SHORT COMMUNICATION

Indole-3-Acetic Acid induced oxidative stress in model host *Galleria mellonella* L. (Lepidoptera: Pyralidae) and its endoparasitoid *Pimpla turionellae* (L.) (Hymenoptera: Ichneumonidae)

D Özyılmaz¹, R Özbek ^{1,3}, H Altuntaş^{2*}, F Uçkan¹

¹Department of Biology, Faculty of Science and Literature, Kocaeli University, Kocaeli, 41380, Turkey ²Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, 26470, Turkey ³Current Institution: Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany

Accepted October 21, 2019

Abstract

Investigation of the antioxidant and oxidative effects of dietary indole-3-acetic acid (IAA), a plant growth regulator, on pest *Galleria mellonella* L. (Lepidoptera: Pyralidae) and its endoparasitoid *Pimpla turionellae* (L.) (Hymenoptera: Ichneumonidae) was aimed in this study. Different doses of dietary IAA (50-10,000 ppm) caused an increase in lipid peroxidation in the hemolymph of the host, *G. mellonella* (L.) and its endoparasitoid *P. turionellae* (L.). When compared to the control, higher doses of dietary IAA decreased CAT, SOD and GST enzymes' activities in *G. mellonella*. At higher IAA doses, the activity of SOD enzyme in the hemolymph of *P. turionellae* to the control. Additionally, GST activity in the endoparasitoid larval hemolymph significantly increased at 500 and 1000 ppm IAA doses. These findings indicate that incorporating IAA in the diet of model host *G. mellonella* larvae leads to oxidative stress and, also negatively affects the survivability of both the host and its endoparasitoid.

Key Words: Pimpla turionellae; Galleria mellonella; indole-3-acetic acid; host-parasitoid interaction; oxidative stress

Introduction

Auxins are plant growth regulators (PGRs) that are involved in many developmental processes, including cell division and enlargement, root differentiation initiation, vascular tissue and flowering (Davies, 2010). Indole-3- acetic acid (IAA) is also one of the important natural auxins in most plants (Davies, 2010). Synthetic IAA products are used widely in agricultural processes like plant growth and development in order to increase productivity (Kumar et al., 2001). Because of the wide usage of these indolic compounds as phytohormones or PGRs in the environment, nontarget organisms such as biological control agents could be affected negatively. Several previous studies reported that IAA caused adverse effects on survival, longevity, developmental time, hemocytes responses and hemolymph metabolites of various Lepidopteran pest species (Rup et al., 2002; Kaur

Corresponding author: Hülya Altuntaş Department of Biology Eskisehir Technical University Eskişehir, 26470, Turkey E-mail: hyalcitas@eskisehir.edu.tr

and Rup, 2003; Uckan et al., 2011a; Uckan et al., 2014; Uçkan et al., 2015; Çelik et al., 2017). Various authors also suggested that PGRs such as gibberellic acid (GA3), ethephon (ETF) and IAA could be used instead of insecticides to control lepidopteran pests in Integrated Pest Management programs (Uckan et al. 2011b; 2014; Altuntas et al., 2012; Altuntaş, 2015a). On the other hand, Uçkan et al. (2011a) reported that IAA adversely affects the life history traits of the endoparasitoid Apanteles galleriae (Hymenoptera: Braconidae), an important natural enemy of G. mellonella. It is possible that these observed biological effects of IAA on various pests and parasitoid species could be associated with their immune responses. Antioxidant systems and immune mechanisms in insects play an important role in the detoxification of several organic and inorganic environmental pollutants (Felton, 1995). Previously, researchers also showed that dietary PGRs, GA₃, and ETF, at sublethal doses caused adverse impacts on various antioxidant enzymes and led to oxidative stress in model insect G. mellonella (Altuntas, 2015b; Altuntas et al., 2016). For these reasons, the adverse biological effects of IAA on insects might be related to their physiological antioxidant capacities. In order to provide information about toxic modes of action of IAA on target and non-target insects, we used the model host (greater wax moth) *G. mellonella* L. (Lepidoptera: Pyralidae) and idiobiont, solitary, pupal endoparasitoid *P. turionellae* L. (Hymenoptera: Ichneumonidae).

It is well known that *G. mellonella* larvae are used as a model insect in ecotoxicological and ecophysiological investigations or model host for several parasitoid species in biological control programs because their culture rearing conditions are economic, easy and faster in the laboratory (Altuntaş *et al.*, 2016; Kwadha *et al.*, 2017). Therefore, the effects of various doses (50-10,000 ppm) of dietary IAA on activities of superoxide dismutase (SOD), catalase (CAT), glutathione Stransferases (GSTs) and also lipid peroxidation level in host *Galleria mellonella* and its pupal endoparasitoid *Pimpla turionellae larvae* were investigated for the first time in this study.

Materials and Methods

Insect rearing

The laboratory colonies of the model host *Galleria mellonella* and pupal endoparasitoid *Pimpla turionellae* were reared at 25 ± 5 °C, 60 ± 5 % RH, and with a photoperiod of 12: 12 (L: D) in Kocaeli University, Turkey as described before (Uçkan *et al.*, 2015). First instar larvae of the host were maintained by feeding on artificial diet as described by Altuntaş *et al.* (2016). The last instar larvae of *G. mellonella* were collected and put in jars including folder paper to facilitate pupation. Then, host pupae used for parasitization by female adult *P. turionellae.* Adult parasitoids were also reared on 50% (wt: vol) honey solution in cages (25 x 25 x 25 cm).

Bioassays

Selected doses (0, 50, 500, 1,000, 5,000, and 10,000 ppm) of IAA (Merck 10 g, Darmstadt, Germany) were used in all experimental analyses. All doses of IAA were prepared in distilled water and homogenized with an artificial diet (Altuntas et al., 2016). To determine the effects of IAA on the antioxidant enzyme activity in G. mellonella and its parasitoid P. turionellae, newly hatched G. mellonella larvae were exposed to 5 g of host artificial diet including the selected doses of IAA. In parallel experiments, larvae were fed with an artificial diet containing distilled water; these were treated as the control group. Thus, for each experimental and control assay, eight last instars G. mellonella larvae (0.25 - 0.30 mg) were used in three replicates (n = 24). In addition, selected last stage G. mellonella larvae treated or untreated with IAA doses were used pupated and provided as host to P. turionellae for parasitoid experiments. Therefore, in each experimental analysis, eight 6d old P. turionellae larvae (almost 8 d after parasitization) were used in three replicates (n = 24 larvae).

Hemolymph collection and storage

Hemolymph samples were collected from the last stage G. mellonella and P. turionellae larvae for experimental analyses. Each larva was pierced on the second foreleg with a sterile microneedle and the was hemolymph collected via a 10 µL glass microcapillary tube (Sigma, St. Louis, MO). Ten microliters of hemolymph were collected from each of the eight larvae and immediately transferred into the same two mL eppendorf tube containing 0.001 mg 1-phenyl-2-thiourea in order to avoid hemocyte aggregation and melanization. During hemolymph collection, collection tubes were kept on ice and then stored at -80 °C until enzyme activity assays. On the same day of assays, samples were centrifuged at 7000 rpm for 10 min at 4 °C and the supernatant transferred to a new collection tube and keep on ice.

Antioxidant enzyme activities and Malondialdehyde levels

Protein concentrations of hemolymph samples were determined by using Bradford reagent (Sigma) according to 96 well plate method, and bovine serum albumin was used to create a standard curve. SOD and GST activities were evaluated by using commercial kits from CAYMAN (Cayman Chemical, Ann Arbor, MI). The SOD activity was measured at 450 nm in a Microtiter plate (BMG Labtech) using xanthine and xanthine oxidase systems and defined as U/mg protein. GST activity was read continuously at 340 nm for 5 min in a Microtiter plate (BMG Labtech) using 1-chloro-2,4dinitrobenzene (CDNB) and reduced glutathione (GSH) as substrates and the activity was defined as µmol/ min/mg per protein. CAT activity analysis was performed according to Chance and Maehly (1995). The decrease in absorbance over a 10 min period at 240 nm due to H₂O₂ decomposition was measured in this assay. The absorbance of CAT activity was read in UV/VIS spectrophotometer and thus, the activity was defined as mmol/min/mg per protein. Malondialdehyde (MDA, a product of lipid peroxidation) levels in hemolymph samples were also determined using a commercially available kit protocol (Cayman Chemical, Ann Arbor, MI). According to the protocol, MDA in hemolymph samples was incubated with thiobarbituric acid (TBA) at 95 °C and thus absorbance was read at 530 nm in a microtiter plate (BMG Labtech). The content of MDA was determined as the μ M/mg per protein.

Statistical analysis

All data were represented as mean \pm standard error (SE). The SPSS software program (version 18.0 for Windows, Chicago, IL) was used for statistical analysis. Dose-dependent changes in the antioxidant enzymes and MDA level were verified to be normally distributed. To compare means, ANOVA (one-way analysis of variance) and to determine the significant differences LSD-post *hoc* tests (Least Significant Difference) were conducted. The results obtained in the experiments were evaluated as being statistically significant at a 95 % confidence interval with $p \le 0.05$.

Mean ± SE*					
IAA doses (ppm)	CAT	SOD	GST	MDA	
0	0.62 ± 0.04a	8.51 ± 0.23a	1.15 ± 0.10a	69.22 ± 17.81a	
50	0.56 ± 0.03a	8,51 ± 0,00a	0.82 ± 0.02ab	156.28 ± 24.13b	
500	$0.34 \pm 0.02b$	5.06 ± 0.23b	0.65 ± 0.12b	197.03 ± 20.05b	
1,000	$0.38 \pm 0.02b$	6.44 ± 0.23c	$0.43 \pm 0.07b$	194.02 ± 27.52b	
5,000	$0.42 \pm 0.02b$	5.98 ± 0.23bc	0.48 ± 0.12b	157.65 ± 27.02b	
10,000	$0.43 \pm 0.02b$	5.75 ± 0.23bc	0.56 ± 0.09b	175.81 ± 37.01b	

 Table 1 Effects of various doses of IAA on CAT, SOD, GST activities and MDA level in larval hemolymph of G.

 mellonella

^{*}Means ± standard errors within each column followed by the different letter (a-c) indicate significant differences ($p \le 0.05$, LSD test). CAT: Catalase (mmol/min/mg protein), SOD: Superoxide dismutase (U/mg protein), GST: Glutathione S transferase (µmol/min/mg protein), MDA: Malondialdehyde (µM/mg protein)

Results and Discussion

Our data showed that treatment of G. mellonella larvae with diet containing IAA caused a decrease in the activities of antioxidant enzymes; CAT (F = 16.351; df = 5, 18; p < 0.05), SOD (F = 56.692; df = 5, 18; p < 0.05) and GST (F = 8.448; df = 5, 18; p < 0.05) at high doses 500, 1000, 5000 and 10000 ppm as compared to control. In particular, significant reductions in CAT and SOD enzyme activities in the hemolymph of G. mellonella larvae were observed at 500 ppm (> 40 %), also, GST enzyme activity increased by more than 60 % at 1000 ppm. Similar to present findings, Altuntas (2015) revealed that activities of antioxidant enzymes in larval hemolymph of G. mellonella did not change at higher doses of dietary GA3 but increased at lower doses of this PGR. On the other hand, Shayegan et al. (2019) also showed dosedependent inducing effects of GA3 on SOD and CAT activity of Helicoverpa armigera larvae. Further, an important finding presented in this study was the sharp decrease observed in CAT and SOD activities in host hemolymph at 500 ppm dose of IAA similar with GA₃ doses reported previously by Altuntaş (2012). IAA treatment also caused an increase in G. mellonella MDA levels at all doses. As compared to control, the most effective IAA dose 500 ppm increased MDA levels in hemolymph of larvae by 185% (F = 2.918; df = 5, 18; p < 0.05) (Table 1.). Similar to previous studies conducted with mammals showed that exposure to different IAA concentrations increased the lipid peroxidation, inhibited antioxidant response in various rat tissues (Tuluce and Celik, 2006), and also decreased CAT activity in the kidney of the F2 generation of mice (Yılmaz et al., 2004). Altuntaş (2015) also reported that activities of antioxidant enzymes in larval hemolymph of G. mellonella did not change at higher doses of dietary GA3 but increased at lower

doses of this PGR. On the other hand, Shavegan et al. (2019) showed dose-dependent inducing effects of GA3 on SOD and CAT activity of Helicoverpa armiaera Therefore. findinas larvae. our demonstrated that exposing G. mellonella to IAA via larval diet leads to oxidative stress by elevating MDA levels: It is known that an increase in MDA levels is an important marker for oxidative stress and occurs naturally during lipid peroxidation. Keeping in mind the similarity between the response of model insect G. mellonella and mammals to IAA may assist in the improvement of novel insectbased screening systems to measure the toxicity of PGRs or other environmental chemicals instead of using of mammals in biomonitoring tests. In addition, induced oxidative stress by xenobiotics causes cell death either by necrosis or apoptosis mechanisms (Kannan and Jain, 2000). Increases in apoptotic activities in different tissue cells of mice treated with IAA were observed in early studies by Furukawa et al. (2004). In another study, it was also reported that a plant growth regulator, GA₃ induced apoptotic and necrotic cell death and reduced cell viability in GA₃ treated G. mellonella larvae when compared to untreated larvae (Altuntas et al., 2012). Furthermore, Çelik et al. (2017) demonstrated that lower doses of dietary IAA caused an increase in apoptotic indices in Achoria grisella (Lepidoptera: Pyralidae) larvae. For these reasons, these findings imply that dietary IAA treatment may cause excessive apoptosis by suppressing the antioxidant defense system in the host G. mellonella larvae.

The endoparasitoid, idiobiont and solitary wasp *P. turionellae* is the most effective biological control agent against several lepidopteran pest species including model insect and storage pest *G. mellonella.* Therefore, it is conceivable that *P. truionellae* could be exposed to IAA broadly used in agriculture during the adult stage that feeds on honey, fruit, and nectar or during the larval stage

Mean ± SE*						
IAA doses (ppm)	CAT	SOD	GST	MDA		
0	0.011 ± 0.003a	8.48 ± 0.36a	0.03 ± 0.01a	31.75 ± 7.65a		
50	0.026 ± 0.008b	8.10 ± 0.39a	0.04 ± 0.01a	77.54 ± 11.03a		
500	0.010 ± 0.003a	6.49 ± 1.06b	$0.09 \pm 0.02b$	116.60 ± 39.49b		
1,000	0.009 ± 0.005a	6.79 ± 1.19b	0.07 ± 0.02b	257.26 ± 53.10bc		
5,000	0.006 ± 0.001a	4.14 ± 0.49b	0.05 ± 0.01a	241.28 ± 24.74bc		
10,000	0.008 ± 0.0016a	5.75 ± 0.94b	0.04 ± 0.01a	305.15 ± 30.86c		

 Table 2 Effects of various doses of IAA on CAT, SOD, GST activities and MDA level in larval hemolymph of P. turionellae

*Means \pm standard errors within each column followed by the different letter (a-c) are significantly different ($p \le 0.05$, LSD test). CAT: Catalase (mmol/min /mg protein), SOD: Superoxide dismutase (U/mg protein), GST: Glutathione S transferase (µmol/min/mg protein), MDA: Malondialdehyde (µM/mg protein)

that feeds on host's pupae. Researchers have already shown the effects of IAA on different physiological properties such as developmental times, biochemical parameters, total, and differential hemocyte counts and apoptosis of different insects in the host-parasitoid relationship (Uckan et al., 2011a; 2014; 2015; Çelik et al., 2017). Zhao et al. (2017) also reported that treatment of aphids with dietary PGRs including IAA, naphthalene acetic acid (NAA) and GA₃, has negative effects on the parasitoids by reducing parasitism rates/abilities, emergence rate, and proportion of females. These negative influences of IAA3 on life-history parameters of parasitoids may be related to the suppression of antioxidant defense as well as immunological response. Data obtained from this study also support the explanation stated above. Therefore, in accordance with these previous studies (Uçkan et al., 2011a; 2014; 2015; Çelik et al., 2017; Zhao et al., 2017), exposure of the endoparasitoid to IAA by host pupae increased MDA levels increased significantly in a dosedependent manner (F = 12.045; df = 5, 18; p < 0.05), and altered SOD, CAT and GST activities in the larval hemolymph of P. turionellae with respect to control (Table 2, p < 0.05). We found that endoparasitoid's SOD activity decreased in all IAA doses except at 50 ppm in comparison to untreated larvae (F = 3.829; df = 5, 18; p < 0.05). In contrast to the SOD activity results, CAT activity in the larval hemolymph of P. turionellae increased only at 50 ppm IAA dose compared to the control group, but no changes were observed in other doses of IAA. (F = 3.478; df = 5, 18; p < 0.05, Table 2). However, GST activity in larval hemolymph of endoparasitoid increased at 500 and 1000 ppm doses of IAA as compared with control (F = 3.482; df = 5, 18; p < 0.05). MDA level in larval hemolymph of P. turionellae also. This increase in MDA level reached nearly more than 10 times that of the control group at the highest dose of IAA (Table 2). Interestingly, these results indicated that increase in lipid

peroxidation was not inhibited despite the increase in GST activity, an important detoxification enzyme in the hemolymph of the larval endoparasitoid, at 500 and 1000 ppm IAA doses treatment. Thus, this study, for the first time, showed that oxidative stress increased depending on the IAA₃ doses the larvae of *P. turionellae* were exposed to through the host pupae. As a consequence, the IAA₃-mediated toxic effects occurred in not only host antioxidant defense system, but also in the endoparasitoid *P. turionellae*. In addition, our study results are also important for the observation of toxic effects of IAA on trophic interactions between host and parasitoid species.

In conclusion, IAA induced oxidative stress in the host and parasitoid insects could be a potential threat causing the negative influences on the survival of parasitoid species for biological control programs. Thus, adult emergence time may happen in unfavorable environmental conditions. Therefore, our study provides important information for the conscious use of IAA in agriculture so as to conserve the host-parasitoid interactions in the ecosystem.

Acknowledgments

This research was supported by Kocaeli University, Scientific Research Projects Commission, of Turkey (Project No: 2014068). Authors would like to thank native speaker Anthony David PLANCHEREL who is a lecturer at Anadolu University for providing proof reading on this paper.

References

- Altuntaş H, Kiliç A, Uckan F, Ergin E. Effects of gibberellic acid on hemocytes of *Galleria mellonella* L. (Lepidoptera: Pyralidae). Environ. Entomol. 41: 688-696, 2012.
- Altuntaş H. Effects of ethephon on the hemolymph metabolites of the greater wax moth *Galleria mellonella* L. (Lepidoptera: Pyralidae). Acta. Physiol. Pol. A. 128, 182-183, 2015a.

- Altuntaş H. Determination of gibberellic acid (GA 3)-induced oxidative stress in a model organism *Galleria mellonella* L. (Lepidoptera: Pyralidae). Environ. Entomol. 44: 100-105, 2015b.
- Altuntaş H, Demirci SNŞ, Duman E, Ergin E. Toxicological and physiological effects of ethephon on the model organism, *Galleria mellonella* L. 1758 (Lepidoptera: Pyralidae). Turk. Entomol. Derg. 40: 413-423, 2016.
- Çelik D, Özbek R, Uçkan F. Effects of Indole-3-Acetic Acid on Hemocytes of Achoria grisella Fabr. (Lepidoptera: Pyralidae). J. Entomol. Res. Soc. 19: 83-93, 2017.
- Davies PJ. Plant Hormones, Physiology, Biochemistry, and Molecular Biology, 2nd edn. Kluwer Academic Publishers, Dordrecht, Netherlands. Davies PJ. (2010). The Plant Hormones: Their Nature, Occurrence and Functions, (eds. P.J. Davies), 3rd edn. Kluwer Academic, New York, USA, 1995.
- Felton GW, Summers CB. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29: 187-197, 1995.
- Furukawa S, Abe M, Usuda K, Ogawa I. Indole-3acetic acid induces microencephaly in rat fetuses. Toxicol Pathol 32: 659-667, 2004.
- Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 7: 153-163, 2000.
- Kaur R, Rup PJ. Evaluation of regulatory influence of four plant growth regulators on the reproductive potential and longevity of melon fruit fly *Bactrocera cucurbitae*. Phytoparasitica 30: 224-230, 2002.
- Kaur R, Rup PJ. Influence of some plant growth regulators (PGR) on biochemical profile in the larvae of melon fruit fly *Bactrocera cucurbitae* (Coquillett) (Diptera: Trypetidae). Entomon. Trivandrum. 28: 89-95, 2003.
- Kumar B, Pandey D, Goswami C, Jain S. Effect of growth regulators on photosynthesis, transpiration and related parameters in water stressed cotton. Biol. Plant. 44: 475-478, 2001.
- Kwadha CA, Ong'amo GO, Ndegwa PN, Raina SK, Fombong AT. The Biology and Control of the Greater Wax Moth, *Galleria mellonella*. Insects. 8: 1-17, 2017.

- Rup PJ, Sohal SK, Kaur G, Dhillon M. The influence of allelochemicals and plant growth regulators on emergence and development of mustard aphid, *Lipaphis erysimi* (Kalt.). Allelopathy J. 10: 53-58, 2002.
- Shayegan D, Sendi JJ, Sahragard A, Zibaee A. Immunological and antioxidant responses of larval *Helicoverpa armigera* (Lepidoptera: Noctuidae) to gibberellic acid in the diet. Invertebrate Surviv. J. 16: 48-59, 2019.
- Tülüce Y, Çelik I. Influence of subacute and subchronic treatment of abscisic acid and gibberellic acid on serum marker enzymes and erythrocyte and tissue antioxidant defense system and lipid peroxidation in rats. Pest Biochem. Physiol. 86: 85-92, 2006.
- Uçkan F, Haftacı İ, Ergin E. Effects of indole-3acetic acid on biological parameters of the larval endoparasitoid *Apanteles galleriae* (Hymenoptera: Braconidae). Ann. Entomol. Soc. Am. 104: 77-82, 2011a.
- Uçkan F, Öztürk Z, Altuntaş H, Ergin E. Effects of gibberellic acid (GA₃) on biological parameters and hemolymph metabolites of the pupal endoparasitoid *Pimpla turionellae* (Hymenoptera: Ichneumonidae) and its host *Galleria mellonella* (Lepidoptera: Pyralidae). JERS. 13: 1-14, 2011b.
- Uçkan F, Soydabaş HK, Özbek R. Effect of Indol-3acetic acid on the biochemical parameters of *Achoria grisella* hemolymph and *Apanteles galleriae* larva. *Pak. J. Biol. Sci.* 11: 163-171, 2014.
- Uçkan F, Özbek R, Ergin E. Effects of indole-3acetic acid on the biology of *Galleria mellonella* (Lepidoptera: Pyralidae) and its endoparasitoid *Pimpla turionellae* (Hymenoptera: Ichneumonidae). Belgian J. Zool. 145: 49-58, 2015.
- Yilmaz H, Yüksel R, Türköz EY. F₂ nesil farelerde indol-3-asetik asitin böbrek katalaz, süperoksit dismutaz ve glutatyon peroksidaz aktiviteleri üzerine olan etkisi. Van Tıp Dergisi. 11: 64-68, 2004.
- Zhao H, Cao HH, Pan MZ, Sun YX, Liu TX. The Role of Plant Growth Regulators in a Plant– Aphid–Parasitoid Tritrophic System. J. Plant Growth Regul. 36: 868-876, 2017.