
Articles

A Comprehensive Approach to
Algorithmic Machine Sorting of
Library of Congress Call Numbers

Scott Wagner and
Corey Wetherington

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 62

Scott Wagner (smw284@psu.edu) is Information Resources and Services Support Specialist,
Penn State University Libraries. Corey Wetherington (cjw36@psu.edu) is Open and Affordable
Course Content Coordinator, Penn State University Libraries.

ABSTRACT

This paper details an approach for accurately machine sorting Library of Congress (LC) call numbers
which improves considerably upon other methods reviewed. The authors have employed this sorting
method in creating an open-source software tool for library stacks maintenance, possibly the first
such application capable of sorting the full range of LC call numbers. The method has potential
application to any software environment that stores and retrieves LC call number information.

BACKGROUND

The Library of Congress Classification (LCC) system was devised around the turn of the twentieth
century, well before the advent of digital computing. 1 Consequently, neither it nor the system of
Library of Congress (LC) call numbers which extend it were designed with any consideration to
machine readability or automated sorting.2 Rather, the classification was formulated for the
arrangement of a large quantity of library materials on the basis of content, gathering like items
together to allow for browsing within specific topics, and in such a way that a new item may
always be inserted (interfiled) between two previously catalogued items without disruption to the
overall scheme. Unlike, for instance, modern telephone numbers, ISBNs, or UPCs—identifiers
which pair an item with a unique string of digits having a fixed and regular format, largely
irrespective of any particular characteristics of the item itself—LC call numbers specify the
locations of items relative to others and convey certain encoded information about the content of
those items.

The Library of Congress summarizes the essence of the LCC in this way:

The system divides all knowledge into twenty-one basic classes, each identified by a single
letter of the alphabet. Most of these alphabetical classes are further divided into more
specific subclasses, identified by two-letter, or occasionally three-letter, combinations. For
example, class N, Art, has subclasses NA, Architecture; NB, Sculpture, ND, Painting; as well
as several other subclasses. Each subclass includes a loosely hierarchical arrangement of
the topics pertinent to the subclass, going from the general to the more specific. Individual
topics are often broken down by specific places, time periods, or bibliographic forms (such
as periodicals, biographies, etc.). Each topic (often referred to as a caption) is assigned a
single number or a span of numbers. Whole numbers used in LCC may range from one to
four digits in length, and may be further extended by the use of decimal numbers. Some
subtopics appear in alphabetical, rather than hierarchical, lists and are represented by

mailto:smw284@psu.edu
mailto:cjw36@psu.edu

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 63
https://doi.org/10.6017/ital.v38i4.11585

decimal numbers that combine a letter of the alphabet with a numeral, e.g., .B72 or .K535.
Relationships among topics in LCC are shown not by the numbers that are assigned to
them, but by indenting subtopics under the larger topics that they are a part of, much like
an outline. In this respect, it is different from more strictly hierarchical classification
systems, such as the Dewey Decimal Classification, where hierarchical relationships among
topics are shown by numbers that can be continuously subdivided.3

As this description suggests, LCC cataloging practices can be quite idiosyncratic and inconsistent
across different topics and subtopics, and sorting rules for properly shelf-ordering LC call
numbers can be correspondingly complex, as we will see below.4

For the purposes of discussion in what follows, we divide LC call number strings into three
principal substrings: the classification, the Cutter, and what we will term the specification. The
classification categorizes the item on the basis of its subject matter, following detailed schedules of
the LCC system published by the Library of Congress; the Cutter situates the item alongside others
within its classification (often on the basis of its title and/or author5); and the specification
distinguishes a specific edition, volume, format, or other characteristic of the item from others
having the same author and title:

HC125⏞
𝑎

.G25313⏞
𝑏

 1997⏞
𝑐

In the above example, the classification string (a) denotes the subject matter (in this case, General
Economic History and Conditions of Latin America), the Cutter string (b) locates the book within
this topic on the basis of author and/or title (following a specific encoding process), and the
specification string (c) denotes the particular edition of the text (in this case, by year). Each of
these general substrings may contain further substrings having specific cataloging functions, and
though each is constructed following certain rigid syntactical rules, a great deal of variation in
format may be observed within the basic framework. The following is an inexhaustive summary of
the basic syntax of each of the three call number components:

• The classification string always begins with one to three letters (the class/subclass), almost
always followed by one to four digits (the caption number), possibly including an
additional decimal. The classification may also contain a date or ordinal number following
the caption number.

• The beginning of the Cutter string is always indicated by a decimal point followed by a
letter and at least one digit. While the majority of call numbers contain a Cutter, it is not
always present in all cases. Among the sorting challenges posed by LC call numbers, we
note in particular the “double Cutter”—a common occurrence in certain subclasses—
wherein the Cutter string changes from alphabetic to numeric, then back to alphabetic, and
finally again to numeric. Triple Cutters are also possible, as are dates intervening between
Cutters. Certain Cutter strings (e.g., in juvenile fiction) end with an alphabetic “work mark”
composed of two or more letters.

• The specification string (which may be absent on older materials) is always last, and
usually contains the date of the edition, but may also include volume or other numbering,
ordinal numbers, format/part descriptions (e.g., “DVD,” “manual,” “notes”), or other
distinguishing information.

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 64

Figure 1 shows example call numbers, all found within the catalog of Penn State University
Libraries, suggesting the wide variety of possibilities:

Figure 1. Example call numbers.

As one might expect given this irregularity in syntax, systematic machine-sorting of LC call
numbers is by no means trivial. To begin with, sorting procedures within the LCC system are to a
certain degree contextual—that is, the sorter must understand how a given component of a call
number operates within the context of the entire string in order to determine how it should sort.
Both integer and decimal substrings appear in LC call numbers, so that a numeral may properly
precede a letter in one part of a call number (a ‘1’ sorts before an ‘A’ in the classification portion,
for example: H1 precedes HA1), while the contrary may occur in another part (within the Cutter, in
particular, an ‘A’ may well precede a ‘1’: HB74.P65A2 precedes HB74.P6512). Similarly, letters
may have different sorting implications depending on where and how they appear. Compare, for
instance, the call numbers V23.K4 1961 and U1.P32 v.23 1993/94. The V in the former
denotes the subclass of general nautical reference works and simply sorts alphabetically, whereas
the v in the latter call number functions in part as an indicator that the numeral 23 refers to a
specific volume number and is to be sorted as an integer rather than a decimal. Such contextual
cues are often tacitly understood by a human sorter, but can present considerable challenges
when implementing machine sorting procedures. Furthermore, the lack of uniformity or regularity
in the format of call number strings poses various practical obstacles for machine sorting. Taken
together, these assorted complexities suggest the insufficiency of a single alphanumeric sorting
procedure to adequately handle LC call numbers as unprocessed, plain text strings.

LITERATURE REVIEW

A thorough review of information science literature revealed little formal discussion of the
algorithmic sorting of LC call numbers. If the topic has been more widely addressed in the
scholarly or technical literature, we were unable to discover it. Nevertheless, the general problem
appears to be fairly well known. This is evident both from informal online discussions of the topic
(e.g., in blog posts, message board threads, and coding forums) and from the existence of certain
features of library management system (LMS) and integrated library system (ILS) software
designed to address the issue. In this section we examine methods proffered by some of these
sources, and detail how each fails to fully account for all aspects of LC call number sorting.

B1190 1951 no Cutter string

DT423.E26 9th.ed. 2012 compound specification
E505.5 102nd.F57 1999 ordinal number in classification
HB3717 1929.E37 2015 date in classification
KBD.G189s no caption number, no specification
N8354.B67 2000x date with suffix

PS634.B4 1958-63 hyphenated range of dates
PS3557.A28R4 1955 “double Cutter”
PZ8.3.G276Lo 1971 Cutter with “work mark”
PZ73.S758345255 2011 lengthy Cutter decimal

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 65
https://doi.org/10.6017/ital.v38i4.11585

In a brief article archived online, Conley and Nolan outline a method for sorting LC call numbers
through the use of function programming in Microsoft Excel. 6 Given a column of plain-text LC call
numbers, their approach entails successive processing of the call numbers across several
spreadsheet columns with the aim of properly accounting for the sorting of integers. The fully-
processed strings are then ultimately ready for sorting in the rightmost column using Excel’s built-
in sorting functionality. We note that Conley and Nolan’s method (hereafter “CNM”) only attempts
to sort what the authors refer to as the “base call number” (i.e., the classification and Cutter
portions), and does not address the sorting of “volume numbers, issue numbers, or sheet
numbers” (what we refer to here as the “specification”). 7

CNM stems from the tacit observation that ordinary, single-column sorting of LC call numbers is
clearly inadequate in an environment like Excel’s. For instance, in the following example, standard
character-by-character sorting fails at the third character position, since

PZ30.A1 erroneously sorts before
PZ7.A1

(as 3 is compared to 7 in the third character position), contrary to the correct order (7 before 30).
To address this, CNM normalizes the numeric portion of the class number with leading zeros so
that each numeric string is of equal length, ensuring that the proper digits are compared during
sorting. This entails a transformation,

PZ30.A1 PZ0030.A1

PZ7.A1 PZ0007.A1

following which the strings will in fact sort correctly in an Excel column. This technique appears
adequate until we compare call numbers having subclasses of different length:

P180.A1 P0180.A1

PZ30.A1 PZ0030.A1

Here, while standard Excel sorting will in fact properly order the resulting strings, in other
applications, depending on the sorting hierarchy employed, sorting may fail in the second position
if letters are sorted before numbers. Hierarchy aside, it is not difficult to see the potential issues
that may arise from sorting unlike portions of the call number string against one another in this
way, particularly when comparing characters within the Cutter string or in situations involving a
“double Cutter.” For instance, the call numbers

B945.D4B65 1998 and
B945.D41 1981b

are listed here in their proper sorting order, but are in fact sorted in reverse by CNM when, in the
eighth character position, 1 is sorted before B in accordance with Excel’s default sorting priority.
This again illustrates an essential problem of character-by-character sorting: in certain substrings
we require a letters-before-numbers sorting priority, while in others a numbers-before-letters
order is needed. This impasse makes clear that no single-column sorting methodology can succeed
for all types of LC call numbers without significant modification to the call number string.

In a blog post, Dannay observed that CNM does not account for certain call number formats,
particularly those of legal materials within the K classification having 3-letter class strings. 8 (The

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 66

same would also be true in the D classification, where 3-letter strings also appear.) Although minor
modification of portions of the function code (e.g., replacing certain ‘2’s with ‘3’s) would be
sufficient to alleviate this particular issue, Dannay proposed instead to employ placeholder
characters to normalize the classification string and avoid instances of alphabetic characters being
compared against numeric ones. Dannay’s Method (DM) normalizes various parts of the
classification string, including the subclass, caption, and decimal portions:

Q171.T78 Q**0171.0.T78

QA9.R8 QA*0009.0.R8

(Here, of course, it is imperative that the chosen placeholder character sort before all letters in the
sorting hierarchy.) DM thus successfully avoids the issue of comparing classification strings of
unequal length or format.

Nevertheless, despite the improvements of DM over CNM, both approaches are ultimately unable
to properly process certain types of common LC call numbers. For example, call numbers with
dates preceding the Cutter (e.g., GV722 1936.H55 2006) and call numbers without Cutters
(e.g., B1205 1958) both result in errors, as do those containing the aforementioned “double
Cutters.” Furthermore, as we previously noted, neither DM nor CNM were designed to handle any
portion of the specification string following the Cutter, where the presence of ordinal and volume-
type numbering is commonplace. Hence neither method is able to properly order the quite
ordinary pair of call numbers AC1.G7 v.19 and AC1.G7 v.2, since the first digit of each’s
volume number is compared and ordered numerically (i.e., character-by-character), resulting in a
mis-sort. Though neither DN nor CNM is ultimately comprehensive (nor designed to be), both
methods contain valuable insights and strategies that inform our own approach to the problem.

SOFTWARE REVIEW

Available software solutions for sorting LC call numbers appear to be nearly as scant as literature
on the subject. While GitHub contains a handful of programs that attempt to address the problem,
we found none which could be considered comprehensive. Table 1 is a summary of those
programs we discovered and were able to examine.

The “sqlite3-lccn-extension” program is an extension for SQLite 3 which provides a collation for
normalizing LC call numbers, executing from a SQLite client shell. We discovered several
limitations in its ability to sort certain call number formats similar to those discussed above in the
literature review. For instance, the program cannot correctly sort specification integers (e.g., it
sorts v.13 before v.3) or call numbers lacking Cutter strings (e.g., it sorts
B 1190.A1 1951 before B 1190 1951). We found similar issues with “js-loc-callnumbers,” a
JavaScript program with a web interface into which a list of call numbers can be pasted. The
program transforms the call numbers into normalized strings, which are then sorted and
displayed to the user. However, we observed that it does not account for dates or ordinal numbers
in the classification string, nor can it correctly sort call numbers lacking caption numbers.9

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 67
https://doi.org/10.6017/ital.v38i4.11585

Program and Author App-Type,
Interface

Repository URL Last Update

“sqlite3-lccn-extension”
by Brad Dewar

database
extension,
shell

https://github.com/macdewar/sqlite3-
lccn-extension

Dec. 2013

“js-loc-callnumbers” by
Ray Voelker

JavaScript,
web

https://github.com/rayvoelker/js-loc-
callnumbers

Feb. 2017

“Library-of-Congress-
System” by Luis Ulloa

Python
tutorial,
command
line

https://github.com/ulloaluis/Library-of-
Congress-System

Sep. 2018

“lcsortable” by mbelvadi2 Google
Sheets
script

https://github.com/mbelvadi2/lcsortabl
e

May 2017

“library-callnumber-lc” by
Library Hackers

Perl,
Python

https://github.com/libraryhackers/libra
ry-callnumber-
lc/tree/master/perl/Library-
CallNumber-LC

Dec. 2014

“lc_call_number_compare”
by SMU Libraries

JavaScript,
command
line

https://github.com/smu-
libraries/lc_call_number_compare

Dec. 2016

“lc_callnumber” by Bill
Dueber

Ruby https://github.com/billdueber/lc_callnu
mber

Feb. 2015

Table 1. List of GitHub software involving LC call number sorting.

Several of the programs are rather narrow in scope. The “lcsortable” script is a Google Sheets
scheme for normalizing LC call numbers into a separate column for sorting, very much like CNM
and DM. Its normalization routine appears to conflate decimals and integers, though, leading to
transformations such as

HF5438.5.P475 2001 HF5438.0005.P04752001

which would clearly result in a great deal of incorrect sorting across a wide array of LC call
number formats. The command-line-based Python program “library-callnumber-lc” processes a
call number and returns a normalized sort key, but is not intended to store or sort groups of call
numbers. It cannot adequately handle compound specifications or Cutters containing consecutive
letters (e.g., S100.BC123 1985), and does not appear to preserve the demarcation between a
caption integer and caption decimal (i.e., the decimal point), thereby commingling integer and
decimal sorting logic. Lastly, “Library-of-Congress-System” is a tutorial/training program written
in Python that runs from the command line and supplies a list of call numbers for the user to sort.
It does not draw call numbers from a static collection nor allow call numbers to be input by the
user; rather, it randomly generates call numbers within certain parameters and following a

https://github.com/macdewar/sqlite3-lccn-extension
https://github.com/macdewar/sqlite3-lccn-extension
https://github.com/rayvoelker/js-loc-callnumbers
https://github.com/rayvoelker/js-loc-callnumbers
https://github.com/ulloaluis/Library-of-Congress-System
https://github.com/ulloaluis/Library-of-Congress-System
https://github.com/mbelvadi2/lcsortable
https://github.com/mbelvadi2/lcsortable
https://github.com/libraryhackers/library-callnumber-lc/tree/master/perl/Library-CallNumber-LC
https://github.com/libraryhackers/library-callnumber-lc/tree/master/perl/Library-CallNumber-LC
https://github.com/libraryhackers/library-callnumber-lc/tree/master/perl/Library-CallNumber-LC
https://github.com/libraryhackers/library-callnumber-lc/tree/master/perl/Library-CallNumber-LC
https://github.com/smu-libraries/lc_call_number_compare
https://github.com/smu-libraries/lc_call_number_compare
https://github.com/billdueber/lc_callnumber
https://github.com/billdueber/lc_callnumber

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 68

prescribed pattern. As such, we were not able to satisfactorily test its sorting capabilities for the
kind of use-case scenario under discussion.

We did not evaluate the remaining two GitHub programs, “lc_call_number_compare” and
“lc_callnumber,” as we could not get the former, a JavaScript ES6 module, to execute, and as the
latter, a Ruby application which we did not attempt to install, evidently remains unfinished: its
GitHub documentation lists “Normalization: create a string that can be compared with other
normalized strings to correctly order the call numbers” as the among tasks yet to be completed.

In addition to these open resources, we examined LC sorting capability within the commercial
LMS/ILS software we had at hand. The MARC (Machine-Readable Cataloging) 21 protocol, a
widely used international standard for formatting bibliographic data, provides a specific syntax
for cataloging LC call numbers for the purposes of machine parsing.10 Symphony WorkFlows, the
LMS licensed by Penn State University Libraries from SirsiDynix (and thus the only one available
for our direct examination), contains within its search module a call number browsing feature
which attempts to sort call numbers in shelving order via “Shelving IDs,” call number strings
rendered from each item’s MARC 21 “050” data field for sorting purposes. While these Shelving
IDs are not visible within WorkFlows (that is, they operate in the background), they can be
accessed as plain text strings via BLUEcloud Analytics, a separate, SirsiDynix-branded data
assessment and reporting tool peripheral to the LMS. Examination of these sort keys revealed
integer normalization strategies similar to those of DM and CNM, with additional processing of
volume-type numbering within the specification string. However, these Shelving IDs are similarly
unable to correctly sort “double Cutter” substrings and other syntactic complexities, such as
ordinal numbers appearing in the classification. The following Shelving ID transformations of two
call numbers in the Penn State University Libraries catalog, for instance, fail to properly account
for the ordinal numbers which appear within the classification:

E507.5 36th.V47 2003 E 000507.5 36TH.V47 2003
E507.5 5th.C36 2000 E 000507.5 5TH.C36 2000

Consequently, and as expected, these two call numbers sort incorrectly within WorkFlows’ call
number browsing panes.11

PROPOSED PARSING AND SORTING METHODOLOGY

Given the sorting difficulties inherent in the single-column approaches outlined above, we suggest
a multi-column, tiered sorting procedure in which only like portions of the call number are
compared to one another. This requires the call number to be processed, its various components
identified, and each component appropriately sorted according to its specific type. This, in turn,
requires a sorting algorithm which can identify like substrings by scanning for specific patterns
and cues.

“Shelf reading” is a term for the common practice of verifying the correct ordering of items filed on
a library shelf, typically unaided by technology, and our approach is primarily informed by the
kind of mental procedures one undertakes when performing such sorting “in one’s head.”12
Perhaps the most significant component of this process involves recognizing and interpreting the
role and logic of specific types of substrings and identifying their positions within the sorting
hierarchy. The overall design of the LC classification, from class to subclass to caption, constitutes

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 69
https://doi.org/10.6017/ital.v38i4.11585

a left-to-right progression from general to specific, and the classification portion of a call number
can be interpreted as a series of containers holding items of increasingly narrow scope, some of
which may be empty (that is, absent). This creates a structure that has a linear, hierarchical aspect,
but also contains within it subcategories that share a common position within the structure. The
priority that a subcategory (or container) is afforded in the sorting process depends first upon its
position in the linear hierarchy, and subsequently on the depth ascribed to it relative to other
subcategories that share the same position. Call numbers indicate a subcategory’s position in the
linear dimension by including or expanding sections; its depth within a given position is encoded
in the character or series of characters chosen to represent it. Thus, the sorting process may be
regarded as a comparison of the paths that two call numbers denote through this structure, and
the point at which the paths diverge is then the decisive point in determining an item’s position
relative to others. This inflection point may occur at any juncture of the comparison, from the first
character to the last.

Given these observations, a comprehensive machine-sorting strategy must observe the following
provisions:

1. Characters in call numbers should only be compared to characters that occupy an
equivalent section of another call number. (“Like compared to like.”)

2. Within these designated sections, characters should only be compared to characters that
occupy a corresponding position (place value) within that section.

3. If call numbers are identical up to the point that one of them lacks a section that the other
call number possesses, the one with the “missing” section is ordered first. This is in keeping
with the convention that items occupying a more general level in the hierarchy are ordered
before those occupying a more specific one. (This principle is often summarized in shelf-
reading tutorials as “nothing before something.”)

4. If call numbers are identical up to the point that one of them lacks a character in a given
position within a particular section that the other call number possesses, the one missing
the character is ordered first. Again, this preserves the general to specific scheme of LCC
sorting. (Another instance of “nothing before something.”)

5. Whole numbers (e.g., caption integers, volume numbers) must be distinguished from
decimals. For character-by-character sorting to work in sections of the call number
containing integers, the length of whole numbers must be normalized to assure each digit is
compared to another of equal place value.

APPLICATION OF METHODOLOGY

ShelfReader is a software application designed by the authors to improve the speed and accuracy
of the shelf-reading process in collections filed using the Library of Congress system—and, to our
knowledge, is the first such application to do so. It was coded by Scott Wagner in PHP and
JavaScript, uses MySQL for data storage and sorting, and is deployed as a web application.

ShelfReader allows the user to scan library items in the order they are shelved and receive
feedback regarding any mis-shelved items. The program receives an item’s unique barcode
identification via a barcode scanner, assembles a REST request incorporating the barcode, and
sends it to an API connected to the LMS. The application then processes the response, retrieving
the title and call number of the item, along with information about the item’s status (for example,
if it has been marked as lost or missing). The call number is passed off to the sorting algorithm,

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 70

which processes it and assigns it a position among the set of call numbers recorded during that
session. A user interface then presents a “virtual shelf” to the user displaying a graphical
representation of the items in the order they were scanned. When items are out of place on the
shelf, the program calculates the fewest number of moves needed to correct the shelf and presents
the necessary corrections for the user to perform until the shelf is properly ordered. A screenshot
depicting the ShelfReader GUI during a typical shelf-reading session is presented in figure 2.

Figure 2. A screenshot of the ShelfReader GUI, showing an incorrectly filed item (highlighted in blue
text) and its proper filing position (represented by the green band).

ShelfReader’s sorting strategy consists of breaking call numbers into elemental substrings and
arranging those parts in a database table so that any two call numbers may be compared
exclusively on the basis of their corresponding parts. To this end, a base set of call number
components was established. These are shown in table 2, along with their abbreviations (for ease
in reference), maximum length, and corresponding MySQL data types.

The specific MySQL data type determines the kind of sorting employed in each column:

• varchar Accepts alphanumeric string data. Sorting is character by character, numbers
before letters.

• integer Accepts numerical data; numbers are evaluated as whole numbers.
• decimal Accepts decimal values. Specifying the overall length of the column and the number

of characters to the right of the decimal point has the effect of adding zeros as placeholders
in any empty spaces to the right of the last digit. The values are then compared digit by
digit.

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 71
https://doi.org/10.6017/ital.v38i4.11585

• timestamp A date/time value that defaults to the date and time the entry is made. This
orders call numbers that are identical (i.e., multiple copies of the same item) in the order
they are scanned.

Section, Component Abbreviation Max. Length MySQL Data Type

Classification

class/subclass sbc 3 varchar

caption number, integer part ci 4 integer

caption number, decimal part cdl 16 decimal

caption date cdt 4 varchar

caption ordinal co 16 integer

caption ordinal indicator coi 2 varchar

Cutter

first Cutter, alphabetical part c1a 3 varchar

first Cutter, numerical part c1n 16 decimal

first Cutter date cd 4 integer

second Cutter, alphabetical part c2a 3 varchar

second Cutter, numerical part c2n 16 decimal

second Cutter date cd2 4 integer

third Cutter, alphabetical part c3a 3 varchar

third Cutter, numerical part c3n 16 decimal

Specification

specification sp 256 varchar

timestamp — — MySQL timestamp

Table 2. ShelfReader call number components and data types.

When parsing a call number, it must be assumed that each call number may contain all of the
components identified above. The following is a general outline of the parsing algorithm which
processes the call number:

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 72

1. An array is created from the call number. Each character, including spaces, is an element of
the array.

2. A second array is then created to serve as a template for each call number, replacing the
actual characters with ones indicating data type. For example, all integers are replaced with
‘I’s. This makes pattern matching and data-type testing simpler.

3. Pattern matching is used to identify the presence or absence of landmarks such Cutters,
spaces, volume-type numbering, etc.

4. When landmarks are identified, their beginning and ending positions in the call number
string are noted.

5. Component strings are created by looping through the appropriate section of the call
number template, constructing a string in which the template characters are replaced by
the actual characters in the call number string and continuing until a space, the end of the
string, or an incompatible character is encountered.

6. Where needed, whole numbers strings are normalized to uniform length.

Dividing a call number into its component parts and placing those parts in separate columns in a
database table, then, effectively creates a sort key that may be used for ordering. This key occupies
a row of the table, and is an inflated representation of the call number insofar as it makes use of
the maximum possible string length of each component type. It contains the characters of each
component the call number possesses, and any empty columns serve as placeholders for
components it does not possess. When two call numbers are compared, sorting proceeds through
each successive column, each component (and each character within each component) serving as
a potential break point within the sorting process.

We note that every column (with the exception of the specification) contains exclusively
alphabetic or numeric data, so that numbers and letters are never compared in those sections of
the call number string. (The use of spaces in the specification string effectively accounts for the
mixed alphanumeric data type.)

Some additional points of clarification regarding the algorithm’s multi-column approach to sorting
are worth mentioning:

1. Any lowercase alphabetic characters are converted to uppercase before processing in order
to ensure that letter case does not affect sorting.

2. Components are arranged in the database table from left to right in the order they occur in
the call number.

3. If a call number does not contain a given component, the column is left empty (in the case
of a varchar column) or is assigned a zero value (in the case of numeric columns).

4. Empty columns and zero columns sort before columns containing data.
5. In columns designated as varchar columns, numbers are compared as whole numbers. This

means that, in order to sort correctly, the length of any number stored must be normalized
to a uniform length (6 places) by adding leading zeros. For example, 17 must be normalized
to “000017.”

6. Sorting proceeds column by column, provided the call numbers are identical. When the first
difference is encountered, sorting is complete.

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 73
https://doi.org/10.6017/ital.v38i4.11585

Table 3 shows two randomly selected call numbers of rather common configuration, along with
the corresponding sort keys created by ShelfReader:

E169.1.B634 2002

E169.1.B653 1987
}

sbc ci cdl cdt co coi c1a c1n cd c2a c2n cd2 c3a c3n sp

E 0169 0.10000 0 B 0.6340000000 0002002

E 0169 0.10000 0 B 0.6530000000 0001987

Table 3. Example ShelfReader sort-key processing of two similar call numbers.

In this first example, sorting is complete when 3 is compared to 5 in the first numerical Cutter
(c1n) column. (Note that we have here truncated the length of certain strings for space and
readability.)

To illustrate how the application handles call numbers having heterogenous formats, table 4
shows the sort keys created from two call numbers in an example mentioned above, one with a
“double Cutter” and one without:

B945.D4B65 1998

B945.D41 1981b
}

sbc ci cdl cdt co coi c1a c1n cd c2a c2n cd2 c3a c3n sp

B 0945 0.0 0 D 0.400000 B 0.650000 0001998

B 0945 0.0 0 D 0.410000 0.000000 0001981B

Table 4. ShelfReader sort-key processing of a “double Cutter” call number and a nearby, single
Cutter call number.

By pushing the second cutter (B65) in the first call number into the c2a and c2n columns, the issue

of comparing incompatible sections of the call number is avoided, as the 1 in the second call

number is compared to the placeholder 0 in the first. When the sorting routine reaches this
position, it terminates, and any subsequent characters are ignored.

Aspects of this multi-column approach may seem counterintuitive at first, but the method mimics
what we do when we order call numbers mentally. One compares two call numbers character by
character within these component categories until encountering a difference, or until a character
or entire category in one of the call numbers is found to be absent.

RESULTS

ShelfReader’s sorting method is powerful, accurate, and has been extensively tested without issue
in a number of different academic libraries within Penn State’s statewide system . The application
accurately sorts all valid LC call numbers (with the exception of those for certain cartographic
materials in the G1000 – G9999 range, which sometimes employ a different syntax and sorting
order) as well those of the National Library of Medicine classification system (which augments

INFORMATION TECHNOLOGY AND LIBRARIES | DECEMBER 2019 74

LCC with class W and subclasses QS – QZ) and the National Library of Canada classification (which
adds to LCC the subclass FC, for Canadian history). While there may conceivably be valid LC or LC-
extended call numbers having exotic formats that would fail to correctly sort in ShelfReader, we
are not aware of any examples (outside of, once again, the G1000 – G9999 range), nor have we
received reports of any from users.

In addition to verifying proper shelf-ordering, ShelfReader contains a number of other features
useful for stacks maintenance. The program can identify shelved items that are still checked out to
patrons, have been marked missing or lost, or are flagged as in transit between locations, and
often reveals items which have been inadvertently “shadowed” (i.e., excluded from public-facing
library catalogs) or have shelf labels which do not match their catalogued call numbers. The GUI
has different modes to accommodate the user’s preferred view (both single shelf and multi-shelf,
stacks views), and allows for a good deal of flexibility in how and when the user wishes to make
and record shelf corrections. A reports module is also included, which tracks shelving statistics
and other useful information for later reference.

The ShelfReader application code (including the full sorting algorithm) is freely available via an
MIT license at https://github.com/scodepress/shelfreader. While ShelfReader was developed and
tested using the collections and systems of Penn State University Libraries, its architecture could
be adapted and configured for use with other library APIs and adjusted to suit local practices
within the general confines of the LC call number structure.13 We can also envision a wide array of
potential applications of the sorting functionality within other software environments, and we
welcome and encourage users to pursue innovative adaptations of the method.

REFERENCES AND NOTES:

1 Leo E. LaMontagne, American Library Classification: With Special Reference to the Library of
Congress (Hamden, CT: The Shoe String Press, 1961). The lengthy development of the LCC is
described in detail in chapters XIII and XIV (pp. 221-51).

2 Indeed, as LaMontagne asserts, “The Classification was constructed [. . .] to provide for the
needs of the Library of Congress, with no thought to its possible adoption by other libraries. In
fact, the Library has never recommended that other libraries adopt its system . . . ” (ibid., p.
252). Nevertheless, LCC is employed by the overwhelming majority of academic libraries in the
United States (Brady Lund and Daniel Agbaji, “Use of Dewey Decimal Classification by
Academic Libraries in the United States,” Cataloging & Classification Quarterly 56, no. 7
(December 2018): 653-61, https://doi.org/10.1080/01639374.2018.1517851).

3 “Library of Congress Classification,” Library of Congress,
https://www.loc.gov/catdir/cpso/lcc.html. Italics in original.

4 For a summary of LC sorting rules, see “How to Arrange Books in Call Number Order Using the
Library of Congress System,” Rutgers University Libraries,
https://www.libraries.rutgers.edu/rul/staff/access_serv/student_coord/LibConSys.pdf. Note
that this summary is not comprehensive and does not cover all contingencies.

5 Here we emphasize that our definition of the Cutter string may differ from that of others,
including (at times) that of the Library of Congress. For instance, the schedules for certain LCC

https://github.com/scodepress/shelfreader
https://doi.org/10.1080/01639374.2018.1517851
https://www.loc.gov/catdir/cpso/lcc.html
https://www.libraries.rutgers.edu/rul/staff/access_serv/student_coord/LibConSys.pdf

ALGORITHMIC MACHINE SORTING OF LC CALL NUMBERS | WAGNER AND WETHERINGTON 75
https://doi.org/10.6017/ital.v38i4.11585

subclasses regard the first portion of a Cutter as part of the classification itself. Since this paper
concerns sorting rather than classification, we favor the simpler and more convenient
definition.

6 J.F. Conley and L.A. Nolan, “Call Number Sorting in Excel,”
https://scholarsphere.psu.edu/downloads/9cn69m421z.

7 Conley and Nolan, “Call Number Sorting in Excel.”

8 Tim Danny, “Sorting LC Call Numbers in Excel,” https://medium.com/@tdannay/sorting-lc-call-
numbers-in-excel-75de044bbb04.

9 While there is in fact a “hack” or partial patch built into the program which identifies call
numbers beginning with the subclass KBG and parses them separately, there is no general
support for other call numbers in this category.

10 For the details of this syntax, see “050 - Library of Congress Call Number (R),” Library of
Congress, https://www.loc.gov/marc/bibliographic/bd050.html.

11 Testing was conducted on SirsiDynix Symphony WorkFlows Staff Client version 3.5.2.1079,
build date June 5, 2017.

12 For an overview, see “Student Library Assistant Training Guide: Shelving Basics,” Florida State
College at Jacksonville, https://guides.fscj.edu/training/shelving.

13 Shelfreader was written to receive real-time data directly from a SirsiDynix API connected to
Penn State University Libraries’ LMS, a great improvement over drawing from a static
collections database. This does, however, present a challenge for making the program easily
adaptable to libraries using distinct web services. A strategy to adapt the program would need
to account for potential differences in barcode structure, structure and naming conventions in
the REST request, and structure and naming conventions within the server response from
institution to institution. It is possible that these issues could be resolved via a configuration
file made available to the user, but no attempt to address this issue has been undertaken as of
yet.

https://scholarsphere.psu.edu/downloads/9cn69m421z
https://medium.com/@tdannay/sorting-lc-call-numbers-in-excel-75de044bbb04
https://medium.com/@tdannay/sorting-lc-call-numbers-in-excel-75de044bbb04
https://www.loc.gov/marc/bibliographic/bd050.html
https://guides.fscj.edu/training/shelving

	ABSTRACT
	Background
	Literature Review
	Software Review
	Proposed Parsing and Sorting Methodology
	Application of Methodology
	Results
	References and Notes:

