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Abstract 

Molluscs are the most diverse group in respect of sexual systems and strategies. They can be 
dioecious with separate sexes or hermaphroditic. Within hermaphroditism, it is possible to distinguish 
a number of modifications of this type of reproduction, such as protandry, protogyny, sex reversal, or 
protandry with some overlap. It is thought that dioecy was ancestral because it occurs in most classes 
of molluscs. Hermaphroditism evolved independently several times, and sequential and simultaneous 
hermaphroditism are more closely related to each other than to dioecy. This publication presents a 
general review of sexual systems and strategies in terrestrial gastropods with special emphasis on 
mating, fertilization, presence of love darts, reproductive strategies (semelparity vs. iteroparity) and 
modes (oviparity, ovoviviparity, viviparity), production of eggs and egg cannibalism. 
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Introduction 

 
Most animal species belong to invertebrates. 

Molluscs constitute the second most numerous type 
and the majority of them are gastropods (O’Connor 
and Crowe, 2005). It is estimated that the number of 
molluscs species detected so far varies from 80,000 
to 135,000 worldwide (Abbott, 1989). Molluscs are a 
diverse group of animals due to their morphological 
forms, occurrence in different environments - water 
(marine and freshwater) and land, ways of feeding, 
but also because of various types of reproduction 
(Policansky, 1982). The main functions of their 
reproductive systems are: 1) production of male and 
female gametes: sperm and ova, 2) nutrition and 
storage of mature gametes, 3) transport of sperm 
produced by one specimen (autosperm) to 
reproductive ducts of another specimen, 4) 
reception of sperm produced by the same individual 
(allosperm), 5) providing appropriate environmental 
conditions for the ovum fertilized by sperm, 6) 
covering of zygote by protective and nutrient layers, 
7) laying eggs (oviposition) and 8) resorption of 
remains and excess of products of the reproductive 
process (Gómez, 2001). 

The aforementioned animals can be dioecious 
(gonochorism or dioecism) and can have separate 
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sexes (female and male gonads occur in different, 
separate individuals) or hermaphroditic (an 
individual contains both male and female 
reproductive organs). Hermaphrodites can be 
simultaneous, which means that an organism has 
both male and female organs at the same time, or 
sequential - during their life their sexes change 
(Wilson and Harder, 2003). Among these, there is 
protandry (male-to-female change) and protogyny 
(female-to-male change), but the first one is more 
frequent in molluscs (Larsen et al., 2013). 
Sequential and simultaneous hermaphroditism are 
more closely related to each other than to dioecy 
(Collin, 2013). Phylogenetic evidence indicates that 
dioecy is ancestral in the Mollusca phylum (Kocot et 
al., 2011; Smith et al., 2011; Collin, 2013). 
Monoplacophora, Caudofoveata, Polyplacophora, 
Scaphopoda and Cephalopoda are exclusively 
dioecious, while Solenogastres are simultaneous 
hermaphrodites. Among molluscs, gastropods and 
bivalves are the most diverse in terms of their 
reproductive systems - they are dioecious, 
simultaneous, or sequential hermaphrodites. There 
are some exceptions, for example the cases of a 
sequential hermaphrodite in cephalopods, one 
simultaneous hermaphrodite in Monoplacophora - 
Micropilina arntzi, and one genus (Lepidochitona) 
with a simultaneous hermaphrodite within 
Polyplacophora (Eernisse, 1988; Haszprunar and 
Schaefer, 1996; Lamprell and Scheltema, 2001). A 
very interesting case of reproductive strategy is sex 
reversal, which means that an animal can change 
its sex during its life more than once (Park et al., 
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2012). A specific case of reproduction has been 
observed in a few patellogastropods, which are 
protandric with some overlap. It differs from 
common protandry due to the fact that there is a 
short period of time during the development when 
both male and female gonads occur in an animal. 
After that, it is possible to distinguish only one type 
of gonad (Collin, 2013). Most studies devoted to 
reproductive systems and strategies concern marine 
and freshwater molluscs (Guo et al., 1998; Siddiqui 
and Ahmad, 2002; Chen et al., 2004; Calvo and 
Templado, 2005; Collin et al., 2005; Brante et al., 
2011) and only some of them focus on terrestrial 
snails. 

A relatively small number of terrestrial 
gastropods are dioecious and most of them are 
sequential or simultaneous hermaphrodites (Heller, 
1993). Dioecy occurs in some families of land 
Neritomorpha (Helicinidae, Hydrocenidae) and in all 
land Caenogastropoda. Usually the sex ratio is 1:1, 
but there are some exceptions to this principle. The 
main advantages of the presence of this type of 
reproduction are: 1) increased fitness of the 
offspring and 2) decreased inbred depression in 
conjunction with preventing self-fertilization 
(Leonard, 2010). The problems connected with 
reproduction can result from the impossibility to find 
a partner to mate. Dioecious animals incur the same 
costs associated with reproduction (energy or 
mortality), both parents take care of the offspring 
(biparental care) if this behavior is present in 
species, and there are no differences in mortality 
and growth between the sexes (Warner, 1988). 

Simultaneous hermaphrodites can produce 
male and female gametes in the same gonad 
(ovotestis) or separately in the ovary and the testis 
(Hodgson, 2009). This type of reproduction is 
common in organisms living in groups. Detecting 
simultaneous hermaphrodites is relatively simple 
because the anatomical section is usually sufficient 
(Policansky, 1982; Collin, 2013). Discovering 
sequential hermaphrodites is more complicated 
because sex change depends on many 
environmental factors and it is difficult to capture the 
moment of this phenomenon. Depending on 
whether we deal with protandry or protogyny, there 
are dissimilarities in mortality and growth. In 
protandry, females have a higher mortality rate, 
males grow faster and female functions are more 
costly than male functions, while in the case of 
protogyny, the situation is reverse (Warner, 1988). 
The main advantages of hermaphroditism are: 1) 
possibility of reproduction by self-fertilization 
because some species have difficulties in finding a 
partner to copulate, 2) higher probability of meeting 
a potential partner as every encountered individual 
can be a potential partner, 3) increased productivity 
due to the discharge of their functions and division 
of resources, 4) egg production takes place in 
stages, not at one time (Crowley et al., 1998) and 5) 
increased variability in fitness (Wilson and Harder, 
2003). The main disadvantage is that individuals 
have to put a lot of energy into growth and 
subsistence of both types of reproductive organs 
(Hodgson, 2009; Leonard, 2010).  

In literature one can find several hypotheses 
which explain the presence of hermaphroditism 

among animals. The most cited ones in papers are 
“low density model” and “size advantage model” 
which are connected with sequential or 
simultaneous hermaphroditism (Munday et al., 
2006). The low density model proposed by 
Tomlinson (1966) assumes that individuals from 
populations with low densities are more likely to 
meet the suitable partner than in the case of 
dioecious organisms (Borgia and Blick, 1981). This 
model focuses on simultaneous hermaphrodites. 
The “size advantage model” is connected with 
sequential hermaphrodites and it was proposed by 
Ghiselin in 1969 (Ghiselin, 1969). This model is 
linked with the sex allocation theory and it was 
designed to explain the occurrence of protandry and 
its evolution. It states that if a small male and large 
female have a much higher reproductive efficiency, 
the male to female change will be favored along 
with an increase in the size of the animal. In 
protandry, small individuals (males) have higher 
reproductive fitness than larger males. It is the same 
in the case of females - large females have higher 
reproductive fitness than smaller ones. This means 
that reproductive functions are better realized when 
the animal is of the appropriate size. Moreover, 
males can increase their reproductive success by 
copulating with many females (Warner, 1988; 
Wright, 1988; Erisman et al., 2009). Sex change is 
present in plants and animals, not only in molluscs, 
but also in echinoderms, annelids, crustaceans, and 
fishes (Policansky, 1982). 

There are many good reviews of sexual 
systems and strategies in molluscs (for example 
Baur, 1994b; Leonard, 1999, 2006, 2013; Heller, 
2001; Davison and Mordan, 2007; Jordaens et al., 
2007; Yusa, 2007; Collin, 2013; Nakadera and 
Koene, 2013), but in this paper we put emphasis on 
these issues in terrestrial gastropods and 
summarize the important data on this group of 
animals in the context of mating, fertilization, 
presence of love darts, reproductive strategies 
(semelparity vs. iteroparity) and modes (oviparity, 
ovoviviparity, viviparity), production of eggs and egg 
cannibalism in terrestrial gastropods.  
 
Description of genitalia 

Terrestrial gastropods can be dioecious and 
have separate sexes (e.g., Cyclophoridae) or 
hermaphroditic as stylommatophorans. The 
reproductive system of dioecious gastropods 
consists of gonad and duct called coelomic 
gonoduct, both structures have a mesodermal 
origin. Gonoduct is divided into two parts, bigger is 
called renal oviduct or renal gonoduct, and smaller, 
distal portion - pallial gonoduct (Fretter and Graham, 
1962). Renal gonoduct is narrow, tubular structure 
in both sexes, whereas pallial gonoduct is different 
in males and females. In case of males, pallial 
gonoduct is wide with thin walls forming prostatic 
gland, which secrete semen. In females, walls of 
pallial gonoduct are divided into several parts which 
are able to secrete nutritious and protective 
substances, these are called albumen and capsule 
glands located side by side. On the pallial gonoduct 
there are situated two types of sperm pounches: 
bursa copulatrix and receptaculum seminis. Bursa 
copulatrix obtains allospermatozoa and prostatic 
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liquid from the proccess of mating, while 
receptaculum seminis is used for storing these 
substances for future oocyte fertilization (Gómez, 
2001). Another structure of reproductive system is 
muscular penis, usually located on the right side of 
the head, it was created from the anterior body wall 
(Gómez, 2001).  

Reproductive system of stylommatophoran 
hermaphroditic gastropods contains gonad with 
gonoduct, the carrefour, albumen gland, 
spermoviduct, free oviduct, vagina, vas deferens, 
epiphallus, spermatophore, penis, diverticulum, 
bursa copulatrix, penial flagellum, genital atrium 
and other auxiliary copulatory organs (Gómez, 
2001).  

In stylommatophorans occur single gonad 
called ovotestis, which produces oocytes and 
spermatozoa. Ovotestis is located among patches 
of the digestive glands, it is composed of few or 
many rounded or pear-shaped sac acini and contain 
both male and female germ cells. Ovotestis opens 
to gonoduct, also called hermaphodite duct, along 
which germ cells are transported.  

Another structure of reproductive system is the 
carrefour, which consists of spermatheca or female 
sperm-storage organ for allosperm storage, protein 
coating of zygotes or oocyte fertilization (Gómez, 
2001). There is a huge variability in structures and 
morphology of the carrefour. For example, it may be 
divided into spermatheca and fertilization chamber, 
as in the case of Trigonephrus gypsinus 
(Dorcasiidae), or single spermathecal tubule beside 
the fertilization chamber, what is observed in 
Oxychilus draparnaudi (Zonitidae) or Bradybaena 
fruticum (Bradybaenidae) (Flasar, 1967; Brinders 
and Sirgel, 1992; Bojat et al., 2001). In some 
species there is variation in number of spermathecal 
tubules: 2 - 9 in A. arbustorum or 4 - 19 in C. 
aspersum (Haase and Baur, 1995; Baminger and 
Haase, 1999; Koemtzopoulos and Staikou, 2007; 
Chase and Darbyson, 2008). 

In the early phase of the sexual activity of the 
gastropod albumen glad has small size. It develops 
fully when the gonad is starting to leave the eggs. 
Gastropods differ in the shape of the gland, for 
example rounded and shield-shape in 
Agriolimacidae, while Limacidae has this structure 
worn and tongue-shape. The size of the gland 
changes is negatively correlated with size of the 
gonad, e. g. when the gonad is large, the albumen 
gland is small and vice versa (Wiktor, 1989). 
Albumen gland produces albumen or perivitelline 
substances, whereas secretory cells secrete 
galactogen which is a polymere of galactose 
(Duncan, 1975).  

The vas deferens is narrow, partly folded duct 
whose main function is transport of autosperm 
whereas highly muscular epiphallus participates in 
spermatophore formation. Spermatophore is built of 
epiphallus and flagellum during copulation and has 
species-specific shape and taxonomic significance 
(Mann, 1984; Baur, 1998). It is composed of 
substances containing mucoproteins and 
glycosaminoglycans (Mann, 1984). Spermatophore 
is not present in all stylommatophorans, it is 
produced singly during mating and exchanged 
between partners inversely (Mann, 1984). 

Penis is a copulatory organ with huge diversity 
within stylommatophorans, but at the same time, it 
is not present in all species (Reise, 2007). Its shape 
is typical for a particular species. Penis is used also 
for identifying a partner during mating and it affects 
success of copulation (Gómez, 2001). External 
sperm exchange occurs in some stylommatophoran 
species from Succineidae, Polygyridae, 
Helicodiscidae, Limacidae and Agriolimacidae 
families (Emberton, 1994; Reise, 2007).  

Diverticulum is a bursa tract from which the 
spermatophore is taken during mating (Barker, 
2001). The length of this structure may be variable, 
van Osselaer and Tursch (2000) studied a 
population of 79 individuals of H. pomatia. They 
discovered, that 34 % of them were deprived of 
diverticulum, whereas at the rest of them, its length 
varied from 1 mm to 9 mm (van Osselaer and 
Tursch, 2000). In these species, where diverticulum 
is absent, the spermatophore is deposited in bursa 
copulatrix (Barker, 2001), which is also called 
gametolytic gland (Tompa, 1984). The main function 
of this organ is extracellular digestion and further 
resorption of excess gametes, secretions and 
residues of the spermatophore (Beese et al., 2006).  

Penial flagellum is responsible for production of 
spermatophore tail (Gómez, 2001). Genital atrium is 
the final section of the reproductive system, where 
male and female organs are reunited (Wiktor, 1989). 
 
Mating and fertilization 

It is estimated that the number of gastropod 
species inhabiting the Earth ranges from 60,000 to 
105,000 (Bouchet et al., 2005), whereas there are 
about 35,000 species of terrestrial gastropods (van 
Bruggen, 1995). Terrestrial snails and slugs have 
worldwide distribution and can be found in diverse 
land environments, such as different types of 
forests, gardens, rock surfaces, steppes and dry 
habitats, desserts, humid biotopes, they are present 
in Hydrocenoidea, Helicinoidea, Cyclophoroidea, 
Rissoidea, Littorinoidea superfamilies, and in many 
families within Heterobranchia clade (Bouchet et al., 
2005). Most terrestrial gastropods belong to 
Stylommatophora superorder in Heterobranchia, 
and the number of species is about 20,000 (Solem, 
1978) grouped in 71 to 92 families (Emberton et al., 
1990). Stylommatophorans are air-breathing 
terrestrial gastropods characterized by two pairs of 
invaginable head tentacles (Dayrat and Tillier, 
2002), most of which are simultaneous 
hermaphrodites. 

Within gastropods, one can distinguish internal 
or external fertilization, but the first type is more 
frequent among terrestrial gastropods (Nakadera 
and Koene, 2013). External fertilization occurs in 
some primitive species of archaeogastropods (Jarne 
and Auld, 2006). Fertilization is affected by many 
factors, such as the quality and size of sperm 
(Werner and Simmons, 2008; Birkhead et al., 2009; 
Pizzari and Parker, 2009), which is selected by 
sperm competition and fertilization success (Pitnick 
et al., 2009). Schmera et al. (2016) compared the 
data on sperm length in 57 stylommatophoran 
species from 23 families (Succineidae - 1 species, 
Chondrinidae - 3, Lauriidae - 1, Orculidae - 1, 
Pyramidulidae - 1, Vertiginidae - 2, Enidae - 1, 
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Clausiliidae - 8, Bothriembryontidae - 2, 
Odontostomidae - 2, Strophocheilidae - 1, Discidae 
- 1, Oxychilidae - 3, Zonitidae - 1, Limacidae - 3, 
Agriolimacidae - 1, Vitrinidae - 2, Arionidae - 3, 
Helicidae - 10, Bradybaenidae - 1, Cochlicellidae - 
1, Helicodontidae - 1, Hygromiidae - 7) from Europe 
and South America, taking into account the 
breeding systems in order to test the hypothesis that 
sperm competition can favor the evolution of longer 
sperm (Parker, 1993; Parker and Begon, 1993). 
Their results indicate that in stylommatophorans, 
simultaneous hermaphrodites’ sperm length can be 
influenced by the breeding system, the age of 
sexual maturity, and shell size. Moreover, they 
showed that sperm length increases with shell size 
(Schmera et al., 2016).  

Courtship and copulation can be done 
unilaterally, which means that one partner plays a 
specified role (male or female), while the other 
individual plays a reverse role during copulation, 
and usually, after one round of copulation the roles 
are changed, or reciprocally (both individuals play 
the male or female role at one time during 
copulation) (Tompa, 1984; Heller, 2001). Moreover, 
mating can be done in different positions, such as 
shell-mounting or face-to-face. In their review, 
Davison and Mordan (2007) pay attention to the fact 
that the mating position within terrestrial 
stylommatophorans is constant across the evolution 
of most lineages. They focused on the mating 
behavior within land stylommatophorans (snails and 
slugs) and classified the genera into four categories: 
1) face-to-face, simultaneous reciprocal, 2) face-to-
face, unilateral, 3) shell-mounting, simultaneous 
reciprocal and 4) shell-mounting, unilateral. They 
summed up the data on the mating behavior and 
presence of love darts in 93 genera from 35 families 
of terrestrial gastropods. The comparison of the 
data suggests that the face-to-face, simultaneous 
reciprocal behavior is the most common mating 
behavior within stylommatophorans (Davison and 
Mordan, 2007).  

Terrestrial gastropods are able to reproduce by 
cross-fertilization, which means that gametes from 
different individuals are necessary for insemination, 
or by self-fertilization - insemination can be done by 
a fusion of gametes produced by one specimen, but 
the first type is more frequent among terrestrial 
snails and slugs, whereas self-fertilization is more 
widespread in freshwater species and bivalves 
(Duncan, 1975; Peake, 1978; Heller, 1993, 2001; 
Jarne et al., 1993). Usually, cross-fertilization is the 
preferred type of insemination, but self-fertilization 
gives them the opportunity to reproduce when 
mating is not possible, allowing them to occupy and 
colonize new areas due to the ability of reproduction 
even at low population density, and it also reduces 
the costs of male allocation (Heller, 2001). Self-
fertilization has also some disadvantages, such as 
low genetic diversity caused by limited 
recombination and possible inbreeding depression 
(Chen, 1993, 1994; Heller, 2001).  

Self-fertilization evolved several times in few 
independent phylogenetically lines, it occurs in 
different species of terrestrial gastropods. Heller 
(1993) summarized data about presence of this type 
of fertilization in 19 genera from 12 families, in 

Veronicellidae (Filicaulis, Vaginulus), Vertiginidae 
(Vertigo, Truncatellina), Vallonidae (Vallonia), 
Partulidae (Partula), Achatinidae (Achatina, 
Archachatina), Subulinidae (Rumina), Chondrinidae 
(Chondrina), Arionidae (Arion), Philomycidae 
(Philomycus), Succineidae (Catinella, Omalonyx, 
Oxyloma, Succinea), Limacidae (Deroceras, 
Agriolimax) and Polygyridae (Triodopsis) (Heller, 
1993). In some cross-fertilizer species (e.g. Arianta 
arbustorum, Bradybaena fruticum) also self-
fertilization is possible, but fitness reduction is 
observed as a consequence (Chen 1993, 1994; 
Kuźnik-Kowalska et al., 2013). 

One of the most interesting families in the 
context of fertilization is Arionidae, belonging to 
Stylommatophora. A typical genus for this family is 
Arion which has the most species. In Europe, 35 
Arion species (Welter-Schultes, 2012) occur and in 
these species both cross-fertilization and self-
fertilization are present, depending on the species. 
A. lusitanicus; A. hortensis; A. distinctus and A. 
owenii reproduce by cross-fertilization, whereas A. 
circumscriptus; A. silvaticus and A. intermedius 
reproduce frequently by self-fertilization. A. ater and 
A. subfuscus are able to cross- and self-fertilize 
(Foltz et al., 1982). 
 
Love darts 

Some terrestrial gastropods are able to produce 
love darts called gybsobelum or shooting darts 
(Koene and Schulenburg, 2005), which are hard, 
pointed structures composed of calcium carbonate, 
chitin or cartilage (Hasse et al., 2002). The size of 
the darts varies from 1 to 30 mm, but usually is less 
than 5 mm and always correlated with the size of 
the animal. Apart from radula and jaws, love darts 
and their shape can be used for the identification 
and classification of gastropods (Chung, 1986). 
Some species have one or more love darts which is 
an effect of repeatable evolutionary events (Koene 
and Schulenburg, 2005). Presence of these 
structures is connected with face-to-face mating 
behavior and low-spired shape of the shell (Davison 
et al., 2005; Jordaens et al., 2009). Davison and 
Mordan (2007) summarize data about presence of 
love darts in particular families in Helicoidea and 
Limacoidea superfamilies, they occur in 
Bradybaenidae, Helicidae, Helminthoglyptidae, 
Hygromiidae, Ariophantidae, Urocyclidae, Vitrinidae, 
Zonitidae, Philomycidae and Dyakiidae families 
(Davison and Mordan, 2007; Koene et al., 2013). 
Among terrestrial slugs and snails can be observed 
diversity in dart structures. Some species produce 
single dart which stays in body of dart receiver, then 
dart is rebuilt by dart shooter, as in the case of C. 
aspersum or H. pomatia (Chung, 1987; Chase, 
2007). In other species, e.g., Polymita muscarum, 
P. picta, Euhadra subnimbosa, dart is retracted and 
reused, it does not remain in the partner’s body 
(Koene and Chiba, 2006; Reyes-Tur and Koene, 
2007; Koene et al., 2013). Love darts contain gland 
products which cause changes in female 
reproductive system after entering to the 
haemolymph (Kimura et al., 2014). Sticking darts 
into the body of the gastropod causes contraction, 
retraction of the shell, and inhibition of sexual 
behavior, or escape. It appears that the firing of 
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darts stimulates the dart shooter and it is a 
discharge of aggressive behavior (Chung, 1987). 
Dart donor is disadvantaged because of exposed on 
possible infections resulting from skin damages and 
process of sperm storage is modified (Rogers and 
Chase, 2002).  

According to the functions of love darts, there 
were many hypotheses which tried to explain their 
significance. Adamo and Chase (1988) postulated 
that the main function of love darts were 
encouragement the partner to mate, whereas Diver 
(1940) claimed that these structures were involved 
in recognizing of individuals which belong to the 
same species. Another explanation of their 
presence was the gift of calcium for the partner. All 
these hypotheses have been rejected. The function 
of love darts is not fully understood, but it is believed 
that they play a stimulating role during mating and 
they increase fertilization success of the dart 
receiver by enhancing the possibility of fertilizing 
eggs. Lodi and Koene (2016) in their review 
combined physiological, morphological and 
behavioural data about love darts in 23 species 
belonging to the Helicoidea superfamily (Helicidae, 
Bradybaenidae, Helminthoglyptidae). They reported 
that the common characteristic of dart shooting is 
increasing of male reproductive success by moving 
the mucus to dart receiver (Lodi and Koene, 2016).  
 
Reproductive strategies in gastropods: semelparity 
and iteroparity 

In the case of each reproductive strategy, the 
most important aspect is the trade-off between 
fecundity, growth, and survivorship of individuals 
(Perron, 1983). Among molluscs, not only in 
terrestrial gastropods, there are two different 
reproductive strategies, namely semelparity and 
iteroparity, which differ from each other, but these 
are not alternative strategies (Heller, 2001). An 
essential factor is the survival of adults in relation to 
the survival of juveniles (Heller, 2001). Semelparity 
means that an animal accedes to the reproduction 
only once during its life and after that it dies and the 
death is considered to be part of this strategy. An 
animal puts all its resources to maximize its 
reproductive success at the expense of its lifespan. 
In semelparous species, the cost of offspring 
production increases, while the cost of offspring 
decline decreases. In case of iteroparity, an animal 
reproduces many times during its life, which means 
in practice that it is able to reproduce every year 
(Rantes et al. 2002). In iteroparous species, the cost 
of offspring production decreases and each 
additional offspring is less expensive. An animal 
allocates some resources to reproduction and 
spends the rest of them on growth and survivorship, 
which allows it to reproduce many times during its 
lifetime (Roff, 1992). For molluscs iteroparous 
species are the most common; this strategy is 
identified with K-selection, while semelparity is 
linked to r-selection (MacArthur and Wilson, 1967). 
The r-selected species are characterized by 
production of numerous small offspring, high 
mortality among juveniles, and a short lifespan of an 
animal. Juveniles mature quickly and are able to 
reproduce, but only a small percentage of them 
survive. K-selection is based on a small number of 

offspring as well as the comprehensive care of 
them. Most juveniles survive until the reproductive 
age, and produce the next generation of animals 
(MacArthur and Wilson, 1967; Begon et al., 2006).  

Semelparity is usually connected with the 
annual lifespan and occurs in many families within 
Heterobranchia clade, in Succineidae (Succinea 
putris; Oxyloma retusum), Euconulidae 
(Habroconus semenlini), Milacidae (Milax gagates), 
Agriolimacidae (Deroceras reticulatum), Vitrinidae 
(Semilimax semilimax, S. kotulai, Vitrina pellucida), 
Arionidae (Arion ater, A. subfuscus, A. fuscus, A. 
lusitanicus, A. intermedius), Limacidae (Bielzia 
coerulans), Helicidae (Theba pisana), Hygromiidae 
(Xeropicta vestalis, Monacha cartusiana, M. 
haifaensis, Cernuella virgata, Helicella itala, 
Trochulus hispidus), and many others (Runham and 
Laryea, 1968; Heller, 1982, 2001; Barker, 1988, 
1991; South, 1989; Lazaridou-Dimitriadou and 
Sgardelis, 1995; Silva et al., 2009; Örstan, 2010; 
Welter-Schultes, 2012; Kuźnik-Kowalska et al., 
2013; Proćków et al., 2013).  

An example of semelparous terrestrial 
gastropods is Arion vulgaris accepted as one of the 
100 most invasive species in Europe (Rabitsch, 
2006). It is a serious threat to agricultural and 
horticultural crops, causing their damage (Gren et 
al., 2009). This species lives about one year, but 
some slugs can live longer, and most of them die 
after laying eggs (Davies, 1987; Kozłowski, 2008). 
Each individual in its lifetime lays between 240 and 
540 eggs, from 12 to 124 white, round eggs per 
clutch (Kozłowski, 2000; Kozłowski and Kozłowski, 
2000), and after a month juveniles hatch. Hatching 
can be spread over time and depends on the 
temperature; it takes place from September until the 
air temperature falls to 5 oC (Kozłowski, 2000).  

Many slug species are considered to be 
invasive species (Kozłowski et al., 2010). Among 
them, many have a life cycle and are semelparous 
(Heller, 2001). Kozłowski et al. (2010) showed the 
alien invasive slug species which are threat to crop 
plants. The biggest pests are A. distinctus, A. 
vulgaris, A. rufus, Deroceras panormitanum, Limax 
maximus and Tandonia budapestensis (Kozłowski 
et al., 2010). These species have economic 
importance causing crop damages, mainly fruits and 
vegetables. For example, A. vulgaris reduce 
strawberry yields in Sweden by half (Gren et al., 
2009). These pest species lay a large number of 
eggs, for example A. distinctus lays 200 eggs, and 
A. rufus - 415 eggs, from 8 to 229 per clutch. A. 
fasciatus poses a relatively small threat to crops, 
perhaps because of its life expectancy (15 - 25 
months) and the number of produced eggs (104 - 
123 eggs, from 10 to 30 per clutch) (Welther-
Schultes, 2012). 
 
Reproductive modes in gastropods: oviparity, 
ovoviviparity and viviparity 

Among terrestrial gastropods, three different 
reproductive modes occur, that is oviparity, 
ovoviviparity and viviparity. The first one is the most 
common mode, which means that an animal is 
capable of laying eggs (Heller, 2001). Lodé (2012) 
proposed to replace the term ‘oviparity’ with 
‘ovuliparity’ in the case of molluscs and arachnids 
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(Lodé, 2012). The term ‘ovoviviparity’ can be 
defined as a special case or modification of 
viviparity. This way of reproduction is based on 
laying eggs by the mother, but the embryonic 
development proceeds inside the mother’s body in 
the egg shell at the expense of egg yolks. Juvenile 
offspring destroys egg shells before hatching or just 
after egg laying (Meier et al., 1999; Markow et al., 
2009). Within this concept, one can distinguish 
ovoviviparity sensu lato, which means that 
incubation of eggs takes place in the reproductive 
tract at any time of the embryonic development of 
an animal. Moreover, a part of the embryonic 
development takes place after laying eggs in the 
environment. Ovoviviparity sensu lato is identified 
with egg retention. Ovoviviparity sensu stricto lies in 
the fact that the embryonic development takes place 
in the parent’s body and juveniles are born or hatch 
immediately after laying eggs. This mode of 
reproduction has many advantages, and the main 
ones are: 1) decrease in the offspring mortality due 
to drought or predation, 2) increase in the offspring 
chances in food competition with juveniles hatched 
from eggs, 3) this mode of reproduction gives a 
chance to reproduce in unstable conditions, where it 
is difficult to predict the beginning of a rainy season 
during the year (Tompa, 1979a; Sulikowska-Drozd, 
2009). In some papers one can find the term 
‘brooding’, which means that the embryonic 
development occurs wholly or partially inside the 
parent’s body, not necessary inside the genital tract 
(Heller, 1993). Among ovoviparous terrestrial 
gastropods, one can mention Ferussacia folliculum 
(Ferussaciidae), Pupilla muscorum, P. sterrii 
(Pupillidae), Leptinaria unilamellata (Subulinidae), 
Pyramidula pusilla, P. umbilicata (Pyramidulidae), 
Balea biplicata, B. perversa (Clausiilidae) and all 
species of Lauria (Lauriidae) (Pokryszko, 2001; 
Carvalho et al., 2009; Welter-Schultes, 2012), and 
many others.  

Sulikowska-Drozd and Maltz (2012) studied the 
reproduction of ovoviviparous clausiliid Balea fallax 
under laboratory conditions. Layed eggs of this 
clausiliid hatch earlier than in other clausiliid 
species, and adult specimens preserve eggs for 
short periods. The size of the eggs of this species 
suggests that parents invest more in offspring, and 
some part of parental care is used to increase 
offspring fitness (Sulikowska-Drozd and Maltz, 
2012). Sulikowska-Drozd et al. (2012) showed that 
B. fallax is capable of egg-retention and there is no 
correlation between the body size of individuals and 
the number of preserved eggs (Sulikowska-Drozd et 
al., 2012). Other ovoviviparous clausiliids are: 
Vestia gulo, V. elata, V. turgida (Sulikowska-Drozd, 
2009) and Ruthenica filograna (Szybiak, 2010; 
Szybiak et al., 2015). 

Sulikowska-Drozd (2009) studied egg retention 
and ovoviviparity in three clausiliids, Vestia gulo, V. 
turgida and V. elata. Differences in number of 
retained eggs in V. gulo and V. turgida were 
observed. Sulikowska-Drozd (2009) claimed, that 
the number of produced eggs depends on the 
season of the year, whereas number of juveniles is 
probably connected with the habitat preferences. 
Cannibalism has been observed in V. gulo and V. 
elata, but not in V. turgida (Sulikowska-Drozd, 

2009). Detailed knowledge about ovoviviparous 
gastropods is crucial in the understanding of the 
reproductive success of each species, especially in 
the context of endangered species. 

An example of ovoviviparity among terrestrial 
gastropods is the study carried out by Heller et al. 
(1997), in which scientists worked on the 
reproductive biology and population dynamics of a 
minute snail Lauria cylindracea. This species is 
characterized by low fecundity, but this type of 
reproduction is advantageous because of offspring 
survival. After hatching, juveniles are able to feed, 
grow and cope with flooding, drowning and drought. 
Ovoviviparous gastropods can survive more easily 
in unfavorable environmental conditions, such as 
excess of water in some habitats (Heller et al., 
1997). 

Viviparity is a mode of reproduction which 
consists in producing living offspring. In other words, 
viviparity means that ova are fertilized in the 
reproductive tract and stored inside the reproductive 
system of an animal, and juveniles are born fully 
formed. Tompa (1979b) suggested that viviparity 
occurs very rarely among terrestrial gastropods, but 
it is possible in some cases. There is evidence that 
viviparity may be present in vaginulid 
Pseudoveronicella zootoca, achatinellid Tekoulina 
pricei and in acavid Stylodon studeriana (Solem, 
1972; Tompa, 1979a, b, 1984; Heller, 2001).  
 
Eggs and egg cannibalism 

Among terrestrial gastropods, a common 
reproductive mode is oviparity, as mentioned in the 
previous chapter. Gastropods can lay eggs in 
different places, such as in the forest litter, inside 
excavated holes or in arboreal places, and their size 
varies depending on the species (Heller, 2001). The 
smallest eggs are laid by Opisthostoma 
retrovertens, Carychium tridentatum, Vertigo pusilla, 
Vallonia costata, V. pulchella, Cecilioides acicula, C. 
genezarethensis, Punctum pygmaeum, Succinea 
oblonga, whereas the largest ones are produced by 
Acavus haemastoma, A. waltoni, Megalobulimus 
bronni, M. capillaceus, M. oblongus, M. 
popelairianus, M. rosaceus, M. terrestris, Stylodon 
studeriana, Powelliphanta superba, Limax flavus 
(Frömming, 1954; Berry, 1964; Baur, 1989; 
Pokryszko, 1990; Heller et al., 1991; Heller, 2001). 
There is a correlation between the body size 
expressed as shell height and the size of the egg 
produced by an animal. For example, a small 
gastropod C. tridentatum (2 mm) produces small 
eggs of 0.4x0.3 mm, and similarly V. pusilla (2 mm) 
produces eggs of 0.6x0.3 mm (Baur, 1989; 
Pokryszko, 1990), whereas large M. popelairianus 
(230 mm) produces eggs of 51x28 mm (Heller, 
2001). Bigger juveniles hatch from larger eggs, 
which means that egg size determines the size of 
juveniles and also their growth, survivorship and 
possible future reproductive success. Bigger 
juveniles, which come from bigger eggs, are more 
resistant to starvation (Tompa, 1984) and have 
longer development (Baur, 1994a). Gastropods with 
larger sizes can lay more eggs, A. circumscriptus 
(25 - 32 mm long) deposits 104 - 123 eggs, A. 
hortensis (30 - 40 mm long) - up to 200 eggs, 
whereas A. vulgaris (70 - 140 mm long) lays up to 
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400 eggs and A. rufus (150 mm long) - up to 500 
eggs (Welter-Schultes, 2012). Production of larger 
eggs has many advantages: hatched juveniles are 
bigger and have a higher growth rate and 
survivorship, acquiring food is easier, and bigger 
juveniles have higher chances of successful 
reproduction. On the other hand, bigger eggs 
require longer incubation and the risk of mortality 
before hatching increases (Clutton-Brock, 1991). 
Heller (2001) presented a summary on animal and 
egg size on the basis of literature data, which shows 
that there is a correlation between these two 
properties (Heller, 2001). Laying eggs is part of life 
reproductive strategy, and interest in this subject 
has increased recently, especially in relation to life 
cycles. 

In the case of terrestrial gastropods, egg 
cannibalism can sometimes be observed, especially 
in the case of many stylommatophonan species. 
Egg cannibalism delivers calcium to juveniles, and 
this component has great importance for snails 
during all their life, especially affecting their growth 
during the early stages of development (Oosterhoff, 
1976). Baur (1994a) discovered that this 
phenomenon occurs in helicid A. arbustorum. Newly 
hatched juveniles cannibalize deposited eggs, which 
are derived from the same parent. Cannibalistic 
behavior occurred with varying frequency depending 
on the type of population. Baur (1994a) showed that 
cannibalistic behavior was observed in 50 % of 
hatched offspring in subalpine forest, and in 87.8 % in 
lowland forest. Moreover, it has been shown that the 
occurrence of cannibalism among juveniles is not 
connected with the egg size. The amount of energy 
and nutrients obtained by a snail during embryonic 
development does not cause cannibalistic behavior 
in juveniles of A. arbustorum (Baur, 1994a). 

Ożgo and Bogucki (2006) showed that juvenile 
specimens of Cepaea nemoralis in natural habitats 
radulated shells of live snails. The authors linked 
this behavior with pH and calcium content in the 
soil. In C. nemoralis cannibalism has also been 
observed. Shell predation and cannibalism were 
present on acid soils or with low content of calcium. 
The occurrence of these effects can be explained as 
an adaptation to life in adverse conditions of the 
environment (Ożgo and Bogucki, 2006). 
 
Conclusions 

 
Studies on reproduction systems of terrestrial 

gastropods provide new, original data, which fill the 
gap in the current state of the knowledge. The main 
significance of this type of research is possibility of 
population management, what is very important in 
the context of the control of pests which can cause 
serious damages in agriculture, conservation of 
endangered and rare species or in the case of 
gastropods farming for culinary and other purposes. 
Many papers concern about morphology of 
reproductive systems of species belonging to 
Arionidae, Agriolimacidae, Limacidae, Helicidae 
families, but other species should be explored 
additionally. Studying reproductive systems with 
combination of phylogenetic data among many 
species will allow to obtain new information about 
reproductive strategies in terrestrial gastropods. 
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