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Abstract 
Evolution of the insect immune system led to the creation of a comprehensive cellular defense 

system, not only involving phagocytosis, but also encapsulation and nodulation (both often referred to 
as capsule formation) allowing the isolation and neutralization of invading pathogens and parasites. 
Such reactions are closely related to the anatomical and physiological characteristics in insects with 
their external skeleton and open circulatory blood system. Encapsulation and nodulation are most 
important defense mechanisms in insects, as they allow targeting of the immune response to the site 
of damage to quickly destroy the intruder. Host penetration results in both the production of damage-
associated molecular patterns (DAMPs) and to the presence of pathogen-associated molecular 
patterns (PAMPs) in the hemolymph. Subsequent signal induction occurs by host pattern recognition 
receptors (PRRs) and other systems. Capsule formation results from aggregation and partial 
disruption of the hemocytes on the target surface resulting in melanization by the proPO cascade. 
Reactive oxygen (ROS) and nitrogen (RNS) species are emitted during melanogenesis and targeted 
against the invader. As a result, the intruder is not only isolated within the capsule but also destroyed. 
Insects have a number of systems (serpins, antioxidants), aimed at the regulation of melanogenesis 
and inactivation of toxic products resulting from melanization. All these complex mechanisms allow 
rapid and effective detection, isolation and destruction of invaders with minimal damage to the insect. 
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Introduction 

 
Insects have an open blood circulatory system 

in which hemolymph is enclosed in the body cavity 
or hemocel and the organs and tissues systems are 
bathed with hemolymph. The open circulatory 
system provides some benefits for immune 
reactivity. For example, immunomediators and 
hemocytes (blood cells) can be more rapidly 
disseminated and provide a faster immune 
response. Consequently, selection should favor the 
evolution of the rapid and efficient localization and 
neutralization of invaders (Kraaijeveld et al., 1998; 
Dubovskiy et al., 2013a). The open architecture, 
however, does facilitate the more rapid invasion by 
infectious agents throughout the host. Included in the 
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main fast reactions of the insect cellular defense 
strategies are phagocytosis, nodulation and 
encapsulation. Phagocytosis refers to the 
engulfment of small numbers of microbial targets, 
like bacteria or yeast, by an individual hemocyte. 
Nodulation and encapsulation are more effective 
innate immune responses against large numbers of 
pathogens or metazoan parasites in insects, leading 
to sequestration of the invader together with the 
biopolymers, melanin and sclerotin, and proteins. 
Encapsulation refers to multiple hemocytes binding 
to larger invaders, like protozoans, nematodes and 
parasitoids (eggs and larvae), that cannot be 
phagocytized by a single cell. The binding of 
multiple hemocytes to aggregations of bacteria, 
fungi and protozoans is also sometimes called 
nodulation (Ratcliffe and Gagen, 1977; Garcia et al., 
2007; Satyavathi et al., 2014) (Fig. 1). 

The process of encapsulation/nodulation is 
known to begin within the first minutes after 
hemolymph penetration by the foreign object (Gagen 
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Fig. 1 Schematic capsule/nodule formation in insects. PRRs (pattern recognition receptors), DAMPs (damage-
associated molecular patterns), PAMPs (pathogen-associated molecular patterns), NO (nitric oxide), ROS 
(reactive oxygen species), RNS (reactive nitrogen species), PO (phenoloxidase), AO (antioxidant), BM (basement 
membrane). 
 
 
 
 
and Ratcliffe, 1976; Dubovskii et al., 2010). 
Depending on the insect species and properties of 
the target, capsules may be continually formed over 
2 - 24 h (Carton et al., 2008). In most cases on the 
next day after the penetration by the invader, the 
capsule is clearly visible, but is considered fully 
complete only after 72 h (Ratcliffe and Gagen, 
1977). These processes are complex mechanisms 
that include a wide range of cellular and humoral 
immune reactions. Recent research has shown the 
contribution of signals associated with the wound 
and damage (damage associated molecular 
patterns, DAMPs) generated during mechanical or 
enzymatic action to the insect by invading parasites 
(Altincicek and Vilcinskas, 2006; Abreu-Blanco et 
al., 2011; Krautz et al., 2014). Insect cellular and 
humoral pattern-recognition receptors (PRRs) are 
able to recognize invaders and initiate hemocyte 
adhesion to the parasite (Strand, 2008). After 
contact with invaders, hemocytes begin to spread 
and this leads to the formation of an overlapping 
sheath around a target. These processes together 
trigger signaling pathways that produce several 
activators of immunity (Marmaras and 
Lampropoulou, 2009). 

An important stage of encapsulation/nodulation 
is hemocyte degranulation, often destroying the 
cells, and releasing prophenoloxidase (proPO) and 

activators of cell aggregation. The proPO cascade 
takes part in the melanization of hemocytes 
attached to the surface of the invader (Chain and 
Anderson, 1982; Takahashi and Enomoto, 1987; 
Pech and Strand, 2000). Phenoloxidase (PO), as an 
inactive proenzyme prophenoloxidase (proPO), is 
contained in the cuticle and hemolymph of insects 
(Ashida and Brey, 1995; Kopacek et al., 1995; 
Sugumaran, 2002). Most reports indicate that 
proPO is synthesized predominantly by hemocytes, 
especially in granular cells and oenocytoides 
(Iwama and Ashida, 1986; Ribeiro and Brehelin, 
2006; Williams, 2007). Cell-free melanotic capsules 
are, however, also found in a range of insects, 
primarily the Diptera (Carton and Nappi, 1997; 
Gorman and Paskewitz, 2001). During melanization 
of the nodules and capsules, some reactive oxygen 
(ROS) and nitrogen (RNS) species, including o-
semiquinone (Slepneva et al., 2003), hydrogen 
peroxide (Nappi and Vass, 1998; Komarov et al., 
2006; Dubovskii et al., 2010), superoxide anion 
(Nappi et al., 1995; Whitten and Ratcliffe, 1999; 
Glupov et al., 2001) and nitric oxide (Nappi et al., 
2000) are generated. These reactive molecules can 
both enhance the melanization and take part in 
destruction of the intruder. Once a capsule has 
formed, the encapsulated parasite commonly dies 
(Walters and Ratcliffe, 1996). 
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Fig. 2 Recognition of foreign targets by insects pattern-recognition receptors in hemolymph. Pattern-recognition 
receptors (PRRs), Peptidoglycan recognition proteins (PGRPs), β-1,3-Glucanase related proteins (βGRPs), 
Thioester proteins (TEPs), Leucine-rich repeat proteins (LRRPs), Hemolin and other immunoglobulins. 
 
 
 
 
 

Thus, encapsulation/nodulation are similar but 
complicated multifactorial defense reactions and are 
often referred to together, subsequently, as 
encapsulation. The complex biochemical and 
molecular factors involved in neutralization of 
invaders and localization in these events are 
discussed in more detail below. 
 
Wounding and damage-associated signals 

The penetration of parasites into the insect 
hemocel is related to the process of wounding and 
infringement of the integrity of barrier tissues. 
Several natural infection models with various 
parasites have described wounding of the 
integument as part of the infection process (Schmidt 
et al., 2001; Wertheim et al., 2005; Hallem et al., 
2007; Arefin et al., 2014). Some 
pathogens/parasites can invade the hemolymph via 
the gut. For example, bacteria, such as Bacillus spp. 
(Raymond et al., 2010; Dubovskiy et al., 2016), and 
some protozoans, including Plasmodium and 
Trypanosoma rangeli (Garcia et al., 2007; Vega-

Rodriguez et al., 2014), can cross the gut epithelium 
during infection, while nematodes invade via both 
the integument and the gut by mechanically 
damaging tissues with their mouth parts 
(Eleftherianos et al., 2010). Trematodes cercariae, 
likewise, penetrate the cuticle or gut tissues and 
encyst in a variety of aquatic intermediate hosts, 
usually insects (Fryer and Bayne, 1996; Brivio et al., 
2005). The massed infections by entomopathogenic 
fungi, especially Metarhizium and Beauveria, also 
lead to considerable damage of the integument and 
destruction of the epidermal cell integrity (Dubovskiy 
et al., 2013a; Butt et al., 2016). All these invading 
parasites result in the release of a number of 
molecules associated with damage - DAMPs (Fig. 
2). 

The initial wound reaction and damage-
associated signals will undoubtedly influence the 
subsequent processes of encapsulation and 
nodulation of invaders. A crucial early wound 
response is the recruitment of host blood cells 
attracted by the danger signals released by the 
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DAMPs (Krautz et al., 2014). This process is similar 
to the mammalian inflammatory reaction. Hydrogen 
peroxide (H2O2) has recently been identified as the 
earliest wound attractant in Drosophila embryos 
(Moreira et al., 2010), and H2O2 generation has 
been found in early stages of encapsulation in wax 
moth larvae (Dubovskii et al., 2010). H2O2 synthesis 
can be activated by a calcium burst as a result of 
calcium release from the damaged tissue (Razzell 
et al., 2013). The H2O2 can be generated during 
activation of a Dual oxidase (DUOX), nicotinamide 
adenine dinucleotide phosphate (NADP) -oxidase, 
and as a result, the first hemocytes are recruited to 
the wound site within minutes (Razzell et al., 2013). 
Similar to the mammalian immune system, it has 
been shown in G. mellonella that nucleic acids 
naturally released by damaged tissues and by 
activated oenocytoids can induce hemocytes to 
form net-like structures, initiating hemocyte 
aggregation and melanization (Altincicek et al., 
2008). 

Various parasitic metabolites may also be 
involved in DAMPs generation, for example, 
microbal thermolysine protease can produce 
collagen fragments which may demonstrate 
functions of damage signals in wax moths 
(Altincicek et al., 2009; Berisha et al., 2013). The 
loss of collagen from the wound site is also 
commonly associated with proteinases activity, 
which are important virulence factors for fungi (St 
Leger et al., 1994) and bacteria associated with 
entomopathogenic nematodes (Cabral et al., 2004). 
One detector of proteolytic activity is the Drosophila 
serine protease, Persephone, which can be 
triggered by virulent proteases produced by 
entomopathigenic fungi or bacteria (El Chamy et al., 
2008; Ming et al., 2014). 

Another early event in the insect response to 
pathogen/parasite invasion is clot formation at the 
wound site with cellular components, such as PO, 
hemolectin and possibly transglutaminase in the 
hemolymph, contributing to this process (Goto et al., 
2003; Johansson et al., 2005; Bidla et al., 2005; 
Lesch et al., 2007). Humoral factors, including 
lipophorin, some hexamerins, and factor Fondue, 
have also been described as clotting factors in 
Drosophila (Karlsson et al., 2004; Scherfer et al., 
2004; Scherfer et al., 2006). One necessary 
condition for clot formation is an emission of Ca2+ 
ions into the surrounding area (Willott et al., 2002; 
Dushay, 2009; Kryukova et al., 2013).  
 
Recognition of invaders 

During assessment of the literature on 
recognition processes in insects, it was evident that 
much information is still incomplete, hindering a 
totally comprehensive overview. Basically, damage 
at the cuticle or epithelium occurs, invasion of 
pathogens/parasites into the hemocel takes place 
followed by recognition by PRRs of PAMPS on the 
surface or released by these invaders. This results 
in activation of the appropriate IMD, Toll, or 
JAK/STAT pathways, and, eventually, through 
complex signal cascades, transcription of the 
immune genes (Fig. 2). 

Both encapsulation and nodulation depend 
upon recognition of the invader as foreign and 

activation of different signaling cascades (Fig. 2). In 
the case of microbial pathogens, hemocytes and fat 
body produce receptors, mediators, regulators and 
effectors during the recognition stage of innate 
immunity. The receptor proteins (PRRs) recognize 
conserved pathogen-associated molecular patterns 
(PAMPs) of microbes (e.g., peptidoglycans, 
lipopolysaccharide (LPS), lipoteichoic acid (LTA), 
and β-1,3-glucan) (Yu et al., 2002; Pal and Wu, 
2009). 

In lepidopterans, hemolin (48 kDa plasma 
protein), peptidoglycan recognition proteins 
(PGRPs), β-1,3-glucan recognition proteins 
(βGRPs), Gram-negative bacteria binding proteins 
(GNBs) (family of 55 kDa plasma proteins), and C-
type lectins are PRRs (Jiang et al., 2010; Zhu et al., 
2010; Zhang et al., 2015). In other insects, 
especially in Drosophila, the PGRPs, βGRPs, C-
type lectins, galectins, leucine-rich repeat proteins 
(LRRPs), Nimrods, fibrinogen-related proteins, 
thioester proteins (TEPs), hemocytins, Dscam, and 
Reeler may recognize pathogens or parasites 
(Wang et al., 2005; Pal and Wu, 2009; Yassine and 
Osta, 2010; Estevez-Lao and Hillyer, 2014). For 
mosquitoes, LRRPs, fibrinogen-related proteins and 
C-type lectins act as PRRs related to recognition of 
Plasmodium (Cirimotich et al., 2010). Interestingly, 
the PRRs of Anopheles gambiae against 
Plasmodium demonstrate similarity to those 
involved in bacteria recognition (Blandin et al., 2004; 
Dong et al., 2006; Dong and Dimopoulos, 2009; 
Sandiford et al., 2015). 

Genome analyses have uncovered putative 
PRR genes in other model insect species, including 
Tenebrio molitor (Zhu et al., 2013), Apis mellifera 
(Evans et al., 2006) and Tribolium castaneum (Zou 
et al., 2007; Altincicek et al., 2013). However, 
genomic data need experimental confirmation of 
PRR functioning with biochemical and 
immunological approaches. 

Following recognition, the Toll, Imd, and 
JAK/STAT pathways are the three main signaling 
pathways responsible for activation of immune 
responses in insects (Lemaitre and Hoffmann, 2007; 
Stokes et al., 2015) (Fig. 2). Each pathway 
participates in recognition of invaders, and induces 
the transcription of a number of specific immune-
related genes. These genes encode peptides and 
proteins, which can both target the invader for 
degradation or act as signaling molecules to induce 
and enhance the innate immune response such as 
encapsulation and nodulation (Lemaitre et al., 1996; 
Marmaras and Lampropoulou, 2009; Myllymaki and 
Ramet, 2014). 

The Toll pathway is responsible for the 
detection of Gram-positive bacteria and fungi, 
whereas the Imd pathway is required for responses 
to Gram-negative bacteria and DAMPs (Lindsay and 
Wasserman, 2014; Myllymaki et al., 2014). The 
JAK/STAT pathway is activated by fungal and viral 
infections (Agaisse and Perrimon, 2004) (Fig. 2). 

In comparison with microbes and protozoans, 
the recognition of nematodes, parasitoids and 
xenobiotic transplants is less well understood. One 
factor potentially involved in recognition of these 
targets is the integrity of the basement membrane 
(BM), an extracellular matrix surrounding most 
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Fig. 3 Hemocytes adhesion, spreading and degranulation during encapsulation of parasites. 
 
 
 
 
tissues. The BM of insects consists of many 
components including collagen IV, laminin and 
some proteoglycans (e.g., perlecan and nidogen) 
(Gullberg et al., 1994; Yurchenco, 2011). The 
hemocytes take part in the production, and 
regeneration of the BM to which they normally 
weakly attach (Ball et al., 1987; Nardi et al., 2001). 
Moreover, the termination of encapsulation occurs 
when hemocytes produce a BM-like layer 
surrounding the capsule, with encapsulated invader 
isolated from the immune system (Grimstone et al., 
1967; Pech and Strand, 1996; Liu et al., 1998). 
Interestingly, differences in the BM contents 
increase with phylogenetic distance between 
species, and hemocytes tend to encapsulate 
quicker transplants from more distant species 
(Lackie, 1988). Also, insects usually fail to 
encapsulate tissues transplanted from individuals 
from the same species unless there is physical or 
enzymatic damage to the surface (Rizki and Rizki, 
1980, 1983). Research on Drosophila has shown 
that the BM component laminin is crucial in BM 
structural maintenance and preventing self-tissue 
autoimmunity (Kim and Choe, 2014). Moreover, 
Sephadex beads coated with laminin are less-avidly 
encapsulated in the mosquito hemocel (Warburg et 
al., 2007). Thus, the dissimilarity of surface 
components of parasitoids, nematodes, artificial 
targets (like nylon, sephadex or latex) to the insects' 
BM components may help to control recognition of 
invaders by hemocytes. The recognition of the 
molecular architecture of the BM is mediated by 
lectins through specific carbohydrate binding motifs 
(Vijayan and Chandra, 1999; Fang et al., 2010). For 
example, the eggs and larvae of the parasitoid, 
Venturia canescens, are identified inside the 
hemocel as “foreign” since they contain Gal-specific 
glycomodifications on the surface (Castro et al., 
1987; Schmidt, 2008). Among the C-type lectins, 
mannose-binding lectins are involved in innate 
immune defense as PRRs in both vertebrates and 
insects and trigger pro-inflammatory signaling 
cascades (Wilson et al., 1999; Turner, 2003; 
Malagoli et al., 2010).  

In addition, different lipid-containing compounds 
(glycolipids or lipoproteins) in the hemolymph could 
increase cellular immune responses (Whitten et al., 
2004). In the case of parasitoid eggs deposited 
inside the hemocel, the reaction products from 
oxidative cross-linking of chorion proteins (Li, 1994) 

or oxidation induced melanization during egg 
oviposition through the integument, may alter host 
lipid particles (Schmidt et al., 2010). This could 
cause local coagulation reactions on the egg 
surface leading to hemocyte attachments and pro-
coagulant deposition on foreign surfaces (Schmidt 
et al., 2010). 

 
Hemocyte adhesion, spreading and degranulation 

Cellular immune reactions of insects involve 
hematopoietic tissue, pericardial cells, and fixed and 
free-circulating hemocytes (Hoffmann, 1995; Strand 
and Johnson, 1996; Lavine and Strand, 2002). The 
contribution of hemocytes to immunity-related 
defenses is the major known function for these 
insect cells (Gillespie et al., 1997). There are five to 
six main types of hemocytes identified for insects: 
prohemocytes, plasmatocytes, granular cells, 
oenocytoids and spherule cells (Price and Ratcliffe, 
1974; Luckhart et al., 1992; Fenoglio et al., 1993; 
Joshi and Lambdin, 1996; Hernandez et al., 1999; 
Lavine and Strand, 2002). In contrast, in Drosophila 
only three main types of hemocytes are recognized: 
plasmatocytes, crystal cells and lamellocytes 
(Meister and Lagueux, 2003; Meister, 2004; Ribeiro 
and Brehelin, 2006). The ratio of the hemocytic 
types can differ depending upon the stage and 
species of the insect. 

After recognition of invader, the hemocytes 
attach and start to spread (Fig. 3). The next stages 
of the cellular immune response involve hemocyte 
destruction (degranulation) that results in discharge 
of effector molecules and immunomediators. The 
processes of nodule formation and encapsulation 
are similar, forming multicellular clumps of 
hemocytes with large number of bacteria or other 
entrapped foreign invaders. Nodulation begins when 
the number of the target cells exceeds the level that 
hemocytes can phagocytize, while encapsulation 
occurs when the parasite is too large to be engulfed 
by a single cell (Fig. 1). The hemocytes and targets 
form conglomerates, increasing in size as further 
hemocytes attach. At the later stages, melanization 
may occur, usually commencing around the 
entrapped invaders (Ratcliffe and Gagen, 1977). 
Nodule formation is the one of the most effective 
ways to isolate bacterial or fungal infections 
(Satyavathi et al., 2014) and some protozoans 
(Garcia et al., 2012). The order in which hemocytes 
attach onto the surface of foreign body often 
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depends on the insect Order. Plasmatocytes and 
granular cells are usually the first responders to 
invaders. Aggregation of granular cells followed by 
degranulation is typical for the lepidopterans unlike 
the dipterans that are characterized initially by the 
spreading of plasmatocytes or a purely humoral 
encapsulation response (Vey and Gotz, 1976; 
Lavine and Strand, 2002). Granular cell 
degranulation and breakdown in the surrounding 
space leads to the accumulation of coagulogen 
around the foreign invaders (Dushay, 2009). 

Discharge of hemocyte cytoplasm and granule 
contents (degranulation) is a necessary process 
during capsule and nodule formation, and is 
followed by the release of proPO and calcium ions 
(Marmaras et al., 1996; Dushay, 2009). Cell 
transformation, capsule formation, hemolymph 
clotting, and the release of calcium ions are some of 
the most important factors in the initial steps of 
cellular immunity (Willott et al., 2002; Kryukova et 
al., 2013). Degranulation of the granular cells along 
with calcium emission induce synthesis of nitric 
oxide (NO) by NO synthase (Semenova et al., 
2014). Nitric oxide plays mediating and cytotoxic 
roles in the insect immune system especially during 
nodule and capsule formation (Faraldo et al., 2005). 
Tissue- and time-specific alterations in NO 
production were documented in Rhodnius prolixus 
during Trypanosoma infection (Whitten et al., 2001, 
2007). Plasmodium infection in the mosquito, 
Anopheles stephensi, induces significant expression 
of nitric oxide synthase and as a result, the 
inflammatory levels of NO in the midgut affect 
parasite development (Lim et al., 2005). The 
augmented production of NO also occurs in 
Drosophila melanogaster during hemocyte-
mediated melanotic encapsulation of the parasitoid 
Leptopilina boulardi (Nappi et al., 2000). During 
hemocytes degranulation and initiation of the proPO 
activation system, a crucial role is also played by 
ROS in signaling and enhancement of melanization 
to destroy parasites (Nappi and Vass, 1993; Kumar 
et al., 2003; Komarov et al., 2005; Komarov et al., 
2006; Dubovskii et al., 2010) (see in details of 
capsule melanization section). 

Apart from the action of NO and ROS in 
immune activation (see above), there are number of 
other mediator molecules, that are crucial for 
development of capsules (Fig. 1). Prostaglandins 
(PGs) and other eicosanoids mediate cellular 
immune reactions to different challenges in insects 
(Stanley et al., 2012). These molecules are 
metabolites of arachidonic acid (AA) and two other 
C20 polyunsaturated fatty acids. Phospholipase A2 
catalyzes the hydrolysis of AA from cellular 
membrane phospholipids (Burke and Dennis, 2009). 
Free AA is a substrate for cyclooxygenases and 
lipoxygenases that convert AA into PGs and other 
bioactive molecules (Stanley, 2000, 2005). 
Activation of eicosanoid synthesis is induced after 
hemocyte interaction with the PRRs of an invader 
and induction of Phospholipase A2, which ultimately 
leads to PGs biosynthesis (Fig. 2). The PGs are 
exported from the cell, where they can interact with 
specific G-protein coupled receptors on the cell that 
produced the PGs or on nearby cells (Shrestha and 
Kim, 2009; Stanley et al., 2012). In many insect 

species, eicosanoids are critically important for 
spreading, aggregation and nodulation after 
bacterial invasion by Serratia marcescens (Miller et 
al., 1994, 1996; Jurenka et al., 1997; Stanley-
Samuelson et al., 1997; Miller et al., 1999; Tunaz et 
al., 2003; Schmid et al., 2008). Evidences for 
eicosanoid participation in cellular immune reactions 
has been widely reported in insects from seven 
orders during invasion by parasitoids (Carton et al., 
2002) and nematodes (Park and Kim, 2000; Park 
and Stanley, 2006), infections by protozoan (Garcia 
et al., 2004) and fungi (Dean et al., 2002; Lord et al., 
2002; Tunaz, 2006). Moreover, eicosanoids are 
involved in wax moth proPO activation that is 
important for capsule melanization (Mandato et al., 
1997). 

Immunocytochemical methods have also 
detected molecules similar to mammalian cytokines 
in insects that can affect several immune reactions, 
including phagocytosis, cytotoxicity, cell motility and 
chemotaxis (Ottaviani et al., 2004). Based on 
molecular and functional studies, the Spätzle and 
Upd3 cytokines from D. melanogaster (Malagoli et 
al., 2010; Vanha-Aho et al., 2016) and the hemocyte 
chemotactic peptide (HCP) from the moth, 
Pseudaletia separate, were isolated (Nakatogawa et 
al., 2009). Spätzle is involved in the Toll pathway 
and may be similar to mammalian interleukin 1 
(Brightbill and Modlin, 2000). HCP has similarities 
with another group of signaling molecules from the 
ENF family - the hemocyte-spreading factor 
(Nakatogawa et al., 2009). ENF peptides are a 
family of insect cytokines containing 23 - 25 amino 
acids (Kamimura, 2012). Involvement of the ENF-
peptide in triggering of the plasmatocyte spreading 
has been detected in some species of insects (Pech 
and Strand, 2000; Kamimura et al., 2001; 
Eleftherianos et al., 2009). Plasmatocyte-spreading 
peptide (PSP) which has been found in 
Pseudoplusia stimulates adhesion and spreading of 
plasmatocytes on the invader’s surface (Clark et al., 
1997). PSP is combined with specific receptors 
causing activation of the cytoplasmic adhesive 
proteins initially including the integrins. Integrins are 
transmembrane receptor proteins actively taking 
part not only in the recognition of foreign invaders 
but also controlling the spreading capacity of the 
plasmatocytes (Lavine and Strand, 2002, 2003). 
Those proteins can work as PRRs and as cytokines 
that regulate adhesion of the plasmatocytes (Pech 
and Strand, 2000; Nakahara et al., 2003). One of 
the most studied proteins in the ENF family is the 
growth-blocking peptide (GBP). Like most ENF 
family peptides, GBP is polyfunctional. Active GBP 
changes the plasmatocytes from a nonadhesive 
state to an adhesive state, after which the cells 
immediately begin to adhere to one another or to 
foreign surfaces (Oda et al., 2010; Tsuzuki et al., 
2014). 

In some species of insects Apolipophorin-III are 
involved in the encapsulation process (Whitten et 
al., 2004), as well as DOPA decarboxylase (DDC) 
(Sideri et al., 2008). Furthermore, during the study 
of genes involved in nodule formation following the 
injection of the bacteria E. coli and B. subtilis, two 
protein mediators, Noduler (Gandhe et al., 2007) 
and Reeler1 (Bao et al., 2011) have been identified. 
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Capsule melanization 
Melanization during encapsulation and 

nodulation involves phenoloxidases (PO) which can 
hydroxylate tyrosine (enzyme EC 1.14.18.1) and 
also oxidize o-diphenols to quinones (enzyme EC 
1.10.3.1). PO are copper-containing oxidoreductase 
enzymes, oxidizing phenolic compounds (Gorman 
et al., 2007). In initial stages of melanogenesis, 
peroxidases can also be involved and oxidize 
monophenols, aminophenols and diphenols (Nappi 
and Vass, 1993; Li, 1994). 

PO is found in insects as its inactive zymogen 
form, prophenoloxidase (proPO) (Fujimoto et al., 
1995; Cerenius et al., 2008). The proPO is present 
in hemolymph (in plasma and hemocytes) and the 
integument (Ashida and Brey, 1995; Dubovskiy et 
al., 2013a). In the integument, there is a third type of 
PO, laccase (enzyme ЕС 1.10.3.2.) (Nappi and 
Vass, 1993; Ashida and Brey, 1998; Sugumaran 
and Bolton, 1998). This enzyme participates in 
cuticle formation by oxidizing phenylenediamines 
and polyphenols, but not tyrosine. 

Activation of proPO in insects occurs with the 
help of protease cascades, prophenoloxidase 
activating systems (Cerenius and Soderhall, 2004) 
(Fig. 4). These proPO activating proteinases (PAPs) 
are present in the hemolymph as zymogens, and 
are activated in response to certain factors, 
including penetration by invaders (Hung and 
Boucias, 1996; Meister et al., 2000). PRRs (βGRP, 
PGRP, C-type lectins) bind to PAMPs and this 
interaction leads to activation of initiator proteases 
which trigger a proteases cascade resulting in 
conversion of proenzyme PAPs to active 
proteinases (Ji et al., 2004). Activated PAPs cleave 
proPO by limited proteolysis to form active PO 
(Jiang et al., 1998; Satoh et al., 1999; Jiang et al., 
2003a) (Fig. 4). It has been shown that the damage 
signal provided by DAMPs can also trigger the 
proPO activating system in Drosophila (Bidla et al., 
2009; Nam et al., 2012). 

At wound sites, activation of PO and melanin 
formation are observed and these occur in 
combination with the coagulation mechanism that 
"close" a wound by forming a clot (Sugumaran, 
1998, 2010). PO is released from hemocytes by 
degranulation and deposited around wounds or 
encapsulated parasites. During melanization, 
derivatives of tyrosine, act as substrates for PO and 
are involved in the structure of capsules (Nappi and 
Vass, 1993; Carton and Nappi, 1997). At the first 
stage in melanogenesis, hydroxylation of tyrosine to 
3,4-dihydroxyphenylalanine (DOPA) occurs, then 
the oxidation to DOPA into DOPA-quinone (Nappi 
and Vass, 1993; Zhao et al., 1995; Nappi and 
Ottaviani, 2000) (Fig. 4). The processes of 
melanization proceed in the environment where 
there is a considerable quantity of thiol-containing 
compounds (glutation, cysteine, proteins), and it is 
not surprising that various intermediate products of 
melanogenesis can interact with SH-groups. This 
lead to the incorporation into melanotic capsules not 
only of eumelanin and pheomelanin, but also of 
sclerotin formed with the participation of proteins 
and amino acids (Nappi and Vass, 1993) (see 
details of the pathway on Fig. 4). Probably, various 
proteins (both parasite and host) can act as a matrix 

for polymeric reactions of oxidizing condensation of 
indolequinone (Carton et al., 2008). 

There are a number of ROS and other 
intermediates linked with the melanotic cascade (o-
quinones, hydrogen peroxide, o-semiquinone 
radicals, etc.) that possess cytotoxicity and can 
destroy pathogenic microorganisms (Nappi and 
Vass, 1993; Komarov et al., 2009). At enzymatic 
oxidation of catechols, including DOPA, 
semiquinone radicals are formed (Kalyanaraman 
and Sealy, 1982; Kalyanaraman et al., 1984). In 
research on larval Galleria mellonella and 
Dendrolimus superans sibiricus hemolymph 
melanization, using electron paramagnetic 
resonance (EPR) by spin traps, formation of DOPA-
semiquinone radicals have been detected 
(Slepneva et al., 1999, 2003). The formation of 
DOPA-semiquinone in the hemolymph of 
G. mellonella is a consequence of PO activity since 
after the addition of phenylthiourea (specific inhibitor 
of PO, Ryazanova et al., 2012), the EPR spectrum 
of DOPA-semiquinone radicals was not observed 
(Slepneva et al., 2003). o-Semiquinone 
intermediates of melanization, for example DOPA-
semiquinone radical, can interact with molecular 
oxygen results in superoxide anion radical formation 
followed by H2O2 production (Nappi and Vass, 1993; 
Nappi et al., 1995; Glupov et al., 2001; Nappi and 
Christensen, 2005). The toxic properties of o-
semiquinones probably play important roles in 
killing of parasites in the hemolymph of insects 
during melanization of the capsule (Dubovskii et al., 
2010). 

The center of the fully-formed capsule is 
composed of the foreign invader(s) surrounded by 
layers of lysed blood cells, eumelanin, sclerotin and 
proteins. The middle layers consist of strongly 
flattened and partially destroyed hemocytes, and the 
outer layer consists of loosely attached blood cells 
(Lavine and Strand, 2002). The termination of 
encapsulation occurs when a basement membrane-
like (BM-like) layer appears on the capsule's 
periphery (Pech and Strand, 1996; Liu et al., 1998). 
The capsule acts as the mechanical barrier, limiting 
the growth and development of 
pathogens/parasites. However, by the time the 
capsule is fully formed the encapsulated organisms 
are often dead. The destruction of the parasite 
and/or pathogen may be associated with asphyxia, 
as well as with the cytotoxic effects of the melanin 
(Soderhall and Ajaxon, 1982; St Leger et al., 1988) 
and cytotoxic ROS and NO radicals formed during 
melanogenesis in the melanotic capsule (Slepneva 
et al., 1999; Nappi and Ottaviani, 2000; Komarov et 
al., 2009; Dubovskii et al., 2010). 

 
Control of melanization by host 

The proPO activation system produces several 
types of molecules that could damage the host 
insect if produced in excess. These include 
proteases that could degrade host proteins, 
cytotoxic quinones and ROS. The cytotoxic ROS 
can lead to an uncontrolled increase of lipid 
peroxidation and damage to DNA and protein 
molecules (Lyakhovich et al., 2006). Thus, the 
system is regulated under most conditions to 
produce a local melanization response at a specific 
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Fig. 4 Activation of proPO system and melanogenesis in insects. 
 
 
 
 
 
 
site and for limited duration (Dubovskii et al., 2010). 
The serine protease cascade mediating the 
processing of proPO to PO is tightly controlled by 
protease inhibitors. In this way the reaction is 
maintained near the site of invasion avoiding highly 
reactive and detrimental oxygen intermediates 
(Kanost, 1999). In insects, these serine proteases 
inhibitors, called serpins are a family of 50 kDa 
proteins (Silverman et al., 2001; Gettins, 2002). 
Several serpins from Manduca sexta hemolymph 
(serpin-1J, serpin-3, serpin-6, serpin-7) directly 
inhibit PAPs, the proPO activating proteases (Jiang 
et al., 2003b; Wang and Jiang, 2004; 
Suwanchaichinda et al., 2013). 

Insects also have a complex of antioxidant and 
detoxifying enzymes whose action is involved in 
ROS elimination (Felton and Summers, 1995). In 
animals, including insects, important antioxidants 

include enzymatic antioxidants such as ascorbate 
peroxidases, superoxide dismutases, catalases, 
peroxidases and glutathione-S-transferase, as well 
as the non-enzyme antioxidants, ascorbic acid, 
thiols, and α-tocopherol (Felton and Summers, 1995; 
Dubovskiy et al., 2008). Significant increases in ROS 
generation in hemolymph and a decrease of the 
enzymatic antioxidant activities have been detected 
in wax moth hemocytes during encapsulation of 
nylon monofilaments (Dubovskii et al., 2010). We 
found the key role in maintenance of the oxidation-
reduction balance in the hemolymph of wax moths 
during the encapsulation process is due to the non-
enzyme antioxidants (thiols and ascorbates) 
(unpublished data). The suppression of melanization 
and encapsulation by antioxidants ascorbic acid also 
has been shown in An. gambiae (Kumar et al., 2003) 
and Aedes aegypti mosquitoes (Li et al., 1994). 
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Evasion/modulation of nodule formation and 
encapsulation by parasites and pathogens 

Encapsulation is a multifactorial defense 
reaction and many pathogens/parasites can 
manipulate either the cellular or humoral factors to 
inhibit recognition, hemocyte activation or 
melanization of the capsule. A commonly used 
method by parasites to avoid recognition by immune 
system is “molecular mimicry” (Schmidt and Strand, 
2001; Brivio et al., 2005; Ludin et al., 2011; Yoshino 
et al., 2012). This is based on the parasite´s 
capacity to secrete on their surfaces a protective 
layer of proteins, glycoproteins or glycolipids, 
imitating host molecules, and not detected by the 
host immune system as foreign. In some cases, 
host proteins or/and glycoproteins can be absorbed 
and later embedding into the parasite surface 
(Capinera, 2008). Thus, hemomucin, a homolog of 
the egg and larval surface of the parasitoids 
Venturia canescens (Kinuthia et al., 1999) and 
Macrocentrus cingulum (Hu et al., 2008), forms a 
special layer protected from recognition by the 
insect host defense system. Plasmodium parasites, 
too, are able to utilize the mosquito C-type lectins 
CTL4 and CTLMA2 to protect themselves from 
being killed and subsequently melanized (Osta et 
al., 2004). The venom of the endoparasitoid, 
Pteromalus puparum, inhibits the host immune 
responses by silencing the expression of the host C-
type lectin gene, Pr-CTL (Fang et al., 2011). The 
surface coat protein, SCP3a, also protects the 
nematode, Steinernema glaseri, from being 
detected and eliminated by encapsulation in larvae 
of the beetle, Popillia japonica (Wang and Gaugler, 
1999). In addition, Brivio et al. (2005), proposed 
immunoevasion mechanism were also caused by 
the mimetic properties of the body surface of 
Steinernema, due to the cuticle lipid compounds. 
Similar avoidance mechanisms of the host immune 
response are shown by the metacercariae of the 
Plagiorchidae and Prosthogonimidae trematodes 
developing in Aeshna dragonflies larvae, which they 
use as secondary intermediate hosts (Kryukova et 
al., 2005). The entomopathogenic fungus, M. 
anisopliae, also secretes a collagen-like immune 
evasion protein, MCL1, which is produced within 
minutes of the pathogen contacting the hemolymph 
and masks the antigenic cell wall components (β-
glucans) of blastospores/hyphal bodies (Wang and 
St Leger, 2006). 

Another successful strategy, providing safe 
development, is destruction of the immune cells. 
Hemocytes can be disrupted by different 
mechanisms from immediate destruction to partial 
inactivation. Thus, protein from the venom of the 
parasitoid, Pimpla hypochondriaca, causes the 
death of some of the host hemocytes and a 
decrease in phagocytic activity and the ability to 
spreading in others both in vitro, and in vivo 
(Parkinson et al., 2004; Huang et al., 2009). The 
venom of some parasitoids induces apoptotic or 
necrotic cell damage and immune disruption as a 
result. For example, components of Nasonia 
vitripennis venom causes lysis of host hemocytes 
due to disruption of the calcium-dependent 
processes in the cells. Thereby, the total number of 
the circulating blood cells is significantly reduced, 

and granular cells and plasmatocytes lose their 
adhesive and spreading properties, respectively, 
and do not participate in the processes of 
coagulation and melanization (Richards and 
Edwards, 2002; Rivers et al., 2002, 2005). Similar 
effects for the venom of the ectoparasitoid, 
Eulophus pennicornis and Habrobracon hebetor, 
have been observed (Richards, Edwards, 2002; Er 
et al., 2011; Kryukova et al., 2011). The influence of 
the H. hebetor venom on the hemocytes induces 
Ca+2 release from intracellular stores, probably via 
phospholipase C activation and inositol 
trisphosphate production, that finally leads to cell 
death (Kryukova et al., 2015). The calreticulin in the 
parasitic wasp venom of Cotesia rubecula (Zhang et 
al., 2006) and Pteromalus puparum (Wang et al., 
2013) inhibits host hemocyte spreading behavior 
probably as a  receptor antagonist, to prevent the 
encapsulation response. In Rhodnius prolixus, 
Trypanosoma rangeli, suppress Phospholipase A2 
activity in the hemocytes which reduces arachidonic 
acid release and inhibits the biosynthesis of 
prostaglandins and other eicosanoids. Reducing 
these signals impairs hemocyte aggregation, 
increases mortality of the cells, and inhibits 
phagocytosis (Garcia et al., 2004; Figueiredo et al., 
2008; Genta et al., 2010). This inhibition seems to 
be specific and crucial for the development of this 
parasite in the vector, as T. rangeli commonly 
invades the hemocel, reaching the salivary glands 
after division and differentiation in this compartment 
(Garcia et al., 2009). The symbiotic bacteria, 
Xenorhabdus nematophilus, associated with the 
nematode Steinernema feltiae, are released into the 
hemolymph of the wax moth, G. mellonella, and the 
cricket, Acheta domesticus, and adhere to the 
surface of hemocytes to damage and destroy them 
(Dunphy and Webster, 1984, 1986; Dunphy et al., 
1998; da Silva et al., 2000). At the same time, 
Xenorhabdus synthesizes and releases a toxin, 
alpha-Xenorhabdolysin, which pathologically 
changes the hemocytes. The peptide destroys and 
blocks the potassium channels of the hemocyte 
plasma membrane (Ribeiro et al., 2003) and 
probably inhibits immune-mediating eicosanoid 
pathways (Park and Kim, 2000). Interestingly, the 
entomopathigenic fungi, Beauveriа and Metarhizium 
species, secrete a wide range of immunomodulatory 
metabolites including bassianin, bassiacridin, 
bassianolid, tenellin, oosporein, cyclosporine and 
destruxin (Molnar et al., 2010; Gibson et al., 2014). 
Some of these compounds have been detected in 
vivo and their activities have been linked with 
blocking of hemocyte activity via cytoskeleton 
alterations (Vilcinskas et al., 1997a, b; Kershaw et 
al., 1999; Amiri-Besheli et al., 2000). 

Suppression of the proPO cascade is another 
impressive strategy to suppress a critical stage of 
encapsulation, i.e., melanization of the capsule. This 
immunosuppressive approach is broadly used by 
parasites, especially by parasitic wasps. Venom of 
parasitoids may contain analogs of serine 
proteases, that act as antagonists for host 
hemolymph proteases preventing proPO activation 
(Beck and Strand, 2007; Asgari and Rivers, 2011). 
The venom of Leptopilina boulardi contains a serpin 
LbSPNy, inactivating the serine protease in the 
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hemolymph of its Drosophila yakuba host (Colinet et 
al., 2009), while protein Vn-50 from the venom of 
the Cotesia rubecula competitively binds with proPO 
or with proPO activating proteases (Asgari et al., 
2003). In the parasite, T. rangeli, oral infection of R. 
prolixus can suppress the proPO-activating system 
in the vector, but the mechanisms are still unclear 
(Gomes et al., 2003; Castro et al., 2012; Vieira et 
al., 2015). Finally, the most effective and commonly 
used method by parasitoids for reduction of the 
phenoloxidases is by the release of polydnaviruses 
(PDVs) into the host. Once in the host, the PDVs 
reduce the synthesis of a number of key hemolymph 
enzymes of melanogenesis, in particular, 
phenoloxidase, dopachrome isomerase and DOPA 
decarboxylase (Shelby and Webb, 1999; Renault et 
al., 2002). Polydnaviruses of Microplitis demolitor 
also express an inhibitor of serine proteases, named 
Egf (Beck and Strand, 2007; Lu et al., 2010). 

 
Conclusions 

 
Encapsulation and nodule formation in insects 

involve complex interactions between different 
hemocytes types, proPO activation, as well as NO, 
ROS and eicosanoid generation during formation of 
multilayered capsules around invaders. 
Significantly, the evolution of resistance to 
multicellular parasites (Carton and Nappi, 1997; 
Kraaijeveld et al., 1998) and entomopathogenic 
fungi (Dubovskiy et al., 2013b) are associated with 
the development and improvement of the 
encapsulation reactions of host insects against 
these organisms. Through coevolution, 
pathogens/parasites evolved a number of 
adaptations allowing them to escape the 
encapsulation response. These included the 
masking of the parasite surface antigens and 
immunosuppression (Vinson, 1990; Pennacchio and 
Strand, 2006; Castillo et al., 2011). Studying 
features of these processes will help to understand 
the structure and key principles of the defensive 
strategies of insects, as well as their evolutionary 
success due to innate immunity against invaders. 
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