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Abstract 

Fixatives are widespread in biological and medical research because they allow preserving 
specimens for a long time. Historically, formaldehyde has been the most used fixative so far, but new 
solutions are needed because of its carcinogenicity. In this study, we tested alternative fixative 
methods to find a harmless, economic, and simple-to-use methodology to fix samples for larval 
morphological analysis in Paracentrotus lividus. In two separate experiments, P. lividus embryos were 
fixed after 48 h post-fertilization by adding Formalin Free Tissue AccustainTM, NaOH-buffered Formalin 
Free Tissue AccustainTM, glacial ethanol and denatured ethanol at different concentrations (from 10 % 
to 70 %) and by submerging the vials containing the larvae in seawater at 0 °C and maintained at 4 °C 
for 144 h. Our results suggested that all the alternative fixatives tested do not guarantee a good quality 
of larvae for morphological purposes, while larvae that faced the thermal shock and were kept at 4 °C 
did not show any evidence of damage throughout time. The results of this study candidate this method 
as a good and safe substitute of formalin in studies that require morphological and taxonomic 
recognition and shed light on its use in other kinds of studies as well. 
 
Key Words: formalin; ethanol; alternative fixatives; larval development; sample preservation; sea urchin 
 
 
Introduction 

 
Fixation is a crucial step in life science and 

medical research since it allows to preserve 
specimens from decay and to analyse samples after 
a long time from the collection. Since its invention, 
in 1859, formaldehyde has become very popular in 
research laboratories because of its low cost and 
high efficacy in fixation (Chesnick et al., 2010). 

It is a gas which condenses forming a liquid 
known as ‘formalin’ usually available at the standard 
concentration of 37 % with a pH range from 2.8 to 
4.0 (Schander and Halanych, 2003), however it can 
be buffered for specific purposes such as the 
preservation of calcareous organisms (Prado et al., 
2012; Munari et al., 2016). In the liquid phase (from 
4 % dilution) formalin is present as methyleneglycol, 
which can react with the -NH2 groups of proteins, 
forming methylene protein bridges during a process 
called ‘cross-linking’ (Benerini Gatta et al., 2012). 

Historically, formaldehyde has been widely 
used for different categories of marine species: for 
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example, in invertebrates research, it is used for the 
fixation of benthic species with pelagic early life 
stages (Munari et al., 2016; Oliva et al., 2016; Foo 
et al., 2020), meiofauna (Pusceddu et al., 2016; 
Bertocci et al., 2019; Rizzo et al., 2020), corals 
(Calcinai et al., 2015), annelids (Gravina et al., 
2018), hydroids (Fraschetti et al., 2002), colonizers 
on artificial panels used for the study of 
invertebrates (Martell et al., 2018) and vertebrates 
like fishes (Vacchi et al., 2007; Meneghesso et al., 
2013). Formalin is also used to fix vegetal tissues of 
seaweeds (Falace et al., 2005; Pinna et al., 2020) 
and seagrasses (Vasapollo and Gambi, 2012). 

Over the years the ‘formalin dogma’, 
considered an irreplaceable fixative, has started to 
be questioned (Zanini et al., 2012) because of its 
carcinogenicity (European Parliament, 2008), the 
shrinkage effect on some fish larvae (Fowler and 
Smith, 1983; Morkert and Bergstedt, 1990), and 
several difficulties for DNA extraction protocols 
(Schander and Halanych, 2003). In recent years a 
lot of patented fixatives, that do not contain formalin, 
have been commercialized to replace formaldehyde 
(i.e., CellBlock, CyMol, FineFix, Greenfix, Holland, 
Lugol, NotoXhisto, Paga, Rcl2, Upm and zinc-based 
fixatives) in biological, clinical and pathology studies 
(Acton et al., 2005; Benerini Gatta et al., 2012; 
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Oselladore et al., 2012; Zanini et al., 2012; Yang et 
al., 2017). Among them, to be mentioned is 
Formalin Free Tissue AccustainTM whose use has 
started for the preservation of marine invertebrates 
(Regoli et al., 2019). A more classical method is 
represented by ethanol that has been historically 
used for the preservation of tissues and entire 
organisms such as fishes, crustaceans, nematodes, 
echinoderms (Black and Dodson, 2003; Uthicke et 
al., 2004; Fonseca and Fehlauer-Ale, 2012; La 
Mesa et al., 2017).  

In studies concerning sea urchin species, 
glutaraldehyde is often used instead of 
formaldehyde, alone (Ruocco et al., 2020) or mixed 
with acrolein (Jubinville et al., 1967). 

However, formalin-free fixatives could cause 
collateral effects that can compromise several 
protocols from molecular to morphological ones (i.e. 
shrinking of fishes larvae) more than formalin 
(Fowler and Smith, 1983).  

Moreover, depending on the number and the 
kind of species present in the sample, the chemical 
composition of the fixative may act differently 
(Fiocca et al., 2014). For all of these reasons it is 
then difficult to find the ‘perfect fixative’ since each 
compound can be used for species-specific 
(Fonseca and Fehlauer-Ale, 2012; Yang et al., 
2017) or aim-specific (Acton et al., 2005; Zanini et 
al., 2012) purposes. Also, the possibility to observe 
small organisms under the microscope without a 
prior fixation of any kind is not always suitable since 
their movement in the media makes it difficult to 
conduct morphological and taxonomic observations. 

In this study we tested alternative compounds 
on the larval stages of Paracentrotus lividus with the 
aim to find a fast fixative method that can be 
economic and harmless to the operator for 
morphological analyses, to be carried out in a short 
time. Formalin Free Tissue AccustainTM (FFFA), 
glacial ethanol (GE) and denatured ethanol (DE) at 
different concentrations were tested as a possible 
substitute to formaldehyde. Furthermore, larvae 
were also maintained at a 4 °C degree in seawater 
as an alternative method to stop larvae swimming 
and preserve them over time. 

 
Materials and methods 

 
Animal collection and adult treatments 

Paracentrotus lividus adults were collected in 
the marine protected area (MPA) ‘Regno di Nettuno’ 

along the coast of Ischia island (40°44'47.9"N 
13°56'39.3"E) by scuba divers at a depth of 2-5 m 
and immediately transported in the laboratory of the 
Ischia Marine Centre (IMC) of the Stazione 
Zoologica Anton Dohrn in cool boxes to avoid 
further stress. In the laboratory, adults were induced 
to spawn by injecting 1 mL of 0.5 M KCl solution into 
the coelom (Byrne et al., 2008) and shaking the 
specimens to allow a homogeneous distribution of 
KCl solution. Sperms were collected dry to avoid 
instantaneous activation and kept on ice until use. 
Females were let to spawn upside down in beakers 
filled with 0.22 μm filtered seawater (FSW). Before 
the fertilization, both sperms and eggs were 
checked for anomalies with an optic microscope 
(Chiarore et al., 2020). Fertilization was performed 
using a constant sperm:egg ratio (1250:1) 
(Moschino and Marin, 2002) and observed after 30 
minutes to check the elevation of the jelly coat. 
Embryos were successively maintained in 25 mL 
vials, for 48 h post-fertilization (hpf) at 22 °C, at a 
concentration of 50 larvae/mL. All experimental 
procedures on animals were done according to the 
guidelines of the European Union (Directive 
609/86). 

 
Larval fixation procedures  

After 48 hpf, in a set of vials, calculated 
volumes of FSW were removed with a modified 
plastic Pasteur pipette equipped with 60 µm mesh to 
be sure to not lose larvae from the vial. 
Successively, the volume was restored, and larval 
development was stopped by adding the chosen 
fixatives. In another set of vials, development was 
stopped by thermal shock, submerging the vials into 
a tank filled with seawater at 0 °C for 30 minutes at 
least. This method numbs larvae making them fall 
on the bottom, facilitating their collection for 
morphological analyses. 

Two separate experiments were conducted to 
test the fixatives at different concentrations.  

In the first experiment, three non-formalin 
fixatives (GE, DE and FFFA) were tested. 

Based on the results of the first experiment, in 
the second one, only two non-formalin fixatives (DE, 
buffered FFFA named BFFFA) were used. BFFFA 
was prepared by manually buffering the 4.76 pH of 
FFFA adding 1 M NaOH until a value of 7.22 pH 
units was reached. 

All of these fixatives were tested following 
concentrations in Table 1. After fixation, samples 

 
 
 
 
Table 1 Fixatives and relative concentrations were calculated in % as volume of fixative per total volume of 
solution (V/V). GE= glacial ethanol; DE= Denaturated ethanol; FFFA= Ready to use Formalin Free Fixative, 
Accustain™; BFFFA= NaOH buffered Formalin Free Fixative, AccustainTM. 1stE = Concentrations used in the first 
experiment. 2ndE = Concentrations used in the second experiment 
 

 Fixative concentration (% V/V) 

Fixatives 10 20 30 50 70 

GE   1stE 1stE 1stE 

DE 2ndE 2ndE 1stE 1stE 1stE 

FFFA   1stE 1stE 1stE 

BFFFA 2ndE 2ndE 2ndE   
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Fig. 1 Examples of sea urchin larvae considered in the analysis. A= Tissue state: Not Damaged; Transparency: 
Transparent; Spicules State: Visible; Precipitates: Absent. B= Tissue state: Damaged; Transparency: Non 
transparent; Spicules State: Not visible; Precipitates: Present 
 
 
 
 
 
were preserved at 4 °C until microscope 
observation. Each method was tested in three 
replicates and three times after fixation (named 24 
h-afx, 72 h-afx and 144 h-afx) were considered to 
evaluate the efficiency of each method. 
 
Larval developmental observation and 
classification  

A minimum of 100 larvae per replicate were 
observed and photographed in Petri dishes under 
an optical macroscope (Leica Z16 APO), equipped 
with a Leica DFC 300FX camera connected to a 
computer with the Leica LAS program (Leica 
Application Suite, Version 4.5) for the three times 
after fixation. 

Each vial was removed from the fridge just 
before larvae had to be photographed to avoid any 
degradation in particular for the FSW method.  

The different fixatives efficiency was evaluated 
through the analyses of four variables, necessary 
for the morphological analyses, as shown in Figure 
1 and Table 2.  
 
 
 
 

Statistical Analysis 
The statistical analyses were performed with a 

non-parametric PERmutational Multivariate Analysis 
Of Variance, PERMANOVA (Anderson, 2001) 
applied on the Euclidean distance matrix of raw 
data. Two different PERMANOVA designs were 
used to test differences between larvae treated with 
different fixatives. 

To test the effect of different fixatives on larval 
tissue morphology at three times after fixation, a 
two-factors design, time (3 levels) and fixatives (5 
levels), was chosen. Only 30 % concentration was 
taken into account since it was the only shared 
concentration among the different substances.  

To test the effect of different fixatives at low 
concentrations (10 %, 20 %, 30 %) on larval tissue 
morphology at three times after fixation, a two-factor 
design, considering the combined factor 
Concentration x Fixatives (named as Condition, 7 
levels in total) was performed evaluating effects of 
DE, BFFFA and FSW. The effects of high 
concentrations (50 % and 70 %) of fixatives were 

 
 
 

Table 2 Morphological variables analysed 
 

Tissue state 

Damaged: the tissue appeared to be degraded or the different anatomical structures were 

not clearly distinguishable 

Not damaged: the tissue was intact, and the anatomical structures were clearly 

distinguishable 

Transparency 
Transparent: larvae were clear 

Non transparent: larvae were opaque 

Spicules state 
Visible: it was not possible to distinguish the spicules because of degradation 

Not visible: spicules were clearly visible 

Precipitates 
Absent: no precipitation of fixatives occurred 

Present: salt, clumps, or a cloudy mixture was present at the microscopic observation 
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Fig. 2 Morphology of larvae 144 h after fixation. White (A), Den 10 % (B), Den 20 % (C), Den 30 % (D), Den 50 % 
(E) Den 70% (F), Eth 30% (G), Eth 50 % (H), Eth 70 % (I), FFFA 30 %(J), FFFA 50 %(K), FFFA 70 % (L), FFFB 
10 % (M), FFFB 20% (N), FFFB 30% (O) 
 
 
excluded from the statistical analysis. The tissue 
and spicule states were analysed as a percentage, 
while transparency and precipitates as 
presence/absence. 

A Non-metric multidimensional scaling (nMDS) 
was also conducted to highlight the pattern of 
aggregation among the different methods of 
fixation. 

The software package PRIMER 6 
PERMANOVA Plus (PRIMER-E Ltd, Plymouth, 
UK) was used for all statistical analyses and the 
nMDS. 
 
 

Results 
 
The morphology of P. lividus larvae kept at the 

different fixation methods after 144 h is shown in 
Figure 2. The results of the different fixatives 
efficiency at the three times after fixation on the 
morphological parameters are shown in Table 3. 

 
First Experiment 

PERMANOVA results of the effect of the 
interaction between the two factors are reported in 
Table 4. 

 

 
Table 3 Results of considered variables for all the methods at the three times after fixation.  Tissue State: D= 
Damaged, ND= Not Damaged; Transparency: T= Transparent, NT= Non transparent; Spicules State: V=Visible, 
NV= Not visible; Precipitates: P= Present, A= Absent 
 

Time 24 h-afx 

Method FSW GE DE FFFA BFFFA 

% V/V // 30% 50% 70% 10% 20% 30% 50% 70% 30% 50% 70% 10% 20% 30% 

Tissue State ND D D D D D D D D D D D D D D 

Transparency T NT NT NT NT NT NT NT NT NT NT NT NT NT NT 

Spicule State V NV NV NV V V NV NV V NV NV NV NV V V 

Precipitate A P P P A A A P P P P P A A A 

Time 72 h-afx 

Method FSW GE DE FFFA BFFFA 

% V/V // 30% 50% 70% 10% 20% 30% 50% 70% 30% 50% 70% 10% 20% 30% 

Tissue State ND D D D D D D D D D D D D D D 

Transparency T NT NT NT NT NT NT NT NT NT NT NT NT NT NT 

Spicule State V NV NV NV V V NV NV NV NV NV NV NV NV V 

Precipitate A P P P A A P P P P P P A A A 

Time 144 h-afx 

Method FSW GE DE FFFA BFFFA 

% V/V // 30% 50% 70% 10% 20% 30% 50% 70% 30% 50% 70% 10% 20% 30% 

Tissue State ND D D D D D D D D D D D D D D 

Transparency T NT NT NT NT NT NT NT NT NT NT NT NT NT NT 

Spicule State V NV NV NV V V NV NV NV NV NV NV NV NV V 

Precipitate A P P P A A P P P P P P A A A 
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Table 4 PERMANOVA results. Pseudo-F values and permutational p-values for all morphological variables 
analysed in P. lividus larvae throughout the maintenance of samples at five fixation methods (FSW; Glacial 
ethanol 30 %; Denatured ethanol 30 %; Ready to use Formalin Free Fixative, Accustain™ 30 %; NaOH-buffered 
Formalin Free Fixative, AccustainTM 30 %), at different times (24 h, 72 h and 144 h) after fixation are listed. 
Significant results are in bold 
 

Source df SS MS Pseudo-F p-value 

Fixatives (Fi) 4 120940.0 30235.0 24.396 <0.001 

Time (Ti) 2 282.2 141.1 0.114 0.892 

Fi X Ti 8 1822.6 227.8 0.184 0.993 

 
 
 
 
 

PERMANOVA highlighted a significant effect of 
the fixation method used on larvae preservation, 
while the time of maintenance and its interaction 
with the fixation method did not influence larval 
preservation (Table 4). Furthermore, the nMDS 
evidenced a pattern of distribution with a high 
Euclidean distance between FSW and all the other 
fixatives which instead showed a pattern of 
aggregation (Figure 3). 
 
Second Experiment 

Significant differences among different 
combinations of concentrations and fixatives were 
highlighted by PERMANOVA (Table 5). The time of 
maintenance and its interaction with the different 
methods, did not show to influence larval 
preservation. 

Results from the nMDS analysis, calculated as 
the distance among centroids (Figure 4), showed 
that there was a pattern of distribution with a high 
Euclidean distance between the FSW and all the 
fixatives which instead showed a pattern of 
aggregation. 

Results showed that spicules in fixed larvae 
were well visible and measurable only in the FSW at 
all times of maintenance. The same result has been 

obtained using DE, but only after 24 h after fixation 
while after 144 h larvae were not so well maintained 
as shown in Figure 2. 

Furthermore, results showed that larval tissues 
appeared to be intact only in FSW at all times of 
maintenance, while all the remaining fixating 
methods did not succeed in preserving the integrity 
of the tissues (Figure 2). 

 
Discussions and conclusions 

 
The present study aimed to test the fixation 

efficacy of four no-formalin, alcohol-based 
substances for morphological purposes on sea 
urchin larvae. Different concentrations of glacial 
ethanol, denatured ethanol, ready to use Formalin 
Free Fixative Accustain™, Buffered Formalin Free 
Fixative Accustain™ were tested during 144 h after 
fixation. Moreover, an alternative non-chemical 
method, based on numbing the larval with a cold 
temperature shock, was tested. Some of the 
fixatives used in this study (GE, DE and FFFA) 
formed salt precipitates, as observed by Neuhaus et 
al. (2017) for ethanol, and flocculates when used at 
concentrations of 50 % and 70 %. 

In the first experiment, the effects of the 
 
 
 

 
 
Fig. 3 n-MDS ordination plot of Euclidean distances for all the data at the 30 % concentration 
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Table 5 PERMANOVA results. Pseudo-F values and permutational p-values for all morphological variables 
analysed in P. lividus larvae throughout the maintenance of samples at seven different conditions of fixation 
(FSW; Denatured ethanol at 10, 20 and 30 %; NaOH-buffered Formalin Free Fixative, AccustainTM at 10, 20 and 
30 %), at different times (24 h, 72 h and 144 h) after fixation are listed. Significant results are in bold 
 

Source df SS MS Pseudo-F p-value 

Condition (Co=Concentration x Fixative) 6 150000 24982.0 38.758 < 0.001 

Time (Ti) 2 1134.2 567.1 0.880 0.428 

Co x Ti 12 8812.0 734.3 1.139 0.363 

 
 
 
 
 
common 30 % concentration of the four formalin-
free substances and FSW on the larval 
development parameters were evaluated. 
PERMANOVA highlighted a significant difference 
among methods, in particular there was a pattern 
between FSW, and all the fixatives used as 
demonstrated by the nMDS. This common pattern 
among fixatives could be explained considering that 
all of them are alcohol-based. In the same 
experiment, the PERMANOVA showed for each 
method of fixation that the time of maintenance was 
not a significant factor, at least for 144 h, being no 
differences among 48 h post-fertilization larvae 
observed at different times from fixation. However, 
the formalin-free fixatives used in the first 
experiment did not demonstrate to be good 
substitutes since already after the first observation 
time (24 h) deleterious morphological effects were 
evident. 

In order to reduce precipitates and flocculates, 
in the second experiment, larvae of P. lividus were 
fixated and maintained in DE, BFFFA at lower 
concentrations (10 %, 20 %, 30 %; kept at 4 °C) as 
well as in FSW (cold bath at 0 °C; kept at 4 °C) for 
144 h. PERMANOVA highlighted a difference 

among the different conditions of maintenance with 
an evident pattern between FSW and compared to 
the others, similarly to the first experiment. 

In general, the FSW method showed to be the 
best in both experiments. In terms of larval 
calcareous structures, only in the FSW method, 
there was a 100 % of larvae with visible spicules 
during the 144 h of maintenance. A similar result 
was obtained at the lowest concentration (10 %) of 
the DE. However, spicules visibility was the only 
variable in common with the FSW methods since 
larval tissues were as damaged as for the other 
conditions of preservation. Indeed, results showed 
that only applying the FSW method, and at all the 
time considered, there were 100 % of not-
damaged larvae, while fixatives at all 
concentrations considered had severe effects on 
larval tissues even after the first 24 h of fixation. It 
is important to mention that also BFFFA induced a 
dramatic effect on larval quality, leading to the 
hypothesis that the low pH of FFFA was not the 
main driver of the scarce success of the fixation 
observed in the first experiment, but probably the 
effect must be sought in the composition of this 
product. 

 
 
 
 

 
 
Fig. 4 n-MDS ordination plot of Euclidean distances among centroids for FSW, DE and BFFFA at low 
concentrations (10 % - 20 % - 30 %) 
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In conclusion, our result showed that all the 
compounds tested are not suitable for all research 
based on sea urchin larval morphology, such as 
ecotoxicological investigations (Chiarore et al., 
2020; Foo et al., 2020). On the contrary, applying a 
thermal shock close to 0 °C on larvae, and their 
maintenance at 4 °C, did not negatively influence 
larval morphological parameters for 144 h. This 
method could be considered very suitable for all 
laboratories, considering its cheapness and 
simplicity. An aspect that could be further 
investigated as development of this experiment 
could be assessing the mid and long-term fixation 
efficacy of the thermal-shock procedure. However, 
according to Fonseca and Fehlauer-Ale (2012) 
Fiocca et al. (2014) and Yang et al. (2017) it is likely 
that every fixation method could be considered 
efficient for a specific application, a specific 
organism and even a specific life stage. Future 
investigations are needed to verify this inexpensive 
method also for non-morphological applications and 
the feasibility with other groups of organisms at their 
different life stages with different geographical 
origins, from poles to the tropical areas. 
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