,s
 host_notification_options d,u,r,f,s
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 register 0
 }

##
HOST TEMPLATES
##

Generic host definition template - This is NOT a real host, just
a template!
define host{
 name generic-host
 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 failure_prediction_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
 notification_period 24x7
 register 0
 }

Linux host definition template - This is NOT a real host, just a template!
define host{
 name linux-server
 use generic-host
 check_period 24x7
 check_interval 5
 retry_interval 1
 max_check_attempts 10
 check_command check-host-alive
 notification_period workhours
 notification_interval 120
 notification_options d,u,r
 contact_groups admins
 register 0
 }

Appendix F. templates.cfg file (cont.)

16 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

Define a template for switches that we can reuse
define host{
 name generic-switch
 use generic-host
 check_period 24x7
 check_interval 5
 retry_interval 1
 max_check_attempts 10
 check_command check-host-alive
 notification_period 24x7
 notification_interval 30
 notification_options d,r
 contact_groups admins
 register 0
 }

##
SERVICE TEMPLATES
##

Generic service definition template - This is NOT a real service,
just a template!
define service{
 name generic-service
 active_checks_enabled 1
 passive_checks_enabled 1
 parallelize_check 1
 obsess_over_service 1
 check_freshness 0
 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 failure_prediction_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
 is_volatile 0
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 10
 retry_check_interval 2
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 60
 notification_period 24x7
 register 0
 }

Appendix F. templates.cfg file (cont.)

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 17

Define a ping service. This is NOT a real service, just a template!
define service{
 use generic-service
 name ping-service
 notification_options n
 check_command check_ping!1000.0,20%!2000.0,60%
 register 0
 }

Appendix F. templates.cfg file (cont.)

Appendix G. groups.cfg file

##
CONTACT GROUP DEFINITIONS
##
We only have one contact in this simple configuration file, so there is
no need to create more than one contact group.
define contactgroup{
 contactgroup_name admins
 alias Nagios Administrators
 members nagiosadmin
 }

##
HOST GROUP DEFINITIONS
##
Define an optional hostgroup for Linux machines
define hostgroup{
 hostgroup_name linux-servers ; The name of the hostgroup
 alias Linux Servers ; Long name of the group
 }

Create a new hostgroup for ILS servers
define hostgroup{
 hostgroup_name ils-servers ; The name of the hostgroup
 alias ILS servers ; Long name of the group
 }

Create a new hostgroup for switches
define hostgroup{
 hostgroup_name switches ; The name of the hostgroup
 alias Network Switches ; Long name of the group
 }

##
SERVICE GROUP DEFINITIONS
##

18 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

Define a service group for network connectivity
define servicegroup{
 servicegroup_name network
 alias Network infrastructure services
 }

Define a servicegroup for ILS
define servicegroup{
 servicegroup_name ils-services
 alias ILS related services
 }

Appendix G. groups.cfg file (cont.)

Appendix H. contacts.cfg

##
CONTACTS.CFG - SAMPLE CONTACT/CONTACTGROUP DEFINITIONS
##

Just one contact defined by default - the Nagios admin (that’s you)
This contact definition inherits a lot of default values from the
‘generic-contact’ template which is defined elsewhere.
define contact{
 contact_name nagiosadmin
 use generic-contact
 alias Nagios Admin
 email nagios@localhost
 }

Appendix I. opac.cfg

##
OPAC SERVER
##

##
HOST DEFINITION
##

Define a host for the server we’ll be monitoring
Change the host_name, alias, and address to fit your situation
define host{
 use linux-server
 host_name opac
 parents gateway-switch
 alias OPAC server

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 19

Appendix I. opac.cfg (cont.)

 address 192.168.1.123
 }

##
SERVICE DEFINITIONS
##

Create a service for monitoring the HTTP port
define service{
 use generic-service
 host_name opac
 service_description web port
 check_command check_tcp!80
 }

Create a service for monitoring the web service
define service{
 use generic-service
 host_name opac
 service_description Web service
 check_command check_http!-u/bogusfilethatdoesnotexist.html
 }

Create a service for monitoring the opac search
define service{
 use generic-service
 host_name opac
 service_description OPAC search
 check_command check_hip_search
 }

Create a service for monitoring the Z39.50 port
define service{
 use generic-service
 host_name opac
 service_description z3950 port
 check_command check_tcp!210
 }

Appendix J. switches.cfg

##
SWITCH.CFG - SAMPLE CONFIG FILE FOR MONITORING SWITCHES
##

##
HOST DEFINITIONS
##

20 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

Appendix K. check_hip_search script

#!/usr/bin/perl -w
#########################
Check Horizon Information Portal (HIP) status.
HIP is the web-based interface for Dynix and Horizon
ILS systems by SirsiDynix corporation.
#
This plugin is based on a standalone Perl script written
by Dave Pattern. Please see
http://www.daveyp.com/blog/index.php/archives/164/
for the original script.
#
The original script and this derived work are covered by
http://creativecommons.org/licenses/by-nc-sa/2.5/
#########################

 use strict;
 use LWP::UserAgent; # Note the requirement for Perl module
LWP::UserAgent!
 use lib “/usr/lib/nagios/plugins”;
 use utils qw($TIMEOUT %ERRORS);

Define the switch that we’ll be monitoring
define host{
 use generic-switch
 host_name gateway-switch
 alias Gateway Switch
 address 192.168.0.1
 hostgroups switches
 }

##
###
SERVICE DEFINITIONS
##
###

Create a service to PING to switches
Note this entry will ping every host in the switches hostgroup
define service{
 use ping-service
 hostgroups switches
 service_description PING
 normal_check_interval 5
 retry_check_interval 1
 }

Appendix J. switches.cfg

MONitORiNG NetwORK AND seRvice AvAilABilitY witH OPeN-sOuRce sOFtwARe | silveR 21

Some configuration options

 my $hipServerHome = “http://ipac.prl.ab.ca/ipac20/ipac.
jsp?profile=alap”;
 my $hipServerSearch = “http://ipac.prl.ab.ca/ipac20/ipac.jsp?menu=se
arch&aspect=subtab132&npp=10&ipp=20&spp=20&profile=alap&ri=&index=.GW&term=li
nux&x=18&y=13&aspect=subtab132&GetXML=true”;
 my $hipSearchType = “xml”;
 my $httpProxy = ‘’;

check home page is available...

{
 my $ua = LWP::UserAgent->new;
 $ua->timeout(10);
 if($httpProxy) { $ua->proxy(‘http’, $httpProxy) }
 my $response = $ua->get($hipServerHome);
 my $status = $response->status_line;
 if($response->is_success)
 {
 }
 else
 {
 print “HIP_SEARCH CRITICAL: $status\n”;
 exit $ERRORS{‘CRITICAL’};
 }
}

check search page is returning results...
 {
 my $ua = LWP::UserAgent->new;
 $ua->timeout(10);
 if($httpProxy)
 { $ua->proxy(‘http’, $httpProxy) }

 my $response = $ua->get($hipServerSearch);
 my $status = $response->status_line;

 if($response->is_success)
 {
 my $results = 0;
 my $content = $response->content;

 if(lc($hipSearchType) eq ‘html’)
 {
 if ($content =~ /\<b\>(\d+?)\<\/b\>\ \;titles matched/)
 {
 $results = $1;

Appendix K. check_hip_search script (cont.)

22 iNFORMAtiON tecHNOlOGY AND liBRARies | MARcH 2010

 }
 }

 if(lc($hipSearchType) eq ‘xml’)
 {
 if($content =~ /\<hits\>(\d+?)\<\/hits\>/)
 {
 $results = $1;
 }
 }

Modified section - original script triggered another function to
save results to a temp file and email an administrator.
 unless($results)
 {
 print “HIP_SEARCH CRITICAL: No results returned|results=0\n”;
 exit $ERRORS{‘CRITICAL’};
 }

 if ($results)
 {
 print “HIP_SEARCH OK: $results results
returned|results=$results\n”;
 exit $ERRORS{‘OK’};
 }
 }
}

Appendix K. check_hip_search script (cont.)

Appendix L. Nagios Checker display

