
76 iNFormAtioN tecHNoloGY ANd liBrAries | JuNe 2010

In	 this	 paper	 we	 discuss	 the	 design	 space	 of	 meth-
ods	 for	 integrating	 information	 from	 Web	 services	 into	
websites.	 We	 focus	 primarily	 on	 client-side	 mash-ups,	
in	 which	 code	 running	 in	 the	 user’s	 browser	 contacts	
Web	services	directly	without	the	assistance	of	an	inter-
mediary	 server	 or	 proxy.	 To	 create	 such	 mash-ups,	 we	
advocate	 the	 use	 of	 “widgets,”	 which	 are	 easy-to-use,	
customizable	HTML	elements	whose	use	does	not	require	
programming	 knowledge.	 Although	 the	 techniques	 we	
discuss	apply	to	any	Web-based	information	system,	we	
specifically	consider	how	an	OPAC	can	become	both	the	
target	of	Web	services	integration	and	also	a	Web	service	
that	provides	information	to	be	integrated	elsewhere.	We	
describe	three	widget	libraries	we	have	developed,	which	
provide	access	to	four	Web	services.	These	libraries	have	
been	deployed	by	us	and	others.	

Our	contributions	are	twofold:	We	give	practitioners	
an	 insight	 into	 the	 trade-offs	surrounding	the	appropri-
ate	choice	of	mash-up	model,	and	we	present	the	specific	
designs	 and	 use	 examples	 of	 three	 concrete	 widget	
libraries	librarians	can	directly	use	or	adapt.	All	software	
described	in	this	paper	is	available	under	the	LGPL	Open	
Source	License.

■■ Background

Web-based	information	systems	use	a	client-server	archi-
tecture	 in	which	the	server	sends	HTML	markup	to	the	
user’s	browser,	which	then	renders	this	HTML	and	dis-
plays	it	to	the	user.	Along	with	HTML	markup,	a	server	
may	 send	 JavaScript	 code	 that	 executes	 in	 the	 user’s	
browser.	 This	 JavaScript	 code	 can	 in	 turn	 contact	 the	
original	 server	 or	 additional	 servers	 and	 include	 infor-
mation	 obtained	 from	 them	 into	 the	 rendered	 content	
while	it	is	being	displayed.	This	basic	architecture	allows	
for	myriad	possible	design	choices	and	combinations	for	
mash-ups.	Each	design	choice	has	implications	to	ease	of	
use,	customizability,	programming	requirements,	hosting	
requirements,	scalability,	latency,	and	availability.

server-side mash-ups

In	a	server-side	mash-up	design,	shown	in	 figure	1,	 the	
mash-up	server	contacts	the	base	server	and	each	source	
when	 it	 receives	 a	 request	 from	 a	 client.	 It	 combines	
the	 information	 received	 from	 the	 base	 server	 and	 the	
sources	and	sends	the	combined	HTML	to	the	client.	

Server-side	mash-up	systems	that	combine	base	and	
mash-up	 servers	 are	 also	 referred	 to	 as	 data	 mash-up	
systems.	Such	data	mash-up	systems	typically	provide	a	
Web-based	 configuration	 front-end	 that	 allows	 users	 to	
select	data	sources,	specify	the	manner	in	which	they	are	
combined,	and	to	create	a	layout	for	the	entire	mash-up.	

Godmar Back and
Annette Bailey

Web Services and Widgets for
Library Information Systems

As more libraries integrate information from web services
to enhance their online public displays, techniques that
facilitate this integration are needed. This paper presents
a technique for such integration that is based on HTML
widgets. We discuss three example systems (Google Book
Classes, Tictoclookup, and MAJAX) that implement this
technique. These systems can be easily adapted without
requiring programming experience or expensive hosting.

T o	 improve	 the	 usefulness	 and	 quality	 of	 their	
online	 public	 access	 catalogs	 (OPACs),	 more	 and	
more	 librarians	 include	 information	 from	 addi-

tional	 sources	 into	 their	 public	 displays.1	 Examples	 of	
such	 sources	 include	 Web	 services	 that	 provide	 addi-
tional	bibliographic	information,	social	bookmarking	and	
tagging	 information,	 book	 reviews,	 alternative	 sources	
for	 bibliographic	 items,	 table-of-contents	 previews,	 and	
excerpts.	As	new	Web	services	emerge,	librarians	quickly	
integrate	 them	 to	 enhance	 the	 quality	 of	 their	 OPAC	
displays.	Conversely,	librarians	are	interested	in	opening	
the	 bibliographic,	 holdings,	 and	 circulation	 information	
contained	 in	 their	 OPACs	 for	 inclusion	 into	 other	 Web	
offerings	they	or	others	maintain.	For	example,	by	turn-
ing	their	OPAC	into	a	Web	service,	subject	librarians	can	
include	up-to-the-minute	circulation	information	in	sub-
ject	 or	 resource	 guides.	 Similarly,	 university	 instructors	
can	use	an	OPAC’s	metadata	 records	 to	display	citation	
information	 ready	 for	 import	 into	 citation	 management	
software	on	their	course	pages.	The	ability	to	easily	create	
such	 “mash-up”	 pages	 is	 crucial	 for	 increasing	 the	 vis-
ibility	and	reach	of	the	digital	resources	libraries	provide.

Although	the	technology	to	use	Web	services	to	create	
mash-ups	 is	 well	 known,	 several	 practical	 requirements	
must	 be	 met	 to	 facilitate	 its	 widespread	 use.	 First,	 any	
environment	 providing	 for	 such	 integration	 should	 be	
easy	to	use,	even	for	librarians	with	limited	programming	
background.	This	ease	of	use	must	extend	to	environments	
that	include	proprietary	systems,	such	as	vendor-provided	
OPACs.	Second,	integration	must	be	seamless	and	custom-
izable,	allowing	 for	 local	display	preferences	and	 flexible	
styling.	 Third,	 the	 setup,	 hosting,	 and	 maintenance	 of	
any	necessary	infrastructure	must	be	low-cost	and	should	
maximize	the	use	of	already	available	or	freely	accessible	
resources.	Fourth,	performance	must	be	acceptable,	both	in	
terms	of	latency	and	scalability.2

Godmar Back (gback@cs.vt.edu) is Assistant Professor, depart-
ment of Computer Science and Annette Bailey (afbailey@vt.edu)
is Assistant Professor, University Libraries, Virginia Tech Univer-
sity, Blacksburg.

weB services ANd widGets For liBrArY iNFormAtioN sYstems | BAck ANd BAileY 77

Examples	 of	 such	 systems	 include	 Dapper	 and	 Yahoo!	
Pipes.3	 These	 systems	 require	 very	 little	 programming	
knowledge,	but	they	limit	mash-up	creators	to	the	func-
tionality	 supported	 by	 a	 particular	 system	 and	 do	 not	
allow	the	user	to	leverage	the	layout	and	functionality	of	
an	existing	base	server,	such	as	an	existing	OPAC.

Integrating	 server-side	 mash-up	 systems	 with	 pro-
prietary	OPACs	as	the	base	server	is	difficult	because	the	
mash-up	 server	 must	 parse	 the	 OPAC’s	 output	 before	
integrating	any	additional	 information.	Moreover,	users	
must	 now	 visit—or	 be	 redirected	 to—the	 URL	 of	 the	
mash-up	 server.	 Although	 some	 emerging	 extensible	
OPAC	designs	provide	the	ability	to	include	information	
from	external	sources	directly	and	easily,	most	currently	
deployed	 systems	 do	 not.4	 In	 addition,	 those	 mash-up	
servers	that	do	usually	require	server-side	programming	
to	 retrieve	 and	 integrate	 the	 information	 coming	 from	
the	 mash-up	 sources	 into	 the	 page.	 The	 availability	 of	
software	libraries	and	the	use	of	special	purpose	markup	
languages	may	mitigate	this	requirement	in	the	future.

From	 a	 performance	 scalability	 point	 of	 view,	 the	
mash-up	 server	 is	 a	 bottleneck	 in	 server-side	 mash-ups	
and	therefore	must	be	made	large	enough	to	handle	the	
expected	 load	 of	 end-user	 requests.	 On	 the	 other	 hand,	
the	 caching	 of	 data	 retrieved	 from	 mash-up	 sources	 is	
simple	 to	 implement	 in	 this	 arrangement	 because	 only	
the	mash-up	server	contacts	these	sources.	Such	caching	
reduces	 the	 frequency	 with	 which	 requests	 have	 to	 be	
sent	 to	 sources	 if	 their	data	 is	 cacheable,	 that	 is,	 if	 real-
time	information	is	not	required.	

The	 latency	 in	 this	 design	 is	 the	 sum	 of	 the	 time	
required	 for	 the	 client	 to	 send	 a	 request	 to	 the	 mash-
up	 server	 and	 receive	 a	 reply,	 plus	 the	 processing	 time	
required	by	the	server,	plus	the	time	incurred	by	sending	

a	request	and	receiving	a	reply	from	the	last	responding	
mash-up	 source.	 This	 model	 assumes	 that	 the	 mash-up	
server	 contacts	 all	 sources	 in	 parallel,	 or	 as	 soon	 as	 the	
server	 knows	 that	 information	 from	 a	 source	 should	 be	
included	in	a	page.

The	 availability	 of	 the	 system	 depends	 on	 the	 avail-
ability	of	all	mash-up	sources.	 If	a	mash-up	source	does	
not	 respond,	 the	 end	 user	 must	 wait	 until	 such	 failure	
is	apparent	to	the	mash-up	server	via	a	timeout.	Finally,	
because	 the	 mash-up	 server	 acts	 as	 a	 client	 to	 the	 base	
and	source	servers,	no	additional	security	considerations	
apply	 with	 respect	 to	 which	 sources	 may	 be	 contacted.	
There	also	are	no	restrictions	on	the	data	interchange	for-
mat	used	by	source	servers	as	long	as	the	mash-up	server	
is	able	to	parse	the	data	returned.

client-side mash-ups

In	 a	 client-side	 setup,	 shown	 in	 figure	 2,	 the	 base	 server	
sends	 only	 a	 partial	 website	 to	 the	 client,	 along	 with	
JavaScript	code	that	instructs	the	client	which	other	sources	
of	 information	to	contact.	When	executed	 in	 the	browser,	
this	 JavaScript	 code	 retrieves	 the	 information	 from	 the	
mash-up	sources	directly	and	completes	the	mash-up.	

The	primary	appeal	of	client-side	mashing	is	that	no	
mash-up	server	is	required,	and	thus	the	URL	that	users	
visit	does	not	change.	Consequently,	the	mash-up	server	
is	 no	 longer	 a	 bottleneck.	 Equally	 important,	 no	 main-
tenance	 is	 required	 for	 this	 server,	 which	 is	 particularly	
relevant	when	libraries	use	turnkey	solutions	that	restrict	
administrative	access	to	the	machine	housing	their	OPAC.	
On	the	other	hand,	without	a	mash-up	server,	results	from	
mash-up	sources	can	no	longer	be	centrally	cached.	Thus	
the	 mash-up	 sources	 themselves	 must	 be	 sufficiently	

Figure 1. Server-side mash-up construction Figure 2. Client-side mash-up construction

78 iNFormAtioN tecHNoloGY ANd liBrAries | JuNe 2010

scalable	to	handle	the	expected	number	of	requests.	As	a	
load-reducing	 strategy,	 mash-up	 sources	 can	 label	 their	
results	with	appropriate	expiration	times	to	influence	the	
caching	of	results	in	the	clients’	browsers.

Availability	is	increased	because	the	mash-up	degrades	
gracefully	 if	 some	 of	 the	 mash-up	 sources	 fail,	 since	 the	
information	 from	 the	 remaining	 sources	 can	 still	 be	 dis-
played	 to	 the	 user.	 Assuming	 that	 requests	 are	 sent	 by	
the	client	in	parallel	or	as	soon	as	possible,	and	assuming	
that	each	mash-up	source	responds	with	similar	latency	to	
requests	sent	by	the	user’s	browser	as	to	requests	sent	by	
a	mash-up	server,	the	latency	for	a	client-side	mash-up	is	
similar	to	the	server-side	mash-up.	However,	unlike	in	the	
server-side	approach,	the	page	designer	has	the	option	to	
display	partial	results	to	the	user	while	some	requests	are	
still	 in	 progress,	 or	 even	 to	 delay	 sending	 some	 requests	
until	the	user	explicitly	requests	the	data	by	clicking	on	a	
link	or	other	element	on	the	page.

Because	client-side	mash-ups	rely	on	JavaScript	code	
to	 contact	 Web	 services	 directly,	 they	 are	 subject	 to	 a	
number	of	restrictions	that	stem	from	the	security	model	
governing	 the	 execution	 of	 JavaScript	 code	 in	 current	
browsers.	This	security	model	is	designed	to	protect	the	
user	from	malicious	websites	that	could	exploit	client-side	
code	and	abuse	the	user’s	credentials	to	retrieve	HTML	or	
XML	data	from	other	websites	to	which	a	user	has	access.	
Such	 malicious	 code	 could	 then	 relay	 this	 potentially	
sensitive	data	back	to	the	malicious	site.	To	prevent	such	
attacks,	the	security	model	allows	the	retrieval	of	HTML	
text	or	XML	data	only	from	sites	within	the	same	domain	
as	 the	 origin	 site,	 a	 policy	 commonly	 known	 as	 same-
origin	policy.	In	figure	2,	sources	A	and	B	come	from	the	
same	domain	as	the	page	the	user	visits.

The	 restrictions	 of	 the	 same-origin	 policy	 can	 be	
avoided	by	using	the	JavaScript	Object	Notation	(JSON)	
interchange	format.5	Because	client-side	code	may	retrieve	
and	 execute	 JavaScript	 code	 served	 from	 any	 domain,	
Web	services	 that	are	not	co-located	with	 the	origin	site	
can	 make	 their	 results	 available	 using	 JSON.	 Doing	 so	
facilitates	 their	 inclusion	 into	 any	 page,	 independent	 of	
the	domain	from	which	it	is	served	(see	source	C	in	figure	
2).	Many	existing	Web	services	already	provide	an	option	
to	return	data	in	JSON	format,	perhaps	along	with	other	
formats	 such	 as	 XML.	 For	 Web	 services	 that	 do	 not,	 a	
proxy	server	may	be	required	to	translate	the	data	com-
ing	from	the	service	into	JSON.	If	the	implementation	of	a	
proxy	server	is	not	feasible,	the	Web	service	is	usable	only	
on	pages	within	the	same	domain	as	the	website	using	it.

Client-side	 mash-ups	 lend	 themselves	 naturally	 to	
enhancing	the	functionality	of	existing,	proprietary	OPAC	
systems,	particularly	when	a	vendor	provides	only	 lim-
ited	extensibility.	Because	they	do	not	require	server-side	
programming,	the	absence	of	a	suitable	vendor-provided	
server-side	 programming	 interface	 does	 not	 prevent	

their	creation.	Oftentimes,	vendor-provided	templates	or	
variables	 can	be	 suitably	adapted	 to	 send	 the	necessary	
HTML	markup	and	JavaScript	code	to	the	client.

The	amount	of	JavaScript	code	a	librarian	needs	to	write	
(or	 copy	 from	 a	 provided	 example)	 determines	 both	 the	
likelihood	of	adoption	and	the	maintainability	of	a	given	
mash-up	creation.	The	less	JavaScript	code	there	is	to	write,	
the	larger	the	group	of	librarians	who	feel	comfortable	try-
ing	and	adopting	a	given	 implementation.	The	approach	
of	using	HTML	widgets	hides	the	use	of	JavaScript	almost	
entirely	 from	 the	mash-up	creator.	HTML	widgets	 repre-
sent	specially	composed	markup,	which	will	be	replaced	
with	information	coming	from	a	mash-up	source	when	the	
page	is	rendered.	Because	the	necessary	code	is	contained	
in	a	JavaScript	library,	adapters	do	not	need	to	understand	
programming	 to	 use	 the	 information	 coming	 from	 the	
Web	 service.	 Finally,	 HTML	 widgets	 are	 also	 preferable	
for	 JavaScript-savvy	 users	 because	 they	 create	 a	 layer	 of	
abstraction	over	the	complexity	and	browser	dependencies	
inherent	in	JavaScript	programming.

■■ The Google Book Classes
Widget Library

To	illustrate	our	approach,	we	present	a	first	example	that	
allows	the	integration	of	data	obtained	from	Google	Book	
Search	into	any	website,	 including	OPAC	pages.	Google	
Book	Search	provides	access	to	Google’s	database	of	book	
metadata	 and	 contents.	 Because	 of	 the	 company’s	 book	
scanning	 activities	 as	 well	 as	 through	 agreements	 with	
publishers,	Google	hosts	 scanned	 images	of	many	book	
jackets	as	well	as	partial	or	even	full	previews	for	some	
books.	 Many	 libraries	 are	 interested	 in	 either	 using	 the	
book	 jackets	when	displaying	OPAC	records	or	alerting	
their	 users	 if	 Google	 can	 provide	 a	 partial	 or	 full	 view	
of	an	item	a	user	selected	in	their	catalog,	or	both.6	This	
service	can	help	users	decide	whether	to	borrow	the	book	
from	the	library.

the Google Book search dynamic link APi

The	 Google	 Book	 Search	 Dynamic	 Link	API	 is	 a	 JSON-
based	Web	service	through	which	Google	provides	certain	
metadata	for	items	it	has	indexed.	It	can	be	queried	using	
bibliographic	identifiers	such	as	ISBN,	OCLC	number,	or	
Library	of	Congress	Control	Number	(LCCN).	It	returns	
a	small	set	of	data	that	includes	the	URL	of	a	book	jacket	
thumbnail	 image,	 the	URL	of	a	page	with	bibliographic	
information,	the	URL	of	a	preview	page	(if	available),	as	
well	as	information	about	the	extent	of	any	preview	and	
whether	 the	 preview	 viewer	 can	 be	 embedded	 directly	
into	other	pages.	Table	1	shows	the	JSON	result	returned	
for	an	example	ISBN.

weB services ANd widGets For liBrArY iNFormAtioN sYstems | BAck ANd BAileY 79

widgetization

To	 facilitate	 the	easy	 integration	of	 this	 service	 into	web-
sites	 without	 JavaScript	 programming,	 we	 developed	 a	
widget	 library.	 From	 the	 adapter’s	 perspective,	 the	 use	
of	 these	 widgets	 is	 extremely	 simple.	 The	 adapter	 places	
HTML	 	 or	 <div>	 tags	 into	 the	 page	 where	 they	
want	data	from	Google	Book	Search	to	display.	These	tags	
contain	an	HTML	<title>	attribute	that	acts	as	an	identifier	
to	 describe	 the	 bibliographic	 item	 for	 which	 information	
should	be	retrieved.	It	may	contain	its	ISBN,	OCLC	num-
ber,	or	LCCN.	In	addition,	the	tags	also	contain	one	or	more	
HTML	 <class>	 attributes	 to	 describe	 which	 processing	
should	be	done	with	the	information	retrieved	from	Google	
to	integrate	it	into	the	page.	These	classes	can	be	combined	
with	a	list	of	traditional	CSS	classes	in	the	<class>	attribute	
to	apply	further	style	and	formatting	control.

examples

As	an	example,	consider	the	following	HTML	an	adapter	
may	use	in	a	page:	

<span title=“ISBN:0596000278” class=“gbs
-thumbnail gbs-link-to-preview”>

When	processed	by	the	Google	Book	Classes	widget	
library,	 the	 class	 “gbs-thumbnail”	 instructs	 the	 widget	 to	
embed	 a	 thumbnail	 image	 of	 the	 book	 jacket	 for	 ISBN	
0596000278,	 and	 “gbs-link-to-preview”	 provides	 instruc-
tions	 to	 wrap	 the	 	 tag	 in	 a	 hyperlink	 pointing	
to	 Google’s	 preview	 page.	 The	 result	 is	 as	 if	 the	 server	
had	contacted	Google’s	Web	service	and	constructed	the	
HTML	shown	 in	example	1	 in	 table 2,	but	 the	mash-up	

creator	does	not	need	to	be	concerned	with	the	mechanics	
of	contacting	Google’s	service	and	making	the	necessary	
manipulations	to	the	document.

Example	2	in	table	2	demonstrates	a	second	possible	
use	of	the	widget.	In	this	example,	the	creator’s	intent	is	
to	 display	 an	 image	 that	 links	 to	 Google’s	 information	
page	 if	 and	 only	 if	 Google	 provides	 at	 least	 a	 partial	
preview	 for	 the	 book	 in	 question.	 This	 goal	 is	 accom-
plished	by	placing	 the	 image	 inside	 the	span	and	using	
style=“display:none”	 to	 make	 the	 span	 initially	 invisible.	
The	span	is	made	visible	only	if	a	preview	is	available	at	
Google,	displaying	the	hyperlinked	image.	The	full	list	of	
features	 supported	 by	 the	 Google	 Book	 Classes	 widget	
library	can	be	found	in	table	3.

integration with legacy oPAcs

The	approach	described	thus	far	assumes	that	the	mash-
up	creator	has	sufficient	control	over	the	HTML	markup	
that	is	sent	to	the	user.	This	assumption	does	not	always	
hold	 if	 the	 HTML	 is	 produced	 by	 a	 vendor-provided	
system,	since	such	systems	automatically	generate	most	
of	the	HTML	used	to	display	OPAC	search	results	or	indi-
vidual	 bibliographic	 records.	 If	 the	 OPAC	 provides	 an	
extension	system,	such	as	a	facility	to	embed	customized	
links	to	external	resources,	it	may	be	used	to	generate	the	
necessary	HTML	by	utilizing	variables	(e.g.,	“@#ISBN@”	
for	ISBN	numbers)	set	by	the	OPAC	software.

If	 no	 extension	 facility	 exists,	 accommodations	 by	
the	widget	library	are	needed	to	maintain	the	goal	of	not	
requiring	any	programming	on	the	part	of	the	adapter.	We	
implemented	such	accommodations	to	facilitate	the	use	of	
Google	Book	Classes	within	a	III	Millennium	OPAC.7	We	
used	 magic	 strings	 such	 as	 “ISBN:millennium.record”	 in	 a	

Table 1. Sample Request and Response for Google Book Search Dynamic Link API

Request:

http://books.google.com/books?bibkeys=ISBN:0596000278&jscmd=viewapi&callback=process

JSON Response:

process({
“ISBN:0596000278”:
{ “bib_key”: “ISBN:0596000278”,
“info_url”: “http://books.google.com/books?id=ezqe1hh91q4C\x26source=gbs_ViewAPI”,
“preview_url”: “http://books.google.com/books?id=ezqe1hh91q4C\x26printsec=frontcover\x26
source=gbs_ViewAPI”,
“thumbnail_url”: “http://bks4.books.google.com/books?id=ezqe1hh91q4C\x26printsec=frontcover\x26
img=1\x26zoom=5\x26sig=ACfU3U2d1UsnXw9BAQd94U2nc3quwhJn2A”,
“preview”: “partial”,
“embeddable”: true
}
});

80 iNFormAtioN tecHNoloGY ANd liBrAries | JuNe 2010

Table 2. Example of client-side processing by the Google Book Classes widget library

Example 1: HTML Written by Adapter Browser Display

Resultant HTML after Client-Side Processing

<a href=“http://books.google.com/books?id=ezqe1hh91q4C&
 printsec=frontcover&source=gbs_ViewAPI”>

 <img src=“http://bks3.books.google.com/books?id=ezqe1hh91q4C&
 amp;printsec=frontcover&img=1&zoom=5&
 sig=ACfU3U2d1UsnXw9BAQd94U2nc3quwhJn2A” />

Example 2: HTML Written by Adapter Browser Display

<span style=“display: none” title=“ISBN:0596000278”
 class=“gbs-link-to-info gbs-if-partial-or-full”>
 <img src=“http://www.google.com/intl/en/googlebooks/images/
 gbs_preview_button1.gif” />

Resultant HTML after Client-Side Processing

<a href=”http://books.google.com/books?id=ezqe1hh91q4C&
 source=gbs_ViewAPI”>

 <img src=“http://www.google.com/intl/en/googlebooks/images/
 gbs_preview_button1.gif” />

Table 3. Supported Google Book classes

Google Book Class Meaning

gbs-thumbnail

gbs-link-to-preview

gbs-link-to-info

gbs-link-to-thumbnail

gbs-embed-viewer

gbs-if-noview

gbs-if-partial-or-full

gbs-if-partial

gbs-if-full

gbs-remove-on-failure

Include an <img...> embedding the thumbnail image

Wrap span/div in link to preview at Google Book Search (GBS)

Wrap span/div in link to info page at GBS

Wrap span/div in link to thumbnail at GBS

Directly embed a viewer for book’s content into the page, if possible

Keep this span/div only if GBS reports that book’s viewability is “noview”

Keep this span/div only if GBS reports that book’s viewability is at least “partial”

Keep this span/div only if GBS reports that book’s viewability is “partial”

Keep this span/div only if GBS reports that book’s viewability is “full”

Remove this span/div if GBS doesn’t return book information for this item

<title>	attribute	to	instruct	the	widget	library	to	harvest	the	
ISBN	from	the	current	page	via	screen	scraping.	Figure	3	
provides	an	example	of	how	a	Google	Book	Classes	widget	
can	be	integrated	into	an	OPAC	search	results	page.

■■ The Tictoclookup Widget Library

The	 ticTOCs	 Journal	 Table	 of	 Contents	 Service	 is	 a	 free	
online	 service	 that	 allows	 academic	 researchers	 and	

weB services ANd widGets For liBrArY iNFormAtioN sYstems | BAck ANd BAileY 81

other	users	to	keep	up	with	newly	published	research	by	
giving	them	access	to	thousands	of	journal	tables	of	con-
tents	from	multiple	publishers.8	The	ticTOCs	consortium	
compiles	 and	 maintains	 a	 dataset	 that	 maps	 ISSNs	 and	
journal	titles	to	RSS-feed	URLs	for	the	journals’	tables	of	
contents.	

the tictoclookup web service

We	used	the	ticTOCs	dataset	to	create	a	simple	JSON	Web	
service	called	“Tictoclookup”	that	returns	RSS-feed	URLs	
when	 queried	 by	 ISSN	 and,	 optionally,	 by	 journal	 title.	
Table	4	shows	an	example	query	and	response.

To	 accommodate	 different	 hosting	 scenarios,	 we	
created	 two	 implementations	 of	 this	 Tictoclookup:	 a	
standalone	 and	 a	 cloud-based	 implementation.	 The	
standalone	 version	 is	 implemented	 as	 a	 Python	 Web	
application	 conformant	 to	 the	 Web	 Services	 Gateway	
Interface	 (WSGI)	 specification.	 Hosting	 this	 version	
requires	 access	 to	 a	 Web	 server	 that	 supports	 a	 WSGI-
compatible	 environment,	 such	 as	 Apache’s	 mod_wsgi.	
The	 Python	 application	 reads	 the	 ticTOCs	 dataset	 and	
responds	 to	 lookup	 requests	 for	 specific	 ISSNs.	 A	 cron	
job	downloads	the	most	up-to-date	version	of	the	dataset	
periodically.

The	 cloud	 version	 of	 the	 Tictoclookup	 service	 is	
implemented	 as	 a	 Google	 App	 Engine	 (GAE)	 applica-
tion.	It	uses	the	highly	scalable	and	highly	available	GAE	
Datastore	to	store	ticTOCs	data	records.	GAE	applications	
run	on	servers	located	in	Google’s	regional	data	centers	so	
that	requests	are	handled	by	a	data	center	geographically	
close	 to	 the	 requesting	 client.	 As	 of	 June	 2009,	 Google	
hosting	of	GAE	applications	is	free,	which	includes	a	free	
allotment	 of	 several	 computational	 resources.	 For	 each	
application,	GAE	allows	quotas	of	up	to	1.3	MB	requests	
and	the	use	of	up	to	10	GB	of	bandwidth	per	twenty-four-
hour	 period.	Although	 this	 capacity	 is	 sufficient	 for	 the	
purposes	 of	 many	 small-	 and	 medium-size	 institutions,	
additional	capacity	can	be	purchased	at	a	small	cost.

widgetization

To	facilitate	the	easy	integration	of	this	service	into	websites	
without	JavaScript	programming,	we	developed	a	widget	
library.	 Like	 Google	 Book	 Classes,	 this	 widget	 library	 is	
controlled	 via	 HTML	 attributes	 associated	 with	 HTML	
	or	<div>	tags	that	are	placed	into	the	page	where	
the	 user	 decides	 to	 display	 data	 from	 the	 Tictoclookup	
service.	The	HTML	<title>	attribute	identifies	the	journal	by	
its	ISSN	or	its	ISSN	and	title.	As	with	Google	Book	Classes,	

Figure 3. Sample use of Google Book Classes in an OPAC results page

Table 4. Sample request and response for ticTOCs lookup Web service

Request:

http://tictoclookup.appspot.com/0028-0836?title=Nature&jsoncallback=process

JSON Response:

process({
 “lastmod”: “Wed Apr 29 05:42:36 2009”,
 “records”: [{
 “title”: “Nature”,
 “rssfeed”: http://www.nature.com/nature/current_issue/rss
 }],
 “issn”: “00280836”
});

82 iNFormAtioN tecHNoloGY ANd liBrAries | JuNe 2010

the	HTML	<class>	attribute	describes	the	desired	process-
ing,	which	may	contain	traditional	CSS	classes.

example

Consider	 the	 following	HTML	an	adapter	may	use	 in	a	
page:	

<span	style=“display:none”		
					class=“tictoc-link	tictoc-preview	tictoc-alternate-link”		
					title=“ISSN:00280836:	Nature”>		
Click	to	subscribe	to	Table	of	Contents	for	this	journal	

When	processed	by	the	Tictoclookup	widget	 library,	
the	 class	 “tictoc-link”	 instructs	 the	 widget	 to	 wrap	 the	
span	in	a	link	to	the	RSS	feed	at	which	the	table	of	con-
tent	 is	 published,	 allowing	 users	 to	 subscribe	 to	 it.	 The	
class	“tictoc-preview”	associates	a	tooltip	element	with	the	
span,	which	displays	the	first	entries	of	the	feed	when	the	
user	hovers	over	the	link.	We	use	the	Google	Feeds	API,	
another	 JSON-based	 Web	 service,	 to	 retrieve	 a	 cached	
copy	 of	 the	 feed.	 The	 “tictoc-alternate-link”	 class	 places	
an	 alternate	 link	 into	 the	 current	 document,	 which	 in	
some	browsers	triggers	the	display	of	the	RSS	feed	icon	

Figure 4. Sample use of tictoclookup classes

in	 the	 status	bar.	The		 element,	which	 is	 initially	
invisible,	 is	made	visible	 if	and	only	 if	 the	Tictoclookup	
service	returns	information	for	the	given	pair	of	ISSN	and	
title.	Figure	4	provides	a	screenshot	of	 the	display	if	 the	
user	hovers	over	the	link.

As	with	Google	Book	Classes,	the	mash-up	creator	does	
not	need	to	be	concerned	with	the	mechanics	of	contacting	
the	 Tictoclookup	 Web	 service	 and	 making	 the	 necessary	
manipulations	 to	 the	 document.	 Table	 5	 provides	 a	 com-
plete	overview	of	the	classes	Tictoclookup	supports.

integration with legacy oPAcs

Similar	 to	 the	 Google	 Book	 Classes	 widget	 library,	 we	
implemented	provisions	that	allow	the	use	of	Tictoclookup	
classes	 on	 pages	 over	 which	 the	 mash-up	 creator	 has	
limited	 control.	 For	 instance,	 specifying	 a	 title	 attribute	
of	 “ISSN:millennium.issnandtitle”	 harvests	 the	 ISSN	 and	
journal	title	from	the	III	Millennium’s	record	display	page.

■■ MAJAX

Whereas	the	widget	libraries	discussed	thus	far	integrate	
external	Web	services	into	an	OPAC	
display,	MAJAX	is	a	widget	library	
that	integrates	information	coming	
from	 an	 OPAC	 into	 other	 pages,	
such	as	 resource	guides	or	course	
displays.	 MAJAX	 is	 designed	
for	 use	 with	 a	 III	 Millennium	
Integrated	 Library	 System	 (ILS)	
whose	vendor	does	not	provide	a	
Web-services	 interface.	 The	 tech-
niques	 we	 used,	 however,	 extend	
to	other	OPACs	as	well.	Like	many	

Table 5. Supported Tictoclookup classes

Tictoclookup Class Meaning

tictoc-link

tictoc-preview

tictoc-embed-n

tictoc-alternate-link

tictoc-append-title

Wrap span/div in link to table of contents

Display tooltip with preview of current entries

Embed preview of first n entries

Insert <link rel=“alternate”> into document

Append the title of the journal to the span/div

weB services ANd widGets For liBrArY iNFormAtioN sYstems | BAck ANd BAileY 83

legacy	 OPACs,	 Millennium	 does	 not	
only	lack	a	Web-services	interface,	but	
lacks	 any	 programming	 interface	 to	
the	 records	 contained	 in	 the	 system	
and	 does	 not	 provide	 access	 to	 the	
database	or	file	system	of	the	machine	
housing	the	OPAC.	

Providing oPAc data as a
web service

We	 implemented	 two	 methods	 to	
access	 records	 from	 the	 Millennium	
OPAC	 using	 bibliographic	 identifi-
ers	 such	 as	 ISBN,	 OCLC	 number,	 bibliographic	 record	
number,	 and	 item	 title.	 Both	 methods	 provide	 access	
to	 complete	 MARC	 records	 and	 holdings	 information,	
along	 with	 locations	 and	 real-time	 availability	 for	 each	
held	 item.	 MAJAX	 extracts	 this	 information	 via	 screen-
scraping	 from	 the	 MARC	 record	 display	 page.	As	 with	
all	screen-scraping	approaches,	the	code	performing	the	
scraping	must	be	updated	if	the	output	format	provided	
by	 the	 OPAC	 changes.	 In	 our	 experience,	 such	 changes	
occur	at	a	frequency	of	less	than	once	per	year.

The	first	method,	MAJAX	1,	implements	screen	scrap-
ing	using	JavaScript	code	that	is	contained	in	a	document	
placed	 in	 a	 directory	 on	 the	 server	 (/screens),	 which	
is	 normally	 used	 for	 supplementary	 resources,	 such	 as	
images.	This	document	is	included	in	the	target	page	as	
a	hidden	HTML	<iframe>	element	(see	frame	B	in	figure	
2).	Consequently,	the	same-domain	restriction	applies	to	
the	code	residing	in	it.	MAJAX	1	can	thus	be	used	only	on	
pages	within	the	same	domain—for	instance,	if	the	OPAC	
is	 housed	 at	 opac.library.university.edu,	 MAJAX	 1	 may	
be	used	on	all	pages	within	*.university.edu	(not	merely	
*.library.university.edu).	The	key	advantage	of	MAJAX	1	
is	that	no	additional	server	is	required.	

The	second	method,	MAJAX	2,	uses	an	intermediary	
server	that	retrieves	the	data	from	the	OPAC,	translates	
it	 to	 JSON,	 and	 returns	 it	 to	 the	 client.	 This	 method,	
shown	in	figure	5,	returns	JSON	data	and	therefore	does	
not	 suffer	 from	 the	 same-domain	 restriction.	 However,	
it	 requires	 hosting	 the	 MAJAX	 2	 Web	 service.	 Like	 the	
Tictoclookup	Web	service,	we	implemented	the	MAJAX	2	
Web	service	using	Python	conformant	to	WSGI.	A	single	
installation	can	support	multiple	OPACs.

widgetization

The	 MAJAX	 widget	 library	 allows	 the	 integration	 of	
both	MAJAX	1	and	MAJAX	2	data	into	websites	without	
JavaScript	 programming.	 The	 	 tags	 function	 as	
placeholders,	and	<title>	and	<class>	attributes	describe	
the	 desired	 processing.	 MAJAX	 provides	 a	 number	 of	
“MAJAX	 classes,”	 multiple	 of	 which	 can	 be	 specified.	

These	 classes	 allow	 a	 mash-up	 creator	 to	 insert	 a	 large	
variety	 of	 bibliographic	 information,	 such	 as	 the	 val-
ues	 of	 MARC	 fields.	 Classes	 are	 also	 provided	 to	 insert	
fully	 formatted,	 ready-to-copy	 bibliographic	 references	
in	 Harvard	 style,	 live	 circulation	 information,	 links	 to	
the	 catalog	 record,	 links	 to	 online	 versions	 of	 the	 item	
(if	 applicable),	 a	 ready-to-import	 RIS	 description	 of	 the	
item,	and	even	images	of	the	book	cover.	A	list	of	classes	
MAJAX	supports	is	provided	in	table	6.	

examples

Figure	 6	 provides	 an	 example	 use	 of	 MAJAX	 widgets.	
Four		tags	expand	into	the	book	cover,	a	complete	
Harvard-style	 reference,	 the	 valid	 of	 a	 specific	 MARC	
field	(020),	and	a	display	of	the	current	availability	of	the	
item,	wrapped	in	a	link	to	the	catalog	record.	Texts	such	
as	 “copy	 is	 available”	 shown	 in	 figure	 6	 are	 localizable.	
Even	though	there	are	multiple	MAJAX		tags	that	
refer	 to	 the	 same	 ISBN,	 the	 MAJAX	 widget	 library	 will	
contact	the	MAJAX	1	or	MAJAX	2	Web	service	only	once	
per	 identifier,	 independent	 of	 how	 often	 it	 is	 used	 in	 a	
page.	To	manage	the	load,	the	MAJAX	client	site	library	
can	be	configured	 to	not	exceed	a	maximum	number	of	
requests	per	second,	per	client.

All	software	described	in	this	paper	is	available	under	
the	 LGPL	 Open	 Source	 License.	 The	 MAJAX	 libraries	
have	been	used	by	us	and	others	for	about	two	years.	For	
instance,	the	“New	Books”	list	in	our	library	uses	MAJAX	
1	to	provide	circulation	information.	Faculty	members	at	
our	 institution	 are	 using	 MAJAX	 to	 enrich	 their	 course	
websites.	A	number	of	libraries	have	adopted	MAJAX	1,	
which	 is	particularly	easy	 to	host	because	no	additional	
server	is	required.

■■ Related work

Most	ILSs	in	use	today	do	not	provide	suitable	Web-services	
interfaces	 to	 access	 either	 bibliographic	 information	

Figure 5. Architecture of the MAJAX 2 Web service

84 iNFormAtioN tecHNoloGY ANd liBrAries | JuNe 2010

or	 availability	 data.9	 This	
shortcoming	 is	 addressed	 by	
multiple	 initiatives.	 The	 ILS	
Discovery	 Interface	 task	 force	
(ILS-DI)	 created	 a	 set	 of	 rec-
ommendations	 that	 facilitate	
the	 integration	 of	 discovery	
interfaces	 with	 legacy	 ILSs,	
but	 does	 not	 define	 a	 concrete	
API.10	 Related,	 the	 ISO	 20775	
Holdings	standard	describes	an	
XML	 schema	 to	 describe	 the	
availability	of	items	across	sys-
tems,	but	does	not	describe	an	
API	for	accessing	them.11	Many	
ILSs	provide	a	Z39.50	interface	
in	 addition	 to	 their	 HTML-
based	 Web	 OPACs,	 but	 Z39.50	
does	 not	 provide	 standardized	
holdings	and	availability.12

Nevertheless,	 there	 is	 hope	
within	 the	 community	 that	
ILS	 vendors	 will	 react	 to	 their	
customers’	 needs	 and	 provide	
Web-services	 interfaces	 that	
implement	 these	 recommenda-
tions.	The	Jangle	project	provides	
an	API	 and	 an	 implementation	
of	 the	 ILS-DI	 recommendations	
through	a	Representations	State	
Transfer	(REST)–based	interface	
that	 uses	 the	 Atom	 Publishing	
Protocol	 (APP).13	 Jangle	 can	 be	
linked	to	legacy	ILSs	via	connec-
tors.	The	use	of	the	XML-based	
APP	prevents	direct	access	from	
client-side	JavaScript	code,	how-
ever.	In	the	future,	adoption	and	
widespread	 implementation	 of	
the	W3C	working	draft	on	cross-
origin	 resource	 sharing	 may	
relax	the	same-origin	restriction	
in	a	controlled	fashion,	and	thus	allow	access	to	APP	feeds	
from	JavaScript	across	domains.14

Screen-scraping	is	a	common	technique	used	to	over-
come	 the	 lack	 of	 Web-services	 interfaces.	 For	 instance,	
OCLC’s	WorldCat	Local	product	obtains	access	to	avail-
ability	 information	from	legacy	ILSs	in	a	similar	fashion	
as	our	MAJAX	2	service.15	Whereas	the	Web	services	used	
or	 created	 in	 our	 work	 exclusively	 use	 a	 REST-based	
model	and	return	data	 in	JSON	format,	 interfaces	based	
on	SOAP	(formerly	Simple	Object	Access	Protocol)	whose	
semantics	are	described	by	a	WSDL	specification	provide	
an	alternative	if	access	from	within	client-side	JavaScript	
code	is	not	required.16

HTML Written by Adapter

<table width=“340”><tr><td>

 </td><td>

 ISBN:

 <span class=“majax-linktocatalogmajax-showholdings”
 title=“i1843341662”>
</td></tr></table>

Display in Browser after Processing

Dahl, Mark., Banerjee, Kyle., Spalti,
Michael., 2006, Digital libraries :
integrating content and systems /
Oxford, Chandos Publishing,
xviii, 203 p.
ISBN: 1843341662 (hbk.)
1 copy is available

Figure 6. Example use of MAJAX widgets

OCLC	Grid	Services	provides	REST-based	Web-services	
interfaces	 to	 several	 databases,	 including	 the	 WorldCat	
Search	API	and	 identifier	 services	 such	as	xISBN,	xISSN,	
and	 xOCLCnum	 for	 FRBR-related	 metadata.17	 These	 ser-
vices	 support	 XML	 and	 JSON	 and	 could	 benefit	 from	
widgetization	for	easier	inclusion	into	client	pages.

The	 use	 of	 HTML	 markup	 to	 encode	 processing	
instructions	 is	 common	 in	 JavaScript	 frameworks,	 such	
as	YUI	or	Dojo,	which	use	<div>	 elements	with	custom-
defined	 attributes	 (so-called	 expando	 attributes)	 for	 this	
purpose.18	 Google	 Gadgets	 uses	 a	 similar	 technique	 as	
well.19	The	widely	used	Context	Objects	in	Spans	(COinS)		
specification	 exploits	 	 tags	 to	 encode	 OpenURL	

Table 6. Selected MAJAX classes

MAJAX Class Replacement
majax-marc-FFF-s
majax-marc-FFF
majax-syndetics-*
majax-showholdings
majax-showholdings-brief
majax-endnote
majax-ebook
majax-linktocatalog
majax-harvard-reference
majax-newline
majax-space

MARC field FFF, subfields
concatenation of all subfields in field FFF
book cover image
current holdings and availability information
…in brief format
RIS version of record
link to online version, if any
link to record in catalog
reference in Harvard style
newline
space

weB services ANd widGets For liBrArY iNFormAtioN sYstems | BAck ANd BAileY 85

techniques	 for	 the	 seamless	 inclusion	 of	 information	
from	 Web	 services	 into	 websites.	 We	 considered	 the	
cases	where	an	OPAC	is	either	the	target	of	such	integra-
tion	 or	 the	 source	 of	 the	 information	 being	 integrated.	
We	 focused	 on	 client-side	 techniques	 in	 which	 each	
user’s	browser	contacts	Web	services	directly	because	this	
approach	 lends	 itself	 to	 the	 creation	 of	 HTML	 widgets.	
These	widgets	allow	the	integration	and	customization	of	
Web	services	without	requiring	programming.	Therefore	
nonprogrammers	can	become	mash-up	creators.

We	 described	 in	 detail	 the	 functionality	 and	 use	 of	
several	widget	libraries	and	Web	services	we	built.	Table	
7	 provides	 a	 summary	 of	 the	 functionality	 and	 hosting	
requirements	 for	 each	 system	 discussed.	 Although	 the	
specific	 requirements	 for	 each	 system	 differ	 because	 of	
their	 respective	 nature,	 all	 systems	 are	 designed	 to	 be	
deployable	 with	 minimum	 effort	 and	 resource	 require-
ments.	This	low	entry	cost,	combined	with	the	provision	
of	a	high-level,	nonprogramming	interface,	constitute	two	
crucial	preconditions	for	the	broad	adoption	of	mash-up	
techniques	in	libraries,	which	in	turn	has	the	potential	to	

context	 objects	 in	 pages	 for	 processing	 by	 client-side	
extension.20	LibraryThing		uses	client-side	mash-up	tech-
niques	to	incorporate	a	social	tagging	service	into	OPAC	
pages.21	 Although	 their	 technique	 uses	 a	 <div>	 ele-
ment	 as	 a	 placeholder,	 it	 does	 not	 allow	 customization	
via	 classes—the	 changes	 to	 the	 content	 are	 encoded	 in	
custom-generated	 JavaScript	 code	 for	 each	 library	 that	
subscribes	to	the	service.	

The	 Juice	Project		 shares	our	goal	of	 simplifying	 the	
enrichment	 of	 OPAC	 pages	 with	 content	 from	 other	
sources.22	 It	provides	a	 set	of	 reusable	 components	 that	
is	 directed	 at	 JavaScript	 programmers,	 not	 librarians.	
In	 the	 computer-science	 community,	 multiple	 emerg-
ing	 projects	 investigate	 how	 to	 simplify	 the	 creation	 of	
server-side	data	mash-ups	by	end	user	programmers.23

■■ Conclusion

This	 paper	 explored	 the	 design	 space	 of	 mash-up	

Table 7. Summary of features and requirements for the widget libraries presented in this paper

Majax 1 Majax 2
Google Book
Classes

Tictoclookup
Classes

Web Service Screen Scraping III
Record Display

JSON Proxy for III
Record Display

Google Book Search
Dynamic Link API
books.google.com

ticTOC Cloud
Application
tictoclookup
.appspot.com

Hosted By Existing Millennium
Installation /screens

WSGI/Python Script
on libx.lib.vt.edu

Google, Inc. Google, Inc. via
Google App Engine

Data Provenance Your OPAC Your OPAC Google JISC (www.tictocs
.ac.uk)

Additional Cost N/A Can use libx.lib.vt.edu
for testing, must run
WSGI-enabled web
server in production

Free, but subject
to Google Terms of
Service

Generous free quota,
pay per use beyond
that

Same Domain
Restriction

Yes No No No

Widgetization majax.js: class-based: majax- classes gbsclasses.js:class-
based: gbs-

tictoc.js:class-based:
tictoc-

Requires JavaScript
programming

No No No No

Requires Additional
Server

No Yes
(Apache+mod_wsgi)

No No (if using GAE),
else need
Apache+mod_wsgi

III Bibrecord Display N/A N/A Yes Yes

III WebBridge
Integration

Yes Yes Yes Yes

86 iNFormAtioN tecHNoloGY ANd liBrAries | JuNe 2010

vastly	increase	the	reach	and	visibility	of	their	electronic	
resources	in	the	wider	community.

References

1. Nicole	Engard,	ed.,	Library Mashups—Exploring New Ways
to Deliver Library Data	(Medford,	N.J.:	Information	Today,	2009);	
Andrew	 Darby	 and	 Ron	 Gilmour,	 “Adding	 Delicious	 Data	 to	
Your	Library	Website,”	Information Technology & Libraries	28,	no.	
2	(2009):	100–103.

2. Monica	Brown-Sica,	“Playing	Tag	in	the	Dark:	Diagnosing	
Slowness	in	Library	Response	Time,”	Information Technologies &
Libraries	27,	no.	4	(2008):	29–32.

3. Dapper,	 “Dapper	 Dynamic	 Ads,”	 http://www.dapper	
.net/	 (accessed	 June	 19,	 2009);	 Yahoo!,	 “Pipes,”	 http://pipes	
.yahoo.com/pipes/	(accessed	June	19,	2009).

4. Jennifer	 Bowen,	 “Metadata	 to	 Support	 Next-Genera-
tion	 Library	 Resource	 Discovery:	 Lessons	 from	 the	 Extensible	
Catalog,	 Phase	 1,”	 Information Technology & Libraries	 27,	 no.	
2	 (2008):	 6–19;	 John	 Blyberg,	 “ILS	 Customer	 Bill-of-Rights,”	
online	 posting,	 Blyberg.net,	 Nov.	 20,	 2005,	 http://www.blyberg	
.net/2005/11/20/ils-customer-bill-of-rights/	 (accessed	 June	 18,	
2009).

5. Douglas	Crockford,	“The	Application/JSON	Media	Type	
for	 JavaScript	 Object	 Notation	 (JSON),”	 memo,	 The	 Inter-
net	 Society,	 July	 2006,	 http://www.ietf.org/rfc/rfc4627.txt	
(accessed	Mar.	30,	2010).

6. Google,	 “Who’s	 Using	 the	 Book	 Search	 APIs?”	 http://
code.google.com/apis/books/casestudies/	 (accessed	 June	 16,	
2009).

7. Innovative	Interfaces,	“Millennium	ILS,”	http://www.iii	
.com/products/millennium_ils.shtml	(accessed	June	19,	2009).

8. Joint	 Information	 Systems	 Committee,	 “TicTOCs	 Jour-
nal	 Tables	 of	 Contents	 Service,”	 http://www.tictocs.ac.uk/	
(accessed	June	18,	2009).

9. Mark	 Dahl,	 Kyle	 Banarjee,	 and	 Michael	 Spalti,	 Digital
Libraries: Integrating Content and Systems	 (Oxford,	United	King-
dom:	Chandos,	2006).

10. John	 Ockerbloom	 et	 al.,	 “DLF	 ILS	 Discovery	 Interface	
Task	 Group	 (ILS-DI)	 Technical	 Recommendation,”	 (Dec.	 8,	
2008),	 http://diglib.org/architectures/ilsdi/DLF_ILS_
Discovery_1.1.pdf	(accessed	June	18,	2009).

11. International	 Organization	 for	 Standardization,	
“Information	 and	 Documentation—Schema	 for	 Holdings	
Information,”	 http://www.iso.org/iso/catalogue_detail	
.htm?csnumber=39735	(accessed	June	18,	2009)

12. National	 Information	 Standards	 Organization,	 “ANSI/
NISO	Z39.50—Information	Retrieval:	Application	Service	Defi-
nition	 and	 Protocol	 Specification,”	 (Bethesda,	 Md.:	 NISO	 Pr.,	
2003),	 http://www.loc.gov/z3950/agency/Z39-50-2003.pdf	
(accessed	May	31,	2010).

13. Ross	 Singer	 and	 James	 Farrugia,	 “Unveiling	 Jangle:	
Untangling	Library	Resources	and	Exposing	Them	through	the	
Atom	Publishing	Protocol,”	The Code4Lib Journal	no.	4	(Sept.	22,	
2008),	 http://journal.code4lib.org/articles/109	 (accessed	 Apr.	
21,	2010);	Roy	Fielding,	“Architectural	Styles	and	the	Design	of	
Network-Based	Software	Architectures”	 (PhD	diss.,	University	
of	California,	Irvine,	2000);	J.	C.	Gregorio,	ed.,	“The	Atom	Pub-
lishing	Protocol,”	memo,	The	 Internet	Engineering	Task	Force,	
Oct.	 2007,	 http://bitworking.org/projects/atom/rfc5023.html	
(accessed	June	18,	2009).

14. World	 Wide	 Web	 Consortium,	 “Cross-Origin	 Resource	
Sharing:	 W3C	 Working	 Draft	 17	 March	 2009,”	 http://www	
.w3.org/TR/access-control/	(accessed	June	18,	2009).

15. OCLC	 Online	 Computer	 Library	 Center,	 “Worldcat	 and	
Cataloging	 Documentation,”	 http://www.oclc.org/support/
documentation/worldcat/default.htm	(accessed	June	18,	2009).

16. F.	Curbera	et	al.,	“Unraveling	the	Web	Services	Web:	An	
Introduction	to	SOAP,	WSDL,	and	UDDI,”	IEEE Internet Comput-
ing	6,	no.	2	(2002):	86–93.

17. OCLC	 Online	 Computer	 Library	 Center,	 “OCLC	 Web	
Services,”	 http://www.worldcat.org/devnet/wiki/Services	
(accessed	June	18,	2009);	International	Federation	of	Library	Asso-
ciations	and	Institutions	Study	Group	on	the	Functional	Require-
ments	 for	 Bibliographic	 Records,	 “Functional	 Requirements	 for	
Bibliographic	Records	:	Final	Report,”	http://www.ifla.org/files/
cataloguing/frbr/frbr_2008.pdf	(accessed	Mar.	31,	2010).

18. Yahoo!,	 “The	 Yahoo!	 User	 Interface	 Library	 (YUI),”	
http://developer.yahoo.com/yui/	 (accessed	 June	 18,	 2009);	
Dojo	Foundation,	“Dojo—The	JavaScript	Toolkit,”	http://www	
.dojotoolkit.org/	(accessed	June	18,	2009).

19. Google,	“Gadgets.*	API	Developer’s	Guide,”	http://code.
google.com/apis/gadgets/docs/dev_guide.html	 (accessed	
June	18,	2009).

20. Daniel	Chudnov,	“COinS	for	the	Link	Trail,”	Library Jour-
nal	131	(2006):	8–10.

21. LibraryThing,	 “LibraryThing,”	 http://www.librarything	
.com/widget.php	(accessed	June	19,	2009).

22. Robert	Wallis,	 “Juice—JavaScript	User	 Interface	Compo-
nentised	Extensions,”	http://code.google.com/p/juice-project/	
(accessed	June	18,	2009).

23. Jeffrey	 Wong	 and	 Jason	 Hong,	 “Making	 Mashups	 with	
Marmite:	Towards	End-User	Programming	for	the	Web”	Confer-
ence on Human Factors in Computing Systems, San Jose, California,
April 28–May 3, 2007: Conference Proceedings, Volume 2	 (New	
York:	 Association	 for	 	 Computing	 Machinery,	 2007):	 1435–44;	
Guiling	 Wang,	 Shaohua	 Yang,	 and	 Yanbo	 Han,	 “Mashroom:	
End-User	 Mashup	 Programming	 Using	 Nested	 Tables”	 (paper	
presented	 at	 the	 International	 World	 Wide	 Web	 Conference,	
Madrid,	 Spain,	 2009):	 861–70;	 Nan	 Zang,	 “Mashups	 for	 the	
Web-Active	User”	(paper	presented	at	the	IEEE	Symposium	on	
Visual	 Languages	 and	 Human-Centric	 Computing,	 Herrshing	
am	Ammersee,	Germany,	2008):	276–77.

