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Abstract 

Earthworms are important soil organisms that affect the soil structure by influencing organic and 
inorganic matter breakdown. Earthworms are in permanent contact with soil particles via their 
permeable skin and digestive tract and are thus strongly affected by pollutants present in the soil. 
Earthworms often live in very hostile environments with an abundant microflora and therefore have 
developed very potent defense mechanisms. These mechanisms have been described to be 
influenced by various types of organic and inorganic pollutants and also by the nanoparticles that 
reach the soil system. Reduced abilities of earthworms to protect themselves against pathogenic 
microorganisms result in lower reproduction rates and increased mortality. In this review, a summary 
of the up-to-date data describing the effects of contaminants on the natural defense barriers and 
immune system of earthworms is presented. 
 
Key Words: pollution; immune system; earthworms; biomarker 

 

 
Introduction 

 
Earthworms (Lumbricidae, Annelida) are 

protostomian organisms with a true celom that is 
filled with celomic fluid containing free celomocytes. 
The celomic cavity is metameric, and the segments 
are separated by transversal septa. Each segment 
of the cavity interfaces with the outer environment 
via a pair of metanephridia and a dorsal pore that 
enables microorganisms to enter the celomic cavity. 
Therefore, the celomic fluid is not aseptic and 
contains bacteria, fungi and protozoa from the outer 
environment. The growth of these microorganisms 
is kept under control by various cellular and humoral 
innate defense mechanisms that will be described in 
detail in the following section.  

Earthworms are the most abundant 
invertebrates in the soils of temperate regions and 
are extremely important for soil formation (Edwards, 
2004). Earthworms participate in nutrient cycling in 
terrestrial ecosystems and in the formation of the 
soil profile from the physical, chemical and microbial 
perspectives (Bartlett et al., 2010). They improve its 
structure by increasing the macroporosity, which 
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affects aeration, water dynamics and organic and 
inorganic matter breakdown (Wen et al., 2006; Ruiz 
et al., 2011). Earthworms are permanently in close 
contact with soil particles and microorganisms 
present in the soil via both a highly permeable skin 
and an alimentary tract (Jager et al., 2003; Drake 
and Horn, 2007). Therefore, they are significantly 
affected by the pollutants that reach the soil system 
and are thus well suited for the monitoring of soil 
contamination. Different earthworm species have 
different effects on soil formation because of their 
different behavioral patterns. Epigeic earthworms 
live above the mineral soil, rarely form burrows and 
preferentially feed on plant litter. Endogeic species 
live below the surface, where they build 
predominantly horizontal burrows. These species 
ingest large amounts of mineral soils and humified 
material. Anecic earthworms build permanent 
vertical burrows deep into the mineral soil layer and 
come to the surface to feed on decomposed plant 
litter and other organic residues (Lee, 1985). Two 
epigeic species, i.e., Eisenia fetida and Eisenia 
andrei, have been used for many years to monitor 
ecotoxicity. There are two sets of guidelines, i.e., 
those from the Organization for Economic Co-
operation and Development (OECD) and those from 
the International Organization for Standardization 
(ISO), for the assessment of the ecological risk of 
contaminated soil, the determination of the acute 
toxicity of chemicals on earthworms (OECD, 1984; 
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Fig. 1 Earthworms are affected by the presence of pollutants in the soil. Hydrophilic contaminants enter the 
earthworm body predominantly through the skin, whereas hydrophobic substances enter via the digestive tract. 
Pollutants are accumulated in earthworm tissues, which can result in tissue and cell disruption, such as 
progressive reduction of intestinal villi (iv) and chloragogenous tissue (ch) in earthworms kept in dioxin-polluted 
soil (B; Roubalova et al., 2014). Additionally, both cellular and humoral defense mechanisms are impaired by the 
soil contaminants. 
 
 
 
 
 
ISO, 1993), and the effect on their reproduction 
(ISO, 1998; OECD, 2004). 

Earthworms have been described to 
bioaccumulate contaminants, such as various 
organic pollutants (Jager et al., 2005), heavy metals 
(Nahmani et al., 2007) and nanoparticles (Canesi 
and Prochazkova, 2014). They are able to take up 
chemicals from pore water through their skin and via 
soil ingestion. According to the model developed by 
Belfroid et al. (1995), the ingestion of sediment can 
be the dominant uptake route of hydrophobic 
compounds with logKow values > 5. The presence of 
contaminants in the soil disturbs major physiological 
functions of earthworms, such as survival, nutrition, 
immunity, growth, and reproduction, and these 
effects depend on the matrix, exposure time, and 
the types and doses of the pollutants in the 
environment. In recent years, there has been a 
growing interest in increasing our knowledge of the 

biological responses of earthworms to pollutants in 
order to standardize a suite of biomarkers of the 
responses to soil chemical pollution (Beliaeff and 
Burgeot, 2002). Biomarkers detect the effects of 
contamination at an early stage before sublethal 
effects, such as inhibition of growth and 
reproduction, become apparent. The biomarker 
approach represents a very useful tool in monitoring 
stress response to pollutants in field populations 
(Kammenga et al., 2000; Hankard et al., 2004). The 
choice of appropriate biomarkers is crucial for 
monitoring the effects of pollution on organisms. 
Reactions to pollution may be monitored on various 
levels, the whole body level (viability, weight loss, 
reduction of reproduction, and escape reaction), the 
organ and tissue level (histopathological changes), 
the cellular level (decrease in the physiological 
conditions of the cells) and the molecular level (the 
up- and down-regulation of the expression levels of 

 

 

204



 
 
Fig. 2 The general scheme of the innate defense mechanisms in earthworms. The first protective barrier of 
earthworms is the skin in combination with the secreted mucus that contains various antimicrobial factors. 
Invading microorganisms are recognized by both soluble and membrane-bound pattern recognition receptors 
(PRRs) that sense pathogen-associated molecular patterns (PAMPs). On the basis of this recognition, 
microorganisms are phagocytized by coelomocytes or agglutinated and subsequently encapsulated. Moreover, 
genes encoding various humoral factors involved in the elimination of invaders are expressed, such as 
antimicrobial peptides (AMPs), cytolytic molecules, agglutinins, lysozyme and various soluble PRRs that trigger 
the activation of the prophenoloxidase cascade. 
 
 
 
 
 
genes that are sensitive to the environmental 
changes, transcriptome profiling) (Owen et al., 
2008; Asensio et al., 2013; Calisi et al., 2013; 
Roubalova et al., 2014; Sanchez-Hernandez et al., 
2014; Sforzini et al., 2015) (Fig. 1). Although these 
responses may indicate the disturbances at the 
level of populations, only few data link biomarker 
level with effects on the functioning of earthworms in 
ecosystems (Maboeta et al., 2003; Spurgeon et al., 
2005; Plytycz et al., 2009). 
 
The effects of pollutants on the defense 
mechanisms of earthworms 
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Similarly to other invertebrates, earthworms rely 
on natural nonspecific innate immunity for defense 
and lack anticipatory, specific and lymphocyte-
based immune mechanisms. Additionally, the 
natural barriers of earthworms represent the first 
line of protection against the invasion of 
microorganisms. A brief summary of earthworm 
immune mechanisms is shown in Figure 2. In the 
following sections, the effects of various soil 
pollutants on the nonspecific defense barriers and 
the cellular and humoral mechanisms of immunity 
are reviewed. 

Natural defense mechanisms and pollution 
The first nonspecific protective barrier in 

earthworms is the skin, which consists of the 
epidermis and a thin cuticle that covers the entire 
body. The epidermis is formed by a single-layer 
epithelium of supporting cells, basal cells that have 
an important role in wound healing and graft 
rejection, and secretory cells that secrete mucus 
containing mucopolysaccharide-lipid-protein complex 
(Alves et al., 1984; Bernaldo de Quiros and Benito, 
1986) that serves as a lubricant during locomotion 
and contains several antimicrobial factors 
(Valembois et al., 1986). The cuticle contains 
mucopolysaccharides that act as an antimicrobial 
barrier (Rahemtulla and Lovtrup, 1974). 

Both cuticle and mucus production can be 
affected by the inorganic and organic contaminants 
as well as nanoparticles present in the soil. The 
exposure of the earthworms Lumbricus rubellus and 
Lumbricus variegatus to C60 fullerene nanoparticles 
has been described to result in cuticle damage with 
underlying pathologies of the epidermis and 
muscles (Pakarinen et al., 2011; Van Der Ploeg et 
al., 2013). Furthermore, the exposure of E. fetida to 
sub-lethal concentrations of 1,2,4-trichlorobenzene 
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Table 1 Summary of recent studies involving genotoxicity assessment of various organic and inorganic pollutants 
 

Tested species Organic pollutant Source Reference 

E. fetida naphtenic acids 
constituents of petroleum, 
used in commercial and 
industrial applications 

(Wang et al., 2015a) 

E. fetida di-n-butyl phthalates increase the plasticity of 
many materials (Du et al., 2015) 

E. fetida benzo[a]pyrene the result of incomplete 
combustion (Duan et al., 2015) 

E. fetida triclosan antimicrobial additive used 
in personal care products (Lin et al., 2014) 

E. fetida metalaxy-M fungicide (Liu et al. 2014) 
E. fetida azoxystrobin fungicide (Han et al., 2014) 
E. fetida chlortetracycline veterinary antibiotics (Lin et al., 2012) 

E. andrei B[a]P, TCDD by-products from a number 
of human activities (Sforzini et al., 2012) 

E. fetida toluene, ethylbenzene and xylene 
associated with crude 
petroleum and petroleum 
products 

(Liu et al., 2010) 

Tested species Inorganic pollutant Source Reference 

E. andrei Cd, Zn metals provided in the form 
of CdSO4, ZnSO4 

(Otomo et al., 2014) 

E. fetida Cr, Cu, Ni, Pb, Zn 

soils subjected to chemical 
characterization and total 
main heavy metal 
quantification 

(Zheng et al., 2013) 

L. castaneous, 
D. rubidus As concentrations of arsenic 

elevated due to mining (Button et al., 2012) 

A. caliginosa, 
E. fetida Cu, Cd sites near roads with heavy 

traffic (Klobucar et al., 2011) 

E. andrei Be, Al, Ba, Mn, Fe, Ni, Zn, U 
deposition of mine tailings 
and sludge, runoffs from 
the aquatic system 

(Lourenco et al. 2011) 

E. fetida Ni, Cr(III), Cr(VI) 
pollutants used in 
numerous industrial 
processes 

(Bigorgne et al., 2010) 

E. fetida Cd, Pb 
toxic elements widely 
distributed in the 
environment 

(Li et al., 2009) 

 
 
 
 
results in ultrastructure alterations of the cuticle and 
skin, and the reduction of mucus production by 
secretory cells. At higher concentrations, mucus 
production disappears, and the cuticle is loosened 
and weakened (Wu et al., 2012a). Exposure of the 
earthworm E. fetida to soil containing tetraethyl lead 
(TEL) and lead oxide (a gasoline additive) causes 
ruptures of the cuticle and skin, extrusion of the 
coelomic fluid and inflexible metameric 
segmentation (Venkateswara Rao et al., 2003). 

Cellular innate immunity 
The celomic fluid of earthworms contains 

different types of cells that are generally termed 
celomocytes. The nomenclature of celomocytes is 
based on differential staining, ultrastructure, and 
granular composition. There are two basic 
categories of celomocytes. Amebocytes function 
primarily in immune reactions, such as 
phagocytosis, encapsulation, nodulation as well as 
humoral immune responses, and mainly nutritive 
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eleocytes (Sima, 1994). Celomocytes have been 
described to respond to a wide range of pollutants 
and therefore are often used in soil ecotoxicology 
assessment. 

At the cellular level, two immune system-related 
parameters have been used as sensitive sub-lethal 
endpoints in assessment of the toxicity of pollutants 
in earthworms: phagocytosis and NK-like cell 
activity. Phagocytosis represents an important 
defense mechanism that begins with the recognition 
of non-self, which is followed by the engulfment and 
destruction of phagocytosed particles. Engulfed 
material can be eliminated by proteolytic and 
lysosomal enzymes or by an oxidative burst that 
involves the production of highly reactive oxygen 
radicals. The inhibition of phagocytosis in 
earthworms that are exposed to various metals and 
organic substances, such as polychlorinated 
biphenyls (PCBs) and polychlorinated dibenzo-p-
dioxins/dibenzofurans (PCDDs/Fs), has been 
described (Ville et al., 1995; Fugere et al., 1996; 
Fournier et al., 2000; Sauve et al., 2002; 
Belmeskine et al., 2012). Silver nanoparticles have 
been shown to be accumulated predominantly in the 
amebocyte population of celomocytes with 
subsequent selective cytotoxicity of these cells 
(Hayashi et al. 2012). Furthermore, some 
celomocytes have been shown to possess cytotoxic 
activity similar to that of natural killer (NK) cells. 
These cells exhibit rapid response to allogenic 
structures and have been described to be involved 
in the rejection of allografts (Suzuki and Cooper, 
1995). The NK-like cell activity has been 
demonstrated to be suppressed by polyaromatic 
hydrophobic hydrocarbons (PAHs) (Patel et al., 
2007), PCBs (Suzuki et al., 1995), and PCDDs/Fs 
(Belmeskine et al., 2012). Furthermore, flow 
cytometry has revealed a lower frequency of 
immune cells (amebocytes) in contrast with 
metabolic eleocytes in earthworms that have been 
exposed to metal- and radionuclides-contaminated 
soil (Lourenco et al., 2011). 

At the subcellular level, the lysosomal 
membrane stability system has been identified as a 
specific target of the toxic effects of contaminants 
(Moore, 1990). Lysosomal membrane integrity can 
be measured with the neutral red retention assay 
(Weeks and Svendsen, 1996). The stability of the 
membranes has been shown to decrease with 
increasing stress due to the presence of pollutants 
in the environment (Moore, 1985; Booth and 
O'Halloran, 2001; Booth et al., 2003). 

Because many soil contaminants exert 
genotoxic activities that result in DNA damage in the 
celomocytes, it is used as an important tool in 
environmental biomonitoring. The most widely used 
genotoxocity biomarker is the comet assay; this 
method has been shown to be appropriate for 
measuring DNA damage in the individual cells of 
both vertebrates and invertebrates (Singh et al., 
1988; Fairbairn et al., 1995; Cotelle and Ferard, 
1999; Faust et al., 2004; Sforzini et al., 2012). In 
Table 1, examples of organic and inorganic 
pollutants described in recent studies that cause 
DNA damage are listed. 
 

Humoral defense mechanisms 
Molecules involved in innate immunity 

The celomic fluid of annelids exhibits numerous 
biological activities that are involved in the defense 
mechanisms against invaders (Fig. 2). The 
recognition of microbial pathogens is mediated by 
pattern recognition receptors (PRRs) that sense 
so-called pathogen-associated molecular patterns 
(PAMPs). These structures are common among 
microorganisms and include, i.e., the 
lipopolysaccharides of Gram-negative bacteria, 
constituents of the peptidoglycan of Gram-positive 
bacteria, β-glucans of yeasts and viral double-
stranded RNA. This recognition results in the 
activation of both cellular and humoral defense 
mechanisms, including the production of 
antimicrobial proteins and peptides (Joskova et al., 
2009), and the activation of an important 
invertebrate defense mechanism termed the 
prophenoloxidase cascade (Beschin et al., 1998; 
Soderhall and Cerenius, 1998).  

To date, only two PRRs in earthworms have 
been described, i.e., celomic cytolytic factor (CCF) 
(Beschin et al., 1998; Bilej et al., 1998, 2001) and 
Toll-like receptor (TLR) (Skanta et al., 2013), and 
these PRRs recognize various PAMPs. The 
expression of CCF has been described to be 
significantly down-regulated in L. rubellus following 
lifelong exposure to C60 nanoparticles, which 
suggests the induction of immunosuppression (Van 
Der Ploeg et al., 2013). Dioxins have also been 
shown to affect the expression of CCF (Roubalova 
et al., 2014).  
A wide range of antimicrobial molecules that are 
involved in killing the microorganisms that enter the 
earthworms´ bodies have been described. Celomic 
fluid has been documented to contain various 
antimicrobial factors, such as lysozyme (Çotuk and 
Dales, 1984; Joskova et al., 2009) and antimicrobial 
peptides (Wang et al., 2003; Liu et al., 2004; Li et 
al., 2011). Among the factors that are involved in 
humoral immunity, particular interest has been 
devoted to the cytolytic components that are 
secreted by celomocytes. The cytolytic activity of 
the celomic fluid was originally demonstrated on 
vertebrate erythrocytes and the resulting effect was 
described as hemolysis. The majority of identified 
hemolysins exhibit broad spectra of antibacterial 
and/or bacteriostatic activities against pathogenic 
soil bacteria (Roch et al., 1991; Milochau et al., 
1997; Eue et al., 1998). Various types of pollutants, 
such as metallic compounds (Brulle et al., 2008; Mo 
et al., 2012) and TiO2 nanoparticles (Bigorgne et al., 
2012), have been described to influence the 
expression of these molecules and therefore cause 
inappropriate immune response to invading 
pathogens. Earthworm calreticulin is a highly 
conserved calcium-binding protein that has also 
been shown to be affected by the presence of 
various pollutants in soils (Chen et al., 2011; 
Roubalova et al., 2014). It participates in the 
regulation of Ca2+ homeostasis, acts as a 
chaperone and is involved in the regulation of cell 
signaling (Wang et al., 2012). It also plays a role in 
the stress response and immune reactions (Goo et 
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Table 2 List of pollutants that affect the activity and gene transcription of antioxidant enzymes 
 

Pollutants that affect activities of antioxidant enzymes 

Tested 
species Type of pollutant Enzymes affected by pollutants Reference 

E. fetida decabromodiphenyl ether SOD, CAT, POD (Zhang et al., 2014) 
E. fetida phenanthrene SOD, CAT, POD (Shi et al., 2013) 

E. fetida multi-metal-contaminated soil 
(Cd, Cr, Cu, Ni, Pb, and Zn) SOD (Zheng et al., 2013) 

E. fetida phenanthrene, pyrene SOD, CAT (Wu et al., 2012b) 
E. fetida chlortetracycline SOD, CAT (Lin et al., 2012) 
E. fetida ZnO nanoparticles SOD (Li et al., 2011) 

Pollutants that affect gene expression of antioxidant enzymes 

Tested 
species Type of pollutant Genes affected by pollutants Reference 

E. fetida naphthenic acids SOD, CAT (Wang et al., 2015b) 
E. fetida 2,2',4,4'-tetrabromodiphenyl ether SOD, CAT (Xu et al., 2015) 
E. fetida copper sulphate (CuSO4) SOD, CAT (Xiong et al., 2014) 
E. fetida silver nanoparticles SOD, CAT (Hayashi et al., 2013) 
E. fetida zinc oxide (ZnO) SOD, CAT (Xiong et al., 2012) 
E. fetida galaxolide, tonalide SOD, CAT (Chen et al., 2011) 

 
 
 
 
 
al., 2005; Kuraishi et al., 2007; Silerova et al., 2007; 
Gold et al., 2010). 
 
Enzymes involved in oxidative stress 

Aerobic organisms developed efficient 
antioxidant defense system to protect themselves 
against reactive oxygen species (ROS). The major 
source of intracellular ROS is the mitochondrial 
respiratory chain (Han et al., 2001; Ott et al., 2007), 
and these radicals are also produced in smaller 
amounts in other cell compartments, such as the 
endoplasmic reticulum, the plasma and nuclear 
membranes, and by some oxidases (Mittler et al., 
2004; del Rio et al., 2006; Navrot et al., 2007). Free 
radicals were described to have an important role in 
cell signaling (Mates et al., 2002; Scandalios, 2005; 
Mates et al., 2008) and protection against invading 
pathogens (Babior et al., 1975; Rossi et al., 1985; 
Nacarelli and Fuller-Espie, 2011). Oxidative stress 
induces DNA modifications (Bohr, 2002), direct 
oxidation and inactivation of iron-sulfur (Fe-S) 
proteins (Fridovich, 1997), lipid peroxidation (Arai, 
2014), and apoptotic events by means of caspase 
dependent pathways (Bearoff and Fuller-Espie, 
2011). Under stressful conditions (e.g., exposures to 
UV radiation, organic and inorganic contaminants, 
extreme temperatures and biotic stress), the 
concentrations of ROS increase, resulting in the 
development of oxidative stress and subsequent 
damage to cellular structures (Foyer and Noctor, 
2005; Gill and Tuteja, 2010; Tumminello and Fuller-
Espie, 2013). Antioxidant enzymes are considered 

to be a primary defense that protects biological 
macromolecules from oxidative damage. Three 
groups of these enzymes play significant roles in 
protecting cells from oxidant stress, i.e., superoxide 
dismutases (SODs), catalase (CAT) and 
peroxidases (PODs) (Mates, 2000). SODs are a 
ubiquitous family of metal-containing enzymes that 
depend on bound manganese (mitochondrial SOD), 
copper or zinc (intra- and extra-cellular SODs) for 
their antioxidant activity. SODs efficiently catalyze 
the dismutation of superoxide anions into hydrogen 
peroxide, which is substantially less toxic than 
superoxide, and oxygen. CAT and PODs degrade 
hydrogen peroxide to water. Both the enzyme 
activities and gene expression levels of antioxidant 
enzymes are frequently used to determine the 
effects of pollution on earthworms (Table 2). 
 
Conclusions 

 
This review summarized the data that have 

been published so far regarding the effects of 
various soil pollutants on the defense mechanisms 
of earthworms. The toxicities of these chemicals, 
which often enter the food chain, have been 
described to affect the immune system of not only 
invertebrates but also vertebrates, including 
humans. This article illustrated the various 
mechanisms through which the effects of pollutants 
are mediated on both the cellular and humoral 
components of the immune system. Such 
disruptions of the abilities of earthworms to protect 
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themselves against invading pathogens has been 
shown to be closely related to the reduced 
reproduction and growth rates of earthworms and 
increased mortality. Moreover, these immunological 
parameters can be used as reliable biomarkers for 
the detection of the pollutant-induced responses of 
soil organisms. 
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