
ARTICLE

Stateful Library Analysis and Migration System (SLAM)
An ETL System for Performing Digital Library Migrations
Adrian-Tudor Pănescu, Teodora-Elena Grosu, and Vasile Manta

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2021
https://doi.org/10.6017/ital.v40i4.12035

Adrian-Tudor	Pănescu	(tudor@figshare.com)	is	Software	Engineer,	Figshare.	Teodora-Elena	
Grosu	(teodora@figshare.com)	is	Software	Engineer,	Figshare.	Vasile	Manta	
(vmanta@tuiasi.ro)	is	Professor,	Faculty	of	Automatic	Control	and	Computer	Engineering,	
Gheorghe	Asachi	Technical	University	of	Iași,	Romania.	©	2021.	

ABSTRACT	

Interoperability	between	research	management	systems,	especially	digital	libraries	or	repositories,	
has	been	a	central	theme	in	the	community	for	the	past	years,	with	the	discussion	focused	on	means	
of	enriching,	linking,	and	disseminating	outputs.	This	paper	considers	a	frequently	overlooked	aspect,	
namely	the	migration	of	records	across	systems,	by	introducing	the	Stateful	Library	Analysis	and	
Migration	system	(SLAM)	and	presenting	practical	experiences	with	migrating	records	from	DSpace	
and	Digital	Commons	repositories	to	Figshare.	

INTRODUCTION	

Bibliographic	record	repositories	are	a	central	part	of	the	research	venture,	playing	a	key	role	in	
both	the	dissemination	and	preservation	of	outcomes	such	as	journal	articles,	conference	papers,	
theses	and	dissertations,	monographs,	and,	more	recently,	datasets.	As	the	ecosystem	of	which	
these	are	a	part	of	has	evolved	at	a	sustained	pace	in	the	last	decade,	repositories	also	had	to	adapt	
while	ensuring	uninterrupted	service	to	the	research	community.	Nevertheless,	a	number	of	
developments,	both	at	the	local,	repository	level	and	at	a	more	general,	global	scale,	have	created	
the	necessity	of	considering	the	complete	replacement	of	certain	systems	with	new	repository	
solutions	which	are	better	suited	for	their	stakeholders’	requirements.	The	following	are	a	few	
such	developments:	

• The	need	to	consolidate	both	technological	solutions	and	operational	teams,	in	order	to	
reduce	running	costs	and	provide	a	unified	experience	for	end	users,	the	research	
personnel.1	

• Various	policies	require	researchers	to	provide	not	only	traditional	outputs,	such	as	journal	
articles	or	conference	papers,	but	also	the	datasets	and	other	materials	backing	up	
scientific	claims.	For	repositories,	this	means	both	adapting	to	larger	amounts	of	stored	
data	as	well	as	ensuring	that	the	metadata	dissemination	and	preservation	mechanisms	are	
suited	for	the	new	output	types	(e.g.,	while	full-text	search	is	a	common	feature	of	literature	
repositories,	it	cannot	be	easily	applied	to	numeric	datasets).2	

• Apart	from	extending	the	set	of	stored	outputs,	policies	have	also	created	new	
requirements	for	existing	record	types.	For	example,	the	Research	Excellence	Framework	
(REF)	in	the	UK	mandates	monitoring	open	access	(OA)	publishing	of	research	articles;	
thus,	institutional	repositories	are	no	longer	only	a	facilitator	of	green	open	access	(self-
archiving	of	records)	but	also	a	means	of	monitoring	compliance.3	This	requires	the	
implementation	of	new	logic	in	existing	repositories,	which	can	frequently	be	difficult,	
especially	when	faced	with	legacy	repository	code	bases	or	insufficient	technological	
resources.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 2

• Commercial,	contractual,	or	leadership	changes	can	also	create	the	need	to	replace	
repository	systems,	due	to	uncertainty	(see	the	acquisition	of	bepress	by	Elsevier)	or	
preference	for	certain	platforms.4	

While	these	developments	can	generate	the	requirement	to	switch	repositories	in	a	very	short	
span	of	time,	such	a	venture	needs	to	be	properly	planned	and	executed	in	order	to	ensure,	on	the	
one	hand,	that	no	records	are	lost	or	corrupted	and,	on	the	other	hand,	that	minimal	or	no	
downtime	is	caused.	Ideally,	migrations	would	also	be	an	opportunity	to	curate	and	enrich	the	
existing	corpus	by	consolidating	and	correcting	bibliographic	records.	

Between	2018	and	2019	the	research	team	has	performed	six	digital	library	migrations	from	
various	source	repository	solutions	(DSpace,	Digital	Commons,	custom	in-house	built	systems)	to	
the	Figshare	software	as	a	service	(SaaS)	repository	platform.	For	this	purpose,	SLAM,	an	extract,	
transform,	load	(ETL)	system,	was	developed	and	successfully	employed	in	order	to	migrate	over	
80,000	records.	This	article	describes	the	rationale	behind	SLAM,	its	design	and	implementation,	
and	the	practical	experiences	with	employing	it	for	repository	migrations.	A	number	of	future	
enhancements	and	open	problems	are	also	discussed.	

MOTIVATION	AND	BACKGROUND	OF	SLAM	

In	early	2018	Figshare	started	considering	the	suitability	of	its	repository	platform	for	storing	
content	which	is	usually	specific	to	institutional	repositories	(journal	articles,	theses,	
monographs),	along	with	non-traditional	research	outputs	(datasets	or	scientific	software).5	While	
feature-wise	this	was	validated	by	its	hosted	preprint	servers,	a	new	challenge	was	posed,	as	
stakeholders	choosing	to	use	Figshare	as	an	institutional	repository	also	had	to	transfer	all	
content	from	their	existing	systems.6	

Thus,	in	the	first	half	of	2018,	a	first	migration	was	performed,	transferring	records	from	a	
bepress	Digital	Commons	(DC)	repository	(https://www.bepress.com/products/digital-
commons/)		to	Figshare	(https://figshare.com).	From	a	technical	point	of	view,	a	Python	
(https://www.python.org/)	script	was	developed	for	this	migration;	this	script	parsed	a	comma-
separated	values	(CSV)	report	produced	by	DC	which	contained	all	metadata	and	links	to	the	
record	files.7	Using	this	information,	records	were	created	on	the	Figshare	repository	using	its	
application	programming	interface	(API)	(https://api.figshare.com).	While	this	migration	
succeeded,	the	naive	technical	solution	presented	a	number	of	issues:	

• Difficulties	with	the	metadata	crosswalk:	While	a	crosswalk	was	initially	set	up,	mostly	
based	on	the	definition	of	the	fields	in	the	source	and	target	repositories’	metadata	schema,	
issues	were	discovered	while	migrating	the	records,	mainly	generated	by	inconsistencies	in	
the	values	of	the	fields	across	the	corpus.	These	issues	were	fixed	on	a	case-by-case	basis,	
in	order	to	ensure	a	lossless	migration,	but	it	would	have	been	preferable	to	surface	them	
in	the	early	phases,	in	order	to	have	the	migration	script	mitigate	the	issues	in	the	final	run.	

• Running	the	migration	procedure	multiple	times:	The	migration	script	followed	mostly	an	
all	or	nothing	approach,	which,	at	each	run,	fully	migrated	all	records	between	repositories.	
This	is	undesirable,	as	there	was	a	need	to	run	the	script	only	for	those	records	that	failed	
to	migrate	(due,	for	example,	to	metadata	crosswalk	issues).	After	the	full	migration	was	
completed,	there	was	also	a	need	to	apply	only	some	minor	corrections	to	records,	without	
following	the	full	procedure.	This	was	not	possible,	since	the	script	would	recreate	all	
records	to	migrate	from	scratch	on	the	target	repository,	as	it	did	not	have	any	memory	of	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 3

previous	runs.	This	issue	was	also	amplified	by	the	fact	that	in	the	source	repository	
records	did	not	have	any	type	of	persistent	identifier	attached.	Thus,	additional	scripts,	
which	only	performed	the	corrections,	had	to	be	developed.	

• Ability	to	run	the	migration	procedure	with	minimal	supervision:	Like	most	migrations,	
this	instance	considered	a	large	number	of	records	(over	10,000)	and,	ideally,	the	process	
would	run	with	minimal	supervision	operators.	While	the	script	partially	accomplished	
this,	the	need	for	better	fault-tolerance	and	enhanced	logging	was	identified.	

Given	the	lessons	learned	from	the	initial	attempt	and	the	requirement	that	five	additional	
migrations	were	to	be	completed	between	October	2018	and	December	2019,	a	more	robust	
alternative	to	the	naive	migration	script	was	required.	This	alternative	had	to	adhere	to	three	
design	principles:	

1. Reusability:	The	system	should	be	usable	for	multiple	migrations	without	extensive	
additions	or	modifications.	Thus,	it	should	be	able	to	adapt	to	the	workflows	of	multiple	
repositories,	metadata	schemas,	and	other	concerns	specific	to	each	migration.	

2. Statefulness:	In	software	engineering,	programs	can	either	discard	knowledge	of	past	
transactions	or	preserve	it,	allowing	previous	results	and	operations	to	be	revisited.	
Migration	systems	benefit	from	a	stateful	architecture,	as	the	system	should	be	able	to	
perform	the	same	migration	multiple	times,	without	creating	duplicate	records	on	the	
target	repository,	while	allowing	for	incremental	record	improvements	with	each	run.	
Apart	from	allowing	for	corrections	to	be	applied	post-migration,	this	would	also	support	
the	prototyping	phase	(where	multiple	test	migrations	are	performed	in	order	to	validate	
the	metadata	crosswalks),	that	no	information	is	lost,	and	other	general	workflow	aspects.	

3. Fault	tolerance:	The	system	should	implement	fault	tolerance	mechanisms	at	all	levels,	
allowing	it	to	run	migrations	of	large	corpora	with	minimal	supervision	and,	at	the	same	
time,	implement	sufficient	logging	and	exception	handling	to	allow	operators	to	identify	
and	correct	potential	issues.	

Several	repository	migrations	are	represented	in	the	literature.	In	Van	Tuyl	et	al.,	the	authors	
describe	the	process	of	moving	from	a	DSpace	(https://duraspace.org/dspace)	to	a	Samvera	
(https://samvera.org)	system,	while	in	the	study	from	Do	Van	Chau	records	were	migrated	from	a	
solution	developed	in	house	to	DSpace.8	Both	instances	offer	valuable	insight	into	the	challenges	
posed	by	digital	library	migrations,	especially	at	the	level	of	bibliographic	metadata;	on	the	other	
hand,	both	works	are	focused	mostly	on	a	specific	use-case	and	do	not	propose	general	technical	
solutions	for	other	migrations.	It	is	interesting	to	note	that	the	migration	presented	by	Van	Tuyl	et	
al.	required	two	and	a	half	years	of	work,	while	SLAM	was	employed	to	carry	five	migrations	in	14	
months.	

The	Bridge2Hyku	toolkit	(https://bridge2hyku.github.io/toolkit)	is	a	collection	of	tools,	including	
a	module	for	the	Hyku	repository	solution	(https://hyku.samvera.org),	aimed	at	facilitating	the	
import	of	records	into	digital	libraries	based	on	this	software.	Similar	to	SLAM,	it	includes	an	
analysis	component,	useful	for	surfacing	and	correcting	potential	metadata	issues	during	the	
migration.	SLAM	provides	two	major	improvements	over	this	solution,	namely	it	defines	a	generic	
architecture	that	can	be	used	for	migrating	records	between	any	two	repositories,	while	also	
defining	a	procedural	migration	workflow	to	create	a	robust,	fault-tolerant,	and	extensible	
solution.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 4

Pygrametl	(http://chrthomsen.github.io/pygrametl/)	and	petl	(https://github.com/petl-
developers/petl)		are	two	open-source	frameworks	which	allow	the	defining	of	ETL	workflows;	
similar	to	SLAM,	the	processing	steps	are	defined	using	Python	functions.	These	projects	are	
targeted	towards	tabular	and	numeric	data,	making	them	unsuitable	for	the	transfer	of	files	and	
metadata	across	bibliographic	repositories.	

Singer	(https://www.singer.io/)	is	an	ETL	framework	similar	in	design	to	SLAM,	which	allows	the	
composing	of	various	data	sources	(or	taps)	and	targets,	in	order	to	move	data	between	them.	The	
two	downsides	of	this	implementation	are	that	it	is	focused	on	processing	data	specified	in	the	
JavaScript	Object	Notation	(JSON)	format,	which	is	not	always	available	for	bibliographic	
metadata,	and	that	it	does	not	facilitate	extending	the	pipeline	with,	for	example,	the	analysis	
facilities	targeted	by	SLAM.	

Hevo	Data	(https://hevodata.com/),	Pentaho	Kettle	(https://github.com/pentaho/pentaho-
kettle)	and	Talend	Open	Studio	(https://www.talend.com/products/talend-open-studio/)	are	ETL	
frameworks	which	employ	graphical	interfaces	to	allow	users	to	define	the	processing	workflows.	
While	such	functionality	was	not	initially	identified	as	a	requirement	for	our	planned	migration	
projects,	during	testing	it	became	obvious	that	providing	such	an	interface	could	bring	value	by	
having	repository	administrators	be	more	involved	in	defining	and	validating	the	processing	
applied	to	bibliographic	records,	as	the	administrators	possess	the	most	knowledge	of	the	
organisation	of	the	repositories.	A	downside	of	the	three	solutions	is	that	their	usage	requires	
commercial	agreements,	which	did	not	line	up	with	the	business	requirements	of	the	considered	
migrations.	

In	their	work,	Tešendić	and	Boberić	Krstićev	use	the	Pentaho	suite	in	order	to	implement	the	ETL	
component	of	a	Business	Intelligence	(BI)	solution	for	reporting	on	bibliographic	records.9	While	
the	structure	of	the	ETL	processing	is	different—the	authors	being	mostly	interested	only	on	
certain	aspects	of	the	metadata—this	work	provides	insights	into	the	types	of	analysis	that	could	
be	performed	while	migrating	records.	

SLAM’S	DESIGN	AND	IMPLEMENTATION	

Following	the	design	principles	previously	mentioned,	SLAM’s	architecture	was	devised	as	
presented	in	figure	1;	as	for	most	ETL	systems,	the	easiest	way	of	understanding	its	operation	is	
by	examining	the	data	flow.	

The	migration	workflow	proceeds	by	extracting	all	the	required	information	from	the	source	
repository.	This	could	be	achieved	in	multiple	ways,	such	as	harvesting	through	an	OAI-PMH	
(https://www.openarchives.org/pmh/)	endpoint	or	other	types	of	API,	using	the	bulk	export	
functionality	implemented	by	most	repository	systems,	or	even	by	crawling	the	HTML	markup	
describing	records,	similar	to	what	search	engines	do	in	order	to	discover	web	pages.	Once	this	
mechanism	has	been	established,	practical	experience	proves	that	it	is	beneficial	to	move	this	raw	
data	closer	to	the	destination	repository	(to	a	staging	area	as	depicted	in	figure	1).	While	this	
transfer	might	prove	cumbersome,	especially	for	large	corpora,	it	is	required	only	once.	Moreover,	
having	the	data	close	to	the	destination	repository	allows	faster	prototyping	and	testing	of	the	
migration	procedure,	as	network	latency	and	throughput	are	improved,	while	also	ensuring	that	
the	source	repository’s	functioning	is	not	affected	in	any	manner.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 5

	

Figure	1.	Main	components	and	data	flow	in	SLAM.	Areas	in	light	blue	are	currently	under	
development,	while	the	components	highlighted	in	green	need	to	be	adapted	for	each	migration.	

The	system	splits	the	data	to	be	migrated	into	four	logical	slices:	bibliographic	metadata,	record	files	
(e.g.,	PDFs	of	journal	articles),	persistent	identifiers	of	records	(PIDs,	such	as	Digital	Object	Identifiers	
or	handles),	and	usage	data	(views	and	downloads).		

Metadata	is	the	first	aspect	to	be	considered.	From	the	migration	point	of	view,	two	dimensions	
are	considered:	the	syntax	and	the	semantics.	Metadata	comes	in	various	formats,	such	as	CSV	or	
extensible	markup	language	(XML)	files,	but	most	of	these	can	be	easily	parsed	by	openly	available	
software	solutions.	Of	more	interest	are	the	semantics	of	the	metadata,	which	stem	from	the	
employed	schemas	or	ontologies	of	field	definitions;	examples	include	Dublin	Core	
(https://www.dublincore.org)	or	DataCite	(https://schema.datacite.org).	A	schema	crosswalk,	
which	describes	how	the	fields	in	the	target	repository	schema	should	be	populated	using	the	
source	data,	needs	to	be	set	up	when	transferring	records.	While	this	should	not	be	a	concern	if	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 6

the	two	repositories	use	the	same	schema,	for	the	performed	migrations	(described	below)	this	
was	not	the	case.	Other	reasons	for	setting	up	such	a	crosswalk	include	

• Loosely	defined	schema	in	at	least	one	of	the	repositories:	Certain	repository	systems	do	
not	specify	a	schema	with	clear	field	definitions,	validations	or	applicability.	By	having	the	
source	repository	administrators	help	with	setting	up	a	crosswalk,	the	migration	team	can	
avoid	issues	caused	by	incomplete	understanding	of	the	metadata.	

• Support	for	the	review	of	bibliographic	records:	Migrations	can	prove	to	be	an	opportunity	
for	reviewing	and	amending	the	records’	metadata;	for	example,	infrequently	used	fields	
can	be	completely	removed,	and	values	which	tend	to	confuse	end	users	can	be	moved	to	
other	fields.	

• Ensuring	that	a	record	on	how	the	migration	was	performed,	from	the	metadata	point	of	
view,	is	maintained.	The	crosswalk	is	considered	an	artefact	of	the	migration	and	is	
preserved	for	future	reference.	

In	SLAM,	the	crosswalk	is	tested	using	Elasticsearch,	“an	open-source	search	and	analytics	engine	
for	all	types	of	data,	including	textual,	numerical,	geospatial,	structured,	and	unstructured.”10	The	
setup	uses	the	crosswalk	to	create	Elasticsearch	documents	which	include	all	fields	as	they	would	
be	transferred	to	the	destination	repository.	A	Kibana	(https://www.elastic.co/products/kibana)	
dashboard	is	then	used	to	inspect	the	records’	metadata	and	perform	structured	searches	across	
the	corpus.	This	can	allow,	for	example,	discovering	fields	which	do	not	follow	a	consistent	pattern	
for	the	values,	as	seen	in	figure	2.	As	the	crosswalk	includes,	apart	from	the	field	mapping,	altering	
operations	that	can	be	performed	on	each	field,	this	analysis	can	facilitate	the	review	process	
described	by	the	second	point	above.	While	performing	actual	migrations,	a	number	of	
inconsistencies	that	the	source	repository	administrators	were	unaware	of	were	surfaced	by	
SLAM	and	corrected	in	the	target	repository.	This	is	commonplace	especially	in	large	corpora	
spanning	decades,	where	the	repository	metadata	workflows	and	schemas	changed	multiple	
times.	

Two	points	should	be	noted	about	this	component:	

• This	is	the	only	component	of	the	architecture	for	which	we	mention	an	actual	solution	
chosen	for	the	practical	implementation,	namely	Elasticsearch.	While	other	solutions	could	
have	been	chosen,	such	as	the	ones	included	in	the	Bridge2Hyku	toolkit,	Elasticsearch	
proved	to	be	the	best	fit	for	a	highly	automated	system	which	requires	analysis	capabilities;	
it	is	a	production-grade	solution	which	can	index	a	high	number	of	documents	and	support	
complex	queries,	while	also	providing	user-friendly	analytical	views	via	Kibana.	

• There	are	arguments	for	loading	the	metadata	in	the	analysis	component	without	having	it	
processed	through	the	crosswalk;	such	a	workflow	could	provide	further	insights	into	
various	issues	in	the	corpus	which	are	possibly	obscured	by	the	crosswalk.	Our	practical	
experiences	did	not	fully	justify	this	requirement,	while	the	actual	implementation	
provided	a	mean	to	test	the	crosswalk,	a	major	migration	component;	nevertheless,	we	are	
still	considering	the	possibility	of	having	to	load	the	raw	metadata	for	analysis	in	future	
migrations.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 7

	

Figure	2.	A	view	examining	the	possible	values	of	the	temporal	coverage	field	from	the	Dublin	Core	
schema	in	an	institutional	repository	corpus	to	be	migrated.	This	shows	variation	in	the	format	of	the	
values	(full	date,	year	only)	which	can	cause	issues	when	migrating	to	a	schema	which	applies	strict	
validation	on	date/time	values,	and	thus	need	to	be	handled	by	the	migration	harness.	This	view	is	
generated	using	Kibana	from	the	Elasticsearch	stack,	employed	by	SLAM	for	metadata	analysis	
purposes.	

With	the	crosswalk	set	up,	the	migration	module	can	be	completed.	From	a	logical	point	of	view,	it	
comprises	of	four	components:	

1. Metadata	processing:	This	component	uses	the	crosswalk	in	order	to	transfer	the	metadata	
to	the	target	repository.	

2. File	upload:	This	simply	uploads	all	files	associated	to	a	bibliographic	record	to	their	new	
locations.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 8

3. Usage	data	transfer:	Most	repositories	implement	counters	for	views	and	downloads	of	
records,	and	this	information,	if	available,	is	also	transferred	to	the	target	repository.	

4. Persistent	identifier	update:	If	the	records	are	using	persistent	identifiers,	such	as	Digital	
Object	Identifiers	(DOIs)	(https://doi.org/)	or	handles	(http://handle.net/),	these	are	
updated	to	resolve	to	the	new	locations	in	the	target	repository.	While	employing	SLAM	for	
migrations,	cases	in	which	persistent	identifiers	were	not	employed	on	source	repositories	
were	encountered,	with	records	being	accessible	only	via	uniform	resource	locators	
(URLs).	As	these	cannot	always	be	transferred	across	repositories,	because	each	software	
uses	its	own	URL	schema,	it	is	advisable	to	implement	persistent	identifiers	before	
migrations.	

	

Figure	3.	A	simplified	process	diagram	describing	the	steps	required	for	migrating	a	bibliographic	
record.	Each	successful	operation	is	recorded	in	a	persistent	database	which	is	used	in	subsequent	
runs	for	resuming	the	workflow.	For	example,	files	will	not	be	uploaded	each	time	the	script	is	run,	
thus	avoiding	duplication.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 9

One	of	the	architectural	goals	of	SLAM	is	statefulness	and	this	is	implemented	at	this	level,	the	
migration	module	being	designed	as	a	state	machine.	A	trivial	example	of	such	a	state	machine	is	
shown	in	figure	3.	The	state	machine	status	is	serialised	in	a	persistent	database,	with	each	
migration	run	deserializing	it	in	order	to	understand	which	operations	still	need	to	be	applied	for	
each	record.	Maintaining	such	a	registry	provides	several	other	benefits:	

• Facilitates	testing	and	prototyping:	This	was	the	original	reason	behind	the	architecture,	
useful	especially	before	the	metadata	analysis	functionality	was	implemented.	If	one	of	the	
operations	required	for	transferring	a	record	fails,	subsequent	runs	will	not	apply	all	steps,	
but	only	the	ones	that	did	not	complete.	As	for	each	record	a	separate	state	section	is	
maintained,	this	becomes	especially	useful	when	migrating	multiple	entries;	records	which	
failed	to	migrate	can	be	easily	isolated	and	subsequently	reprocessed.	

• Allows	creating	reports	on	the	migration:	These	are	used,	for	example,	to	validate	that	all	
records	were	indeed	transferred	to	the	target	repository.	

• Allows	the	migration	module	to	be	portable:	If	the	state	machine	serialisation	is	accessible,	
the	module	can	run	from	different	locations	and	at	different	points	in	time.	

The	first	architectural	principle	previously	presented	relates	to	the	reusability	of	SLAM	across	
migrations.	The	most	common	cause	of	divergence	between	migrations	is	related	to	the	
differences	between	repository	solutions;	SLAM	isolates	this	concern	by	using	two	connectors,	one	
for	the	source	and	one	for	the	target	repository.	These	connectors	translate	the	information	to	be	
migrated	to	and	from	SLAM’s	internal	data	model.	Thus,	the	source	connector	needs	to	be	able	to	
traverse	the	staging	storage	and	provide	SLAM	with	all	the	required	record	information,	while	the	
target	connector	will	upload	the	records	to	the	new	repository	(using	a	web-accessible	API	for	
example).	This	means	that	for	each	migration	only	three	parts	of	SLAM	need	to	be	adapted	(shown	
in	green	highlights	in	figure	1):	the	source	and	target	connectors,	and	the	metadata	crosswalk.	All	
other	components	can	remain	unchanged,	thus	reducing	the	technical	development	time.	

In	the	last	step	of	SLAM’s	workflow,	the	information	that	was	used	for	the	migration	is	sent	to	a	
long-term	preservation	storage,	in	order	to	ensure	that	it	remains	available	for	future	reference.	In	
our	implementation,	the	following	information	is	preserved:	

• Original	metadata	and	files,	as	extracted	from	the	source	repository.	
• Metadata	crosswalk	from	source	to	target	repository.	
• Migration	script	state	machine	serialisation.	

This	information	is	sufficient	for	understanding	the	exact	steps	applied	during	the	migration	and,	
if	required,	for	applying	certain	corrections	to	the	migrated	records	at	a	future	point	in	time.	

EMPLOYING	SLAM	FOR	REAL-WORLD	MIGRATIONS	

SLAM	was	used	for	performing	five	repository	migrations	in	one	year,	as	described	in	table	1;	the	
target	repository	in	all	five	cases	was	Figshare.	

	 	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 10

Table	1.	Overview	of	repositories	migrated	to	Figshare	using	SLAM.	

Source	
repository	
identifier	

Repository	
type	 Software	 Number	of	

records	

IR1	 Institutional	 DSpace	 37,000	
IR2	 Institutional	 DSpace	 25,605	
D1	 Data	 Custom	 334	(105	GB)	
IR3	 Institutional	 Digital	Commons	 2,275	
IR4	 Institutional	 DSpace	 15,474	

	

SLAM’s	viability	was	assessed	based	on	the	design	principles	outlined	above.	Reusability,	the	main	
rationale	behind	SLAM,	relates	to	being	able	to	reuse	as	much	of	the	system	as	possible	across	
migrations.	The	architecture	isolated	the	parts	that	required	adaption	from	one	migration	to	
another	(the	connectors	and	the	crosswalk);	the	time	spent	by	a	software	engineer	in	order	to	set	
up	these	was	monitored.	The	target	here	was	to	support	the	specialised	staff	on	making	domain-
specific	decisions,	especially	on	the	metadata	crosswalk,	by	reducing	the	time	needed	to	develop	
the	three	mentioned	components.	For	example,	the	Research	Excellence	Framework	(REF)	2021	
exercise	in	the	United	Kingdom	had	strict	metadata	requirements,	which	required	thorough	
testing	in	connection	with	current	research	information	systems	and	open	access	monitoring	
solutions.	Between	the	first	and	fourth	migration,	this	was	reduced	from	six	person-weeks	to	only	
two;	it	is	important	to	note	that	SLAM	evolved	between	the	migrations,	based	on	the	lessons	
learned	from	each	instance.	

Statefulness,	the	property	which	allows	re-processing	already-migrated	records,	is	covered	in	
SLAM	by	the	state	machine	implemented	in	the	migration	module,	which	is	persistent	and	can	be	
referenced	in	subsequent	runs.	All	the	migrations	in	table	1	required	supplementary	runs	after	all	
records	were	migrated,	most	frequently	in	order	to	fix	metadata	issues	discovered	after	the	full	
corpus	was	transferred.	For	example,	IR1	required	three	such	runs:	

1. The	first	run	fixed	a	number	of	issues	caused	by	omissions	in	the	metadata	schema	
crosswalk.	

2. The	second	run	enriched	the	metadata	using	information	taken	from	a	current	research	
information	system	(a	source	external	to	SLAM).	

3. The	last	run	corrected	the	usage	statistics	(view	and	downloads)	which	were	incorrectly	
imported	initially,	due	to	incomplete	understanding	of	the	source	repository’s	database.	

Due	to	SLAM’s	design,	no	issues	were	encountered	while	performing	these	runs,	as	no	records	
were	duplicated,	removed,	or	erroneously	modified;	this	was	manually	checked	by	the	repository	
administrators,	either	by	sampling	the	corpus	or	by	inspecting	each	migrated	record,	depending	
on	the	repository	size.	A	key	aspect	highlighted	by	the	requirement	to	reprocess	migrated	records	
relates	to	the	granularity	of	the	state	machine.	As	an	example,	in	IR3	a	second	run	required	
attaching	supplementary	files	to	a	number	of	migrated	records,	and	this	posed	a	challenge	due	to	
the	fact	that	the	state	machine	only	recorded	if	all	files	have	been	uploaded,	and	not	which	files	
were	successfully	added	to	the	record.	Thus,	the	state	machine	was	amended	to	record	the	
complete	list	of	record	files,	allowing	for	more	granular	control	over	this	processing	step.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 11

The	last	concern,	fault	tolerance,	was	achieved	by	applying	basic	software	engineering	principles,	
such	as	fail-fast	(report	migration	issues	as	soon	as	they	manifest),	the	implementation	of	proper	
exception	handling	(such	as	not	to	ignore	any	potential	issues),	and	addition	of	enhanced	logging	
in	order	to	provide	a	complete	record	of	the	processing	steps.	For	each	of	the	five	migrations,	
SLAM	ran	unsupervised,	reporting	at	the	end	of	each	run	the	records	for	which	an	issue	was	
encountered.	As	an	example,	in	the	IR4	migration,	SLAM	initially	failed	to	migrate	300	records.	
These	were	reported	to	the	operator,	and	after	minor	fixes	were	applied	to	the	metadata	
crosswalk	the	migration	completed	successfully.	Fault-tolerance	plays	a	central	role	in	ensuring	
that	during	migrations	no	data	is	lost	or	corrupted,	by	surfacing	any	edge-case	that	might	have	
been	missed	during	the	development	of	the	metadata	crosswalk,	repository	connectors,	or	core	
migration	module,	while	also	isolating	such	issues	to	the	records	exhibiting	them,	with	no	impact	
on	the	full	corpus.	

FUTURE	DIRECTIONS	

While	proven	viable	in	real-world	scenarios,	a	number	of	areas	which	can	benefit	from	further	
improvements	were	identified	through	an	analysis	of	the	current	implementation,	based	on	the	
experiences	of	the	five	migrations.	

First,	the	migration-specific	components	(connectors	and	metadata	crosswalk,	shown	in	green	in	
figure	1)	require	further	decoupling	from	the	core	migration	module.	For	example,	since	all	
migrations	considered	Figshare	as	a	target	repository,	this	connector	is	currently	strongly	
interlinked	with	the	core	module,	in	order	to	save	development	time	according	to	business	
requirements	and	migration	timelines.	Further	decoupling	will	ensure	that	the	core	migration	
module’s	design	is	not	influenced	in	any	way	by	the	repository’s	architecture	and	capabilities.	
Completing	this	work	will	also	allow	making	the	source	code	of	our	current	implementation	of	
SLAM	publicly	available,	as	in	its	current	state	it	is	making	use	of	proprietary	components	which	
are	employed	across	other	parts	of	the	Figshare	platform.	Aside	from	these,	the	source	code	
includes	straightforward	Python	modules	and	makes	use	of	open	technologies	such	as	
Elasticsearch,	which	will	allow	the	larger	community	to	adapt	and	use	SLAM	with	other	source	or	
target	repositories,	or	even	enhance	it	with	further	functionality.	Nevertheless,	the	general	
architecture	can	already	be	implemented	in	any	other	way	or	using	a	different	set	of	technologies.	

Further	to	this	point,	the	metadata	crosswalk	is	currently	influenced	by	the	logic	and	design	of	the	
migration	module;	for	example,	it	uses	the	same	procedural	programming	language,	Python,	as	all	
other	components	of	SLAM.	Employing	technologies	such	as	eXtensible	Stylesheet	Language	
Transformations	(XSLT,	for	metadata	in	XML	formats)	or	SPARQL	(for	RDF)	will	help	involve	staff	
with	in-depth	domain	knowledge	further	in	the	migration,	for	whom	these	technologies	are	more	
familiar;	moreover,	such	a	design	does	not	require	any	knowledge	of	SLAM’s	internal	processes.	

Second,	the	five	completed	migrations	highlighted	the	importance	of	reviewing,	correcting,	and	
enhancing	records	during	the	migration.	For	example,	when	migrating	a	journal	article’s	version	
of	record	in	an	open	access	context,	special	care	needs	to	be	given	to	its	metadata	(title,	authors,	
journal	name,	publication	date	or	persistent	identifier),	as	mistakes	can	generate	issues	with	
scholarly	search	engines	which	will	not	be	able	to	link	the	published	version	to	the	repository	one.	
A	possible	input	for	comparing	and	correcting	existing	metadata	is	the	information	contained	by	
current	research	information	systems,	which	aggregate	information	from	various	databases,	such	
as	Scopus	(https://www.scopus.com/).	If	access	to	such	systems	is	not	available,	it	is	possible	to	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 12

source	metadata	from	open	directories,	such	as	Crossref	(https://www.crossref.org/).	This	
component	is	included	in	the	architectural	overview	presented	in	figure	1.	

The	third	area	in	need	of	improvement	relates	to	testing	the	outcome	of	the	migrations.	As	
mentioned	in	the	previous	section,	this	is	currently	a	manual	process	and	can	be	both	
cumbersome	and	error	prone.	While	in	line	with	SLAM’s	philosophy	of	automating	every	step	of	
the	process,	implementing	a	mechanism	for	validating	the	end	migration	result	could	also	provide	
stronger	assurances	on	the	completeness	and	correctness	of	the	migration.	

Finally,	SLAM’s	preservation	module	requires	further	development	in	order	to	ensure	that	it	is	
fully	automated;	moreover,	the	possibility	of	adding	a	manifest	explaining	the	migration	artefacts	
needs	to	be	considered,	as	knowledge	on	the	organisation	of	the	information,	which	is	specific	to	
each	migration,	might	be	lost	in	time.	

It	is	important	to	note	that	architecture-wise,	which	was	the	main	concern	of	this	work,	we	did	not	
identify	any	major	shortcomings	in	SLAM—most	issues	discussed	above	focus	on	implementation	
issues.	SLAM’s	modular	design	will	facilitate	any	additions	to	the	system,	required	to	support	new	
use	cases	and	migrations.	

CONCLUSIONS	

This	paper	describes	SLAM,	the	Stateful	Library	Analysis	and	Migration	system,	an	ETL	software	
architecture	for	performing	digital	library	migrations.	What	differentiates	such	transfers	from	
other	data	migrations	is	the	required	domain	knowledge,	the	particularities	of	the	target	and	
source	repositories	in	the	context	of	the	scholarly	communications	ecosystem,	and	the	structure	of	
the	migration	package,	which	includes,	among	others,	bibliographic	metadata,	record	files,	and	
usage	data.	Digital	libraries	are	an	integral	part	of	the	cultural	heritage;	thus,	any	migration	needs	
to	ensure	that	no	information	is	lost	or	corrupted	in	the	process.	

The	main	contributions	brought	by	SLAM	are	

1. It	includes	an	analysis	module	based	on	an	industry	standard	search	engine,	Elasticsearch,	
which	allows	operators	to	analyse	the	metadata	and	schema	crosswalk,	facilitating	the	
decisions	required	for	properly	migrating	information	between	repositories;	

2. It	implements	a	serializable	state	machine	in	its	migration	module,	which	facilitates	
running	the	migration	procedures	multiple	times	without	duplicating,	removing,	or	
corrupting	records,	while	allowing	for	corrections	to	be	applied	to	the	corpus;	

3. It	follows	a	modular	design,	which	enhances	its	reusability	across	multiple	migrations,	by	
reducing	the	development	time	required	for	adapting	the	system	to	new	source	and	target	
repositories.	

SLAM	applies	established	software	engineering	principles	in	order	to	provide	a	trustworthy	tool	
to	digital	library	administrators	that	need	to	transfer	content	between	systems.	Its	design	was	
both	influenced	and	validated	by	real-world	applications,	having	been	used	for	five	different	
migrations	with	various	requirements	and	targeted	repository	solutions.	

Future	work	will	consider	enhancing	SLAM’s	metadata	analysis	and	enrichment	capabilities	as	
well	as	the	collection	of	further	data	points	on	its	performance	and	possible	improvement	
directions	while	using	it	for	new	digital	library	migrations.	

INFORMATION TECHNOLOGY AND LIBRARIES DECEMBER 2021

STATEFUL LIBRARY ANALYSIS AND MIGRATION SYSTEM (SLAM) | PĂNESCU, GROSU, AND MANTA 13

ENDNOTES	

1	David	Scherer	and	Dan	Valen,	“Balancing	Multiple	Roles	of	Repositories:	Developing	a	
Comprehensive	Repository	at	Carnegie	Mellon	University,”	Publications	7,	no.	2	(2019),	
https://doi.org/10.3390/publications7020030.	

2	Directorate-General	for	Research	&	Innovation,	“H2020	Programme—Guidelines	to	the	Rules	on	
Open	Access	to	Scientific	Publications	and	Open	Access	to	Research	Data	in	Horizon	2020,”	
version	3.2,	March	21,	2017,	
https://web.archive.org/web/20180826235248/http://ec.europa.eu/research/participants/
data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-pilot-guide_en.pdf;	National	
Institutes	of	Health,	“NIH	Public	Access	Policy	Details,”	last	updated	March	25,	2016,	
https://web.archive.org/web/20180421191423/https://publicaccess.nih.gov/policy.htm.	

3	The	REF,	“Research	Excellence	Framework,”	
https://web.archive.org/web/20191215143352/https://www.ref.ac.uk/.	

4	Roger	C.	Schonfeld,	“Elsevier	Acquires	bepress,”	Scholarly	Kitchen	(blog),	August	2,	2017,	
https://web.archive.org/web/20191212183253/https://scholarlykitchen.sspnet.org/2017/0
8/02/elsevier-acquires-bepress/.	

5	Alan	Hyndman,	“Announcing	the	figshare	Institutional	Repository…	and	Data	Repository…	and	
Thesis	Repository…	Really	Just	an	All-in-One	Next	Gen	Repository,”	Figshare	(blog),	March	22,	
2018,	
https://figshare.com/blog/Announcing_the_figshare_Institutional_Repository_and_Data_Repos
itory_and_Thesis_Repository_really_just_an_all-in-one_next_gen_repository/389.	

6	Alan	Hyndman,	“Figshare	to	Power	ChemRxiv™	Beta,	New	Chemistry	Preprint	Server	for	the	
Global	Chemistry	Community,”	Figshare	(blog),	August	14,	2017,	
https://web.archive.org/web/20191218194210/https:/figshare.com/blog/_/322.	

7	bepress,	“Digital	Commons	Dashboard,”	
https://web.archive.org/web/20191218192450/https://www.bepress.com/reference_guide_
dc/digital-commons-dashboard/.	

8	Steve	Van	Tuyl	et	al.,	“Are	We	Still	Working	on	This?	A	Meta-retrospective	of	a	Digital	Repository	
Migration	in	the	Form	of	a	Classic	Greek	Tragedy	(in	Extreme	Violation	of	Aristotelian	Unity	of	
Time),”	code{4}lib	Journal	no.	41	(August,	9,	2018),	
https://journal.code4lib.org/articles/13581;	Do	Van	Chau,	“Challenges	of	Metadata	Migration	
in	Digital	Repository:	A	Case	Study	of	the	Migration	of	DUO	to	Dspace	at	the	University	of	Oslo	
Library”	(master’s	thesis,	University	of	Oslo,	2011),	http://hdl.handle.net/10642/990.	

9	Danijela	Tešendić	and	Danijela	Boberić	Krstićev,	“Business	Intelligence	in	the	Service	of	
Libraries,”	Information	Technology	and	Libraries	38,	no.	4	(2019),	
https://doi.org/10.6017/ital.v38i4.10599.	

10	“What	Is	Elasticsearch?”	Elasticsearch	BV,	
http://web.archive.org/web/20191207032247/https://www.elastic.co/what-
is/elasticsearch.	

