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Abstract 

Peptide hormones play a special role in the neuroendocrine systems of insects and affect a 
number of physiological processes related to their development, reproduction and behavior. The lipid 
content in the fat body of insects is closely correlated with the work of the endocrine glands. The lipid 
profile of the fat body of the Zophobas atratus beetle reveals a predominant proportion of 
triacylglycerols when compared to free fatty acids and other lipid compounds, such as fatty acid 
esters, fatty alcohols and sterols. Although it may depend on the stage of the insects’ development, 
the disparate impacts of the adipokinetic hormone (AKH) on the lipid content in the fat bodies of the 
feeding larvae and the non-feeding pupae of Z. atratus, may signify the different roles this hormone 
plays in the indirect control of the insects’ metabolism. 
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Introduction 

The neuroendocrine systems of insects play a 
special role in the regulation of most of their metabolic 
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processes as well as in their development. 
Hormonal regulation plays a key role in many 
processes including molting and metamorphosis, for 
example the ecdysone and juvenile hormone 
(Koeppe et al., 1985; Riddiford, 1985; Hutchins, 
2003), hemolymph metabolite (proteins, 
carbohydrates and lipids) homeostasis (sulfakinins; 
Audsley and Weaver, 2009) as well as in energy 
metabolism during flight (AKH; van der Horst et al., 
1997, Van der Horst et al., 2001; Lorenz and Gäde, 
2009). In the 1920s, secretory cells were discovered 
in the brains of insects which control different 
processes in different parts of the insect's body. 
From 1917-1922, pioneering research into the 
mechanisms which regulate the metamorphosis of 
the gypsy moth caterpillar (Lymantria dispar) was 
carried out by the Polish entomologist Stefan Kopec 
(Słocińska, 2009). 

There are two types of glands involved in the 
synthesis and release of peptides in insects: the 
exocrine and endocrine glands. The exocrine glands 
secrete compounds on the surface of the insect 
which serve to protect, either by acting as repellents 
or as attractants. An example of an attractant are 
pheromones - which are a complex mixture of 
chemicals (Martins and Ramalho-Ortigão, 2012; 
Ottaviani, 2014). Examples of endocrine glands are 
- among others - the prothorax, corpora allata which 
produce the juvenile hormone responsible for the 
process of transforming insects and the corpora 
cardiaca, which are adjacent to the heart and brain 
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and which secrete hormones that stimulate the 
mobilization of lipids in locusts (Biej-Bijenko, 1976). 

The fat body of insects is made up of trophic 
tissue and is rich in triacylglycerols, free fatty acids 
and cholesterol. The fat body is functionally 
equivalent to the liver and adipose tissue in 
mammals. A series of transformations of the 
intermediary metabolism of insects takes place in 
the fat body, which are under the strict control of 
hormones secreted by the neuroendocrine system. 
Metabolites such as carbohydrates, proteins and 
fats are stored in the fat body. In insects, these 
compounds are the source of energy for activities 
such as metamorphosis, flight and egg formation. 
(Fernando-Warnakulasuriya et al., 1988; van der 
Horst et al., 1997; Ryan and van der Horst, 2000; 
Ziegler and Ibrahim, 2001; Guedes et al., 2006; 
Arrese and Soulages, 2010; Snart et al., 2015). 
During the changes which occur in the body of the 
insect, the delivery of large amounts of energy are 
required and processes occur in the fat body which 
release trehalose, diacylglyceride and the insect 
hemolymph protein.. The basic lipid composition of 
certain selected species of insects is already quite 
well known. But by using modern chromatographic 
methods, e.g., gas chromatography or liquid 
chromatography, the contribution of individual 
groups of compounds in the lipids can be 
successfully determined. In many species of insect, 
a significant amount of free fatty acids and their 
esters and hydrocarbons or alcohols have been 
discovered. However, the exact impact of various 
environmental factors on the lipid profile in the fat 
body of insects is still not fully known. 
 
The role of the adipokinetic and sulfakinin hormones 

The adipokinetic hormone controls - among 
other things - the mobilization of reserves of energy to 

the muscles of wings by releasing trehalose, 
diacylglyceride and proline to the hemolymph. AKH is 
a hormone pleiotropic, which not only affects the 
locomotor activity of the insect, but also regulates the 
synthesis of RNA, proteins and free fatty acids in the 
fat body, the activity of the heart and the propagation 
of the insect (van der Horst and Ryan, 2012). 

The first peptide (pELNFSPGWa) belonging to 
the family of AKH - the red pigment concentrating 
hormone (RPCH) was isolated from a pink shrimp 
(Pandalus borealis) in 1972 (Fernlund and 
Josefsson, 1972). Currently, 40 different types of 
AKH peptides are known (Gäde and Marco, 2009). 
Their construction is made up of 8 - 10 amino acid 
residues. Pyroglutamic acid residue is located at the 
end of the N-terminus of the amino acid chain and 
at the C-terminus there is carboxamide residue (van 
der Horst and Ryan, 2012). As a result of the 
binding of AKH peptides with G protein receptors 
located in the fat body, there is a mobilization of 
carbohydrates. In Table 1, the structure of the AKH 
family of peptides is shown. 

Another important group of peptide hormones in 
insects are sulfakinins (SK). In their structure, these 
myotropic neuropeptides have sulfated residues of 
tyrosine. By using high performance liquid 
chromatography (HPLC), the peptide family of 
sulfakinins was isolated from an extract of 
cockroach L. maderace (peptide Leum-SK-1) 
(Nachman, 1986). Sulfakinins were found not only in 
cockroaches (Blattodea), including the american 
cockroach (Periplaneta americana) and the madeira 
cockroach (Leucophea maderace) and the housefly 
(Diptera), including the bluebottle fly (Calliphora 
vomitoria), the australian sheep blowfly (Lucilia 
cuprina), the common fruit fly (Drosophila 
melanogaster) and the grey flesh fly (Neobellieria 
bullata). 

 
 
 
 
Table 1 Example structure of peptides of the AKH family in various insect species 
 
Insects Peptide sequence References 

Tenebrio molitor pQLNFSPNWa (Gäde and Rosiński, 1990) 
Zophobas rugipes pQLNFSPNWa (Gäde and Rosiński, 1990) 
Leptinotarsa decemlineata pQLTFTPNWa (Gäde, 1989) 
Onitis aygulus pQYNFSTGWa (Gäde, 1997) 
Pachnoda marginata pQLNYSPDWa (Gäde, 1989) 
Coccinella septempunctata pQLNFTPNWa (Neupert, 2007) 
Cheilomenes luncata pQLNFTPNWa (Neupert, 2007) 
Locusta migratoria pQLNFTPNWGTa (Stone et al., 1976; Bogerd et al., 1995) 
Schistocerca gregaria pQLNFTPNWGTa (Hekimi et al., 1989; Schulz-Aellen et al., 1989) 
Melanoplus sanguinipes pQLNFTPNWGTa (Taub-Montemayor et al., 1997) 
Tribolium castaneum pQLNFSTDWa (Amare and Sweedler, 2007) 
Manduca sexta pQLTFTSSWGa (Ziegler et al., 1985; Bradfield and Keeley, 1989) 
Heliothis zea pQLTFTSSWGa (Jaffe et al., 1986) 
Bombyx mori pQLTFTSSWGa (Ishibashi et al., 1992) 
Apis mellifera pQLTFTSSWGa (Lorenz et al., 1999) 
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Fig. 1 Overall diagram of the analysis of fat body lipids in Zophobas atratus (Gołębiowski et al., 2014). Extracts 
from the fat bodies were prepared at the Department of Physiology and Biology Adam Mickiewicz University in 
Poznan. 
 
 
 
 
 

Sulfakinins play a special role in insects’ 
process of eating by modulating the muscle 
contractions of the intestines and heart. Sulfakinins 
also influence the inhibition of food intake in 
cockroaches and stimulate the secretion of digestive 
juices in the great scallop (Pecten maximus) and the 
red palm weevil (Rhynchophorus ferrugineus) 
(Schoofs and Nachman, 2006). Sulfakinins control 
the amount of storage energy and also the 
composition and amount of free fatty acids and 
cholesterol, thus affecting the maintenance of 
homeostasis. The physiological properties of 
sulfakinins have a functional similarity to gastrin and 
cholecystokinin which occur in vertebrates (Audsley, 
2009). 

 
Methods of analysis 

Various methods of extractions are used in the 
isolation of compounds (analytes) from the matrix. 
The most popular method for the extraction of lipids 
is liquid extraction. Chloroform and hexane are used 
to isolate medium polar and non-polar compounds 
(Nelson et al., 1999; Buckner et al., 2009). 
However, more often dichloromethane and 
petroleum ether are used (Cerkowniak et al., 2013). 

One of the most important stages in the 
analysis of lipid composition is the group analysis. 
Two common techniques that have been previously 
used for the separation of particular groups of 
compounds are thin layer chromatography 
(Mardaus and Buckner 1997) and high performance 
liquid chromatography (Cerkowniak et al., 2013). 
Increasingly popular is high performance liquid 
chromatography using a laser light-scattering 
detector (HPLC-LLSD) (Gołębiowski 2012, 
Cerkowniak et al. 2013; Gołębiowski et al., 2013a). 
For the specific analysis of lipids extracted from the 
fat or glandular secretions of insects, either gas 
chromatography with a flame ionization detector 
(GC-FID) or gas chromatography combined with 
mass spectrometry (GC-MS) can be used (Durak 
and Kalender, 2007; Gołębiowski et al., 2013b). 
Mass spectra can be obtained using a mass 
spectrometer as a detector, from which test 
compounds can be identified. For the purposes of 
quantitative analysis, an internal standard method is 
normally used. In this method, an internal standard 
is added to a predetermined amount of sample, 

whose retention time will differ from all of the 
examined analytes. The relationship between the 
ratio of the concentrations and the ratio of detector 
response of the test compound and the internal 
standard is determined. 

Figure 1 shows the schematic procedure for the 
determination of the lipid content in the fat body of 
the giant mealworm beetle (Z. stratus) (Gołębiowski 
et al., 2014). The extracts were separated into 
individual groups of compounds in the normal phase 
using high performance liquid chromatography with 
HPLC-LLSD. From the fractions, a sufficient 
quantity of lipids was collected, evaporated to 
dryness, added to the internal standard, and then 
silylated with N,O-bis (trimethylsilyl) 
trifluoroacetamide (BSTFA) and 
trimethylchlorosilane (TMCS). Free fatty acids can 
be analyzed as trimethylsilyl derivatives or as 
corresponding fatty acid methyl esters (Gołębiowski 
et al., 2014; Radzik-Rant et al., 2014). Derived lipids 
and native organic compounds can be analyzed 
 
 

 
 
Fig. 2 Techniques used in the analysis of the fat 
body. 
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Table 2 Examples of the use of analytical techniques in the analysis of fat body composition 
 

Insects/ Extraction solvent/ 
Compounds/ Reference  Techniques 

11 bumblebee species, e.g.: 
Bombus terrestris, B. lucorum 
CHCl3/CH3OH (1:1, v/v) 
Triacylglycerols. The TGs consisted 
predominantly of FAs with an even number 
of carbons, mostly 18 or 16. 
(Kofronova et al., 2009) 

HPLC/APCI-MS 
Columns: Two stainless steel Nova-Pak C18 columns 
(300mm×3.9mm, 150mm×3.9mm, a particle size of 4 µm) 
connected in a series. 
Phase: Acetonitrile (A) and 2-propanol (B)  
The gradient program was: 0 min: 100% of A, flow rate 1 
mL/min; 108 min: 30% of A, 70% of B, 1mL/min; 150 min: 5% 
of A, 95% of B, 0.5 mL/min; 165 min: 5% of A, 95% of B, 0.5 
mL/min, 177-100% of A, 0.5 ml/min; 180 min: 100% of A, 1 
ml/min. 
MALDI-MS 
An acceleration voltage of 20 kV and a 200 ns extraction 
pulse. Desorption and ionization were achieved using a 
nitrogen UV laser (337.1 nm, with a 4 ns pulse of 300 µJ, and 
the maximum frequency of 20 Hz) with the laser power 
adjusted to 50-60%. 

Bombus lucorum, B. terrestris, B. lapidarius, 
B. hypnorum, B. hortorum, B. confuses 
CHCl3/CH3OH (1:1, v/v) 
Triacylglycerols. The most abundant fatty 
acids in bumblebees TAGs contained 18 or 
16 carbon atoms. 
(Cvacka et al., 2006) 

GC 
Column: DB-WAX (30m×0.25 mm, 0.25µm). 
Conditions: 140 °C (0 min), then 5 °C/min to 230 °C (30 min). 
HPLC/MS 
Column: 250mm×4mm packed with Biospher PSI 100 C18, 5 
µm. 
Phase: Acetonitrile (A) and 2-propanol/acetonitrile (3:1, v/v) 
(B). The linear gradient from 25% of B to 100% of B in 30 min, 
followed by 5 min at 100% of B. 

Pyrrhocoris apterus 
Folch procedure 
Phospholipids. Two phospholipid classes, 
phosphatidylethanolamine (PE) and 
phosphatidylcholine (PC), represent more 
than 80% of total phospholipids. 
(Hodkova et al., 2002) 

ESI QITMS  
Positive ESI/MS and MS2 and/or MS3 spectra were recorded at 
4.5 kV, with capillary voltage 8 V and capillary temperature 
190°C. Negative ESI spectra were recorded at 4.5 kV, with 
capillary voltage -21.5 V and capillary temperature at 190°C. 

Zophobas atratus  
CHCl3/CH3OH (1:1, v/v) 
Total and phospholipid fatty acid 
composition. The quantitatively major 
components were 16:0, 16:1, 18:0, 18:1, and 
18:2n-6. 
(Howard and Stanley-Samuelson, 1996) 

GC 
Column: Supelcowax 10 capillary column (30m×0.25 mm, 
0.25µm). 
Conditions: 2°C/min from 150 to 250°C with an initial 2 min 
hold. 
GC-MS 
Column: Supelcowax 10 capillary column (30m×0.25 mm, 
0.25µm). 
Conditions: 1°C per min from 170 to 220°C. 

Rhodnius prolixus  
Bligh and Dyer procedure Triacylglycerols. 
(Pontes et al., 2008) 

TLC thin-layer chromatography 
Developing solvent: hepane-etyl ether-acetic acid (60:40:1 
v/v/v). 
Visualization: 10% cupric sulfate (w/v) in 8% phosphoric acid 
(v/v) for 30 s. 

Bombus pratorum, Bombus terrestris 
CHCl3/CH3OH (1:1, v/v) 
Triacylglycerols. Unusual fatty acids with 24, 
26, and 28 carbon atoms were found in 
triacylglycerols. 
(Cvacka et al., 2008; Jiros et al., 2011) 

GC-MS 
Column: HP-5 ms (30m×0.25 mm, 0.25µm). 
Conditions: 40 °C (1 min), then 50 °C/min to 140 °C, then 3 
°C/min to 320 °C (20 min). 
HPLC-MS 
Columns: Two stainless steel Nova-Pak C18 columns 
(300mm×3.9mm, 150mm×3.9mm, a particle size of 4 µm) 
connected in a series. 
Phase: acetonitrile (A) and 2-propanol (B). A linear gradient 
from 0 to 70% of B in 108 min (1.0 mL/min) was followed by a 
linear gradient to 100% B (150 min, 0.7 mL/min). 

Zophobas atratus  
Dichloromethane 
Fatty acids, fatty acids methyl esters, fatty 
alcohols, sterols 
(Gołębiowski et al., 2014; Słocińska et al., 
2013) 

GC-MS 
Column: HP-5 (30m×0.25 mm, 0.25µm). 
Conditions: From 80 (held for 10 min) to 320◦C at 4◦C/min, 
and then held isothermal for 20 min. 
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using GC-MS (Gołębiowski et al., 2012; Pannkuk et 
al., 2013a). Triacylglycerol fractions can be 
analyzed using the MALDI-TOF technique (Matrix 
Assisted Laser Desorption Ionization - Time of 
Flight) (Ayorinde et al., 1999; Gidden et al., 2007; 
Pannkuk et al., 2013b). Figure 2 shows the different 
techniques used in the analysis of the fat body of 
insects and Table 2 contains data on the most 
frequently applied analytical techniques used in the 
analysis of the fat body of insects. Compounds in 
the fat body are mainly triacylglycerols, 
phospholipids, fatty acids, fatty acids methyl esters, 
fatty alcohols and sterols (Table 2). Free fatty acids, 
triacylglycerols and fatty acid esters (methyl-, ethyl-, 
decyl-, dodecyl- and tetradecyl-), alcohols, glycerol, 
and cholesterol (Słocińska et al., 2012; Gołębiowski 
et al., 2014) are examples of compounds which 
have been discovered using GC-MS in the analysis 
of the fat bodies of larvae and pupae Z. atratus. 
Large differences were noted in the case of the free 
fatty acid content of the larvae, where the acid 
content increased 24 h and 48 h after the Tenmo-
AKH injection. Concentrations of free fatty acids 
detected in the fat body of larvae markedly 
increased under AKH treatment. On the other hand, 
the contents of the free fatty acids found in the fat 
body of pupae decreased after an injection of 
Tenmo-AKH (Gołębiowski et al., 2014). The total 
amount of lipids identified in the pupae after using 
AKH was lower than the control (Słocińska et al., 
2012). In the case of lipids in larvae, an increase of 
cholesterol was observed 24 h after the introduction 
of the hormone, whereas after 48 h the amount of 
cholesterol decreased again (Gołębiowski et al. 
2014). 

 
Conclusions 

 
The use of modern analytical techniques, 

specific and sensitive bioassays and molecular 
biology have rapidly accelerated the development of 
insect neuroendocrinology. The use of GC-MS 
allows both qualitative and quantitative 
determinations of the lipid composition of insects to 
be made, which means correlations can be 
observed between the state of development of 
insects and their energy demands as well as 
changes in the quantity and quality of lipids in the 
tested insect species. 

The fat body plays a particular role in many of 
the processes related to the metabolism and life 
processes of insects. When there is a high demand 
for energy, for example during the flight of an insect, 
a continuous release of energy is necessary. 
Mobilization is governed primarily by carbohydrates 
and lipids, which are stored in the fat body (van der 
Horst, 1997). The mobilization of metabolites occurs 
when relevant hormones are released by the 
neuroendocrine system. In certain insect species, 
usually more than one type of hormone exists. For 
example, in the fat body of L. migratoria, there are 
three different forms of AKH (AKH-I, AKH AKH-II 
and III) which among other things have different 
lengths of peptide chains. In his research, van der 
Horst drew attention to the influence of AKH on the 
amounts of energy, as well as the speed of its 
release. Even after 1 min, a 200 % increase in the 

intracellular cAMP can be observed, compared to its 
initial level. Upon further lapses of time, only 
decreases in the amount of the cAMP are recorded 
and after 30 min, cAMP levels are already at the 
same output level of a signaling molecule. This 
shows that the effective length of time of the AKH 
action is very short (van der Horst, 1997). However, 
a series of biochemical changes can take place 
which cause changes in the metabolism of lipids 
and proteins, but whose effects can be seen only 
after longer periods of time (for example after 24 or 
48 h). The length of time depends largely on the 
nature of the hormone, the species, the 
physiological conditions and the stage of 
development of the test insect. 

In insects undergoing a complete 
transformation of the body, there is a total 
reorganization of the larvae, through the pupal stage 
right up to the final form of the insect (imago) 
(Larsen, 1976). So-called apoptosis - programmed 
cell death (PCD) - occurs in the tissue of the fat 
body. This process takes place at different phases 
of the development stage. For example, in the 
tobacco hornworm (Manduca sexta), PCD occurs 
during the 3 to 5 day larval stage (Müller et al., 
2004), and in the case of the silkworm (Bombyx 
mori) PCD occurs 2 days before pupate (Gui et al., 
2006, Lee et al., 2009). The process of 
transformation during metamorphosis can also vary, 
tissue can differentiate between pupal and imago 
(Oberlander, 1985) and it may be subject to 
changes without moving the cells, or by moving the 
differentiation of larval cells again from primary cells 
(Kaneko. 2011). During metamorphosis, in the 
majority of insects, cells experience a period of 
larval and pupal transition (Larsen, 1976). In the 
course of intensive developmental changes, the lipid 
composition of the fat body also changes, especially 
free fatty acids and cholesterol (Słocińska et al., 
2012). Insects do not synthesize steroids and 
therefore sterols (primarily cholesterol) are essential 
components of their diet (Roller et al., 2010). The 
very different impacts of AKH on the fat bodies of 
intensive feeding larvae and on the use of 
previously stored energy reserves in the beetle 
pupae Z. atratus (Gołębiowski et al., 2014) may 
indicate the diverse roles this hormone plays in the 
indirect control of insect metabolism. 
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