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Abstract 

The repair of lesions of the central nervous system (CNS) varies widely throughout the animal 
kingdom. At the level of neuronal replacement lie the major differences in CNS regeneration. At one 
extreme are the amniote vertebrates (reptile, avian and mammalian groups), which have very limited 
capacity for neuronal replacement, and therefore for neural regeneration; at the other extreme, 
animals such as planarians (flatworms) and colonial tunicates can repair their entire CNS after major 
injuries. These differences can be attributed to the abundance of multipotent and/or pluripotent stem 
cells and/or undifferentiated precursors among the general cell population. In this review we discuss 
recent advancements in knowledge of regeneration of the CNS of invertebrates. We focus on 
ascidians, which are a sister group of vertebrates, but we also address other invertebrate groups. 
Because neurogenesis is central to the events that allow regeneration of the adult CNS, we address 
this issue focusing on crustaceans, which have provided a paradigm to study the mechanisms 
underlying this phenomenon. The attraction of hemocytes toward a neurogenic niche and 
respecification of these cells toward a neural fate has been strongly suggested. Based on recent and 
emerging research, we suggest that cells of the blood lineage are not only associated with the roles 
that are generally attributed to them, but are the cells that either signal other cell types to differentiate 
into neural cells, or even eventually themselves transdifferentiate into neural cells. 
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Introduction 

 
The ability of many animals to regenerate their 

whole body or substantial parts of the body is a 
remarkable biological phenomenon that is non-
uniformly represented in different phyla. Mammals, 
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for example, have a limited capacity to regenerate 
and restore tissues and organs. Mechanisms 
associated with natural regeneration include 
dedifferentiation, reprogramming and 
transdifferentiation (Jopling et al., 2011). 
Transdifferentiation, the switch of lineages to create 
another cell type, is often illustrated by the change 
of pancreas exocrine cells to endocrine Beta cells 
following a lesion (Bouwens, 1998). However, as 
will be emphasized in the following section and 
elsewhere, it is now believed that certain normal 
phenomena, such as adult neurogenesis, may 
involve transdifferentiation (see Mezey and 
Brownstein, 2015, for a review). 
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The role of mesenchymal stem cells and blood 
cells in the repair of lesions in the central 
nervous system of vertebrates 

 
Mesenchymal stem cells (MSCs) were originally 

identified as a population of fibroblastic cells that are 
found in the bone marrow of vertebrates, and that 
are distinct from the hematopoietic lineage 
(Friedenstein et al., 1976). However, MSCs, 
considered to be multipotent, can also reside in 
other adult tissues, including circulating blood cells 
(Kuznetsov et al., 2001; Anker et al., 2003; Miura et 
al., 2003; Rosada et al., 2003; Salingcarnboriboon 
et al., 2003; Vandenabeele et al., 2003; Igura et al., 
2004; Seo et al., 2004; Tsai et al., 2004; Toma et 
al., 2009; Delorme et al., 2010). A series of studies 
have proposed that MSCs have a higher potential 
for differentiation than previously thought, including 
the ability to form both endodermal and ectodermal 
tissue (Petersen et al., 1999; Mezey et al., 2000; 
Sanchez-Ramos et al., 2000; Woodbury et al., 
2000; Krause et al., 2001; Woodbury et al., 2002; 
for a review see Mezey, 2007). 

In recent years, some investigators have 
challenged the notion that multipotent stem cells are 
restricted in their potency to the formation of cell 
types that have originated from only one embryonic 
germ layer. Several authors have reported that 
different stem cells can form cell types of other germ 
layers, a process termed transdifferentiation. 
Dedifferentiation can also explain the regeneration 
of body structures. During tail regeneration in 
salamanders, for example, mature muscle fibers 
lose their myofibrillar structure, their nuclei become 
enlarged, and mononucleate cells proliferate to 
populate the specific mass of cells that are capable 
of growth and regeneration, the blastema. 
Endogenous muscle fibers lying next to the site of 
experimental amputation dedifferentiate and form 
mononucleate cells, which constitute a proportion of 
the blastema (Echeverri and Tanaka, 2002). 

In addition to being regarded as possible 
candidates for the treatment of diseases affecting 
mesodermal tissues, due to the functional recovery 
observed in various animal models with neural 
lesions, MSCs are being considered as potential 
candidates for neurological treatments. Three main 
hypotheses have been proposed to explain MSC-
mediated neurogenesis and neural repair: 1) 
transdifferentiation (Sanchez-Ramos et al., 2000; 
Woodbury et al., 2000; Mezey et al., 2000); 2) cell 
fusion (Terada et al., 2002); and 3) paracrine activity 
through the release of soluble factors (Urdzíková et 
al., 2006). While there is evidence for all three 
phenomena, the debate over the degree of 
contribution of each of these models continues. 

Stem cells derived from the umbilical cord have 
also been the subject of research focusing on 
repairing lesions in the brain of mammals. Human 
umbilical-cord blood cells proved to be able to 
differentiate into neurons in vitro (Sanchez-Ramos 
et al., 2001) and when transplanted into the 
developing rat brain (Zigova et al., 2002). In adult 
rats, peripheral-blood progenitor cells  reduced 
behavioral and functional deficits associated with 
cerebral infarction (Willing et al., 2003). More 
recently, the umbilical cord matrix has been 

confirmed as a suitable source of MSCs for 
applications in neurodegeneration, due to their 
primordial nature, neural-like plasticity, and readily 
availability with no significant ethical concerns (Leite 
et al., 2014; Frausin et al., 2015). Therefore, future 
therapies based on the use of peripheral blood cells 
for treatment of CNS diseases are a real possibility. 
 
Stem cells in invertebrates 

 
Life-long growth without fixed limits is typical of 

some evolutionarily very successful groups of 
aquatic invertebrates, such as echinoderms, bivalve 
molluscs and decapod crustaceans. These animals 
continue to enlarge their organs as adults and can 
regenerate lost appendages and organs, which is in 
sharp contrast to mammals and most insects. 
Interestingly, according to specialized literature, 
echinoderms (Ebert, 2008), bivalve molluscs 
(Schöne et al., 2005) and decapods (Vogt, 2010, 
2012a) only rarely develop neoplastic and age-
related diseases, although some species can live for 
more than 100 years. Maximum ages range from 40 
days to 72 years for decapods, 1 to 375 years for 
bivalves, and almost 200 years for echinoderms. 
There are indications that their stem-cell systems 
have co-evolved with their successful environment-
adapted life histories, suggesting that study of their 
features may offer new insights into stem-cell 
biology. In fact, several types of adult stem cells, as 
well as some types of mature cells that are capable 
of dedifferentiating into multipotent progenitor cells 
have been identified (Vogt, 2012b). 

Hydrozoans (Phylum Cnidaria) have a great 
capacity for regeneration, and the presence of 
multipotent stem cells in these organisms plays an 
important role in their normal development and also 
in regeneration (Gierer, 1977; Chandebois, 1976). 
Cnidarians are phylogenetically basal members of 
the animal kingdom and show unlimited 
regeneration capacity and immortality. Immortality 
can be described as the asexual mode of 
reproduction that requires cells with an unlimited 
self-renewal capacity (Watanabe et al., 2009). 
Cnidarian stem cells can give rise to a number of 
differentiated cell types, including neuronal and 
germ cells. Their phylogenetic position, at the base 
of the metazoan branch of the evolutionary tree, 
makes them an important link in clarifying the 
mechanisms of stem-cell biology that are common 
to both animals and plants (Watanabe et al., 2009). 
Among many stem-cell markers in cnidarians, the 
transcription factor forkhead box O (FoxO) has been 
shown to modulate the proliferation capacity of stem 
cells in order to regulate the lifespan and delay 
aging (Boehm et al., 2013). 

Knowledge of the biology of stem cells of the 
blood-cell lineage has grown since the discovery 
that they can be isolated from various adult organs, 
cultured, made to differentiate into different cell 
types, and put back into host organisms. The 
special attention to stem cells has also resulted in 
lines of research aiming at determining the 
evolutionary origin and subsequent modifications of 
this cell type. In flatworms, undifferentiated stem 
cells called neoblasts are morphologically 
comparable to vertebrate hemocytoblasts (Andrew, 
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1965), and are able to differentiate into all cell types 
during normal postembryonic development and 
regeneration (Ehlers, 1985). Stem-cell research has 
used Drosophila (Hartenstein, 2013) to genetically 
tag individual stem cells and to observe their ability 
to self-renew for long periods (Morrison and 
Spradling, 2008). This period may range from 7 
(López-Oneiva et al., 2008) to 25 days (Nystul and 
Spradling, 2007). The resident stem cells from 
different sources, including stromal (López-Oneiva 
et al., 2008) and epithelial niche (Nystul and 
Spradling, 2007) are maintained in an 
undifferentiated state using a short-range 
intercellular signal. These mechanisms of stem-cell 
maintenance are important to understand both the 
regulation of homeostasis and the possible 
alterations that may occur during adulthood 
(Morrison and Spradling, 2008). 

The classification of blood cells of invertebrates, 
the hemocytes, is not yet uniform, and many 
different terminologies are used to identify these 
cells. In some cases, differences in terminology 
exist even for the same species. Hartenstein (2006) 
attempted to reconcile the terminology for 
invertebrate blood cells with that used for 
vertebrates, based on highly conserved molecular 
pathways involved in the development and function 
of these cells. Among the characteristics of both 
vertebrate and invertebrate blood cells, blood-cell 
lineages diverge from a common type of progenitor 
cell, the blood stem cell (Hartenstein, 2006). 

In general, the classification of circulating 
hemocytes in invertebrates is based mainly on the 
amount of granules in the cytoplasm and the 
nucleus/cytoplasm ratio (Johansson et al., 2000). In 
crustaceans, including the crab Ucides cordatus 
(Chaves da Silva et al., 2010), three types of 
hemocytes can be identified: hyalinocytes 
(agranular cells), semigranular cells (cells with small 
granules), and granular cells (cells with large 
granules) (Bauchau, 1981; Söderhäll and Smith, 
1983; Martin and Graves, 1985; Hose et al., 1990; 
Johansson et al., 2000; van de Braak et al., 2002;. 
Battison et al., 2003). The hyalinocytes are 

considered the immature blood cell type 
(Cochennec-Laureau et al., 2003). 

In ascidians (Phylum Chordata, Class 
Ascidiacea), the largest and the most diverse class 
of the Subphylum Tunicata, which is considered a 
sister-group of vertebrates, the blood stem cell is 
termed the hemoblast and shares many 
characteristics, specification mechanisms and 
regulatory pathways with the blood stem cells of 
vertebrates (Sawada et al., 1993; Cima et al., 2001; 
Ballarin and Cima, 2005; De Barros et al., 2007; 
Ballarin and Kawamura, 2009; De Barros et al., 
2009; De Barros et al., 2014). Hemoblasts have 
been extensively studied in the colonial ascidian 
Botryllus primigenus, and a few studies have 
examined solitary species.  

In a colonial ascidian, two types of hemoblasts 
have been described, somatic and germ-line 
hemoblasts. They are morphologically similar and 
show multipotent capacity, but have different cell 
markers (Kawamura and Sunanaga, 2010). In the 
solitary ascidian Styela plicata, hemoblasts were 
shown to be spherical cells with a high 
nucleus/cytoplasm ratio. They appear either 
circulating (Figs 1A, B) or in the hematopoietic 
tissue (Fig. 1C). Their cytoplasm contains few or no 
granules and few visible organelles, and the nucleus 
contains one or more nucleoli (De Barros et al., 
2009, 2014). At most, they comprise 1-2 % of the 
celomic population (Wright, 1981).  

Hemoblasts can be found within the 
hemolymph or aggregated in compartments that 
maintain and regulate their fates in ascidians, the 
so-called hematopoietic niches or stem-cell nodules, 
such as the branchial vessels, intestine submucosa, 
and vascular ampullae of colonial ascidians (Ermak, 
1976; Voskoboynik et al., 2008; Rinkevich et al., 
2013). Although the clear morphological 
characteristics of ascidian blood progenitors have 
been difficult to identify reliably, due to a lack of 
maintenance and differentiation markers or of 
reports using molecular-biology techniques, 
nevertheless, important markers do exist, many of 
which are described in colonial ascidians. 
 

 
 
 
 
 

 
 
Fig. 1 Ascidian hemoblasts. (A) From Phallusia nigra, observed by light microscopy after removal from circulating 
hemolymph (stained with toluidine blue). (B) From Styela plicata, observed by transmission electron microscopy 
after removal from circulating hemolymph. (C) From S. plicata, obtained from hematopoietic tissue located in the 
intestine submucosa. 
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Ascidian hemoblasts express a CD34-like 
antigen (Medina et al., 2014). CD34 is a human 
hematopoietic molecular marker conserved in 
mammals, and is a glycoprotein involved in adhesion 
mechanisms (Gallacher et al., 2000). Although 
Ballarin and Cima (2005) reported the presence of 
the hematopoietic marker CD34 in Botryllus 
schlosseri, recently, Braden et al. (2014) did not find 
any homologue gene to CD34 in the same species. 
Therefore, it remains an open question whether this 
gene is evolutionarily conserved in ascidians, since 
genetic sequencing has not yet been conducted in 
many ascidian species. 

Based on investigations conducted on both 
solitary and colonial ascidians, germ-line cells 
strongly express a vasa homologue gene involved 
in the formation or development of germ cells 
(Fujimura and Takamura, 2000; Brown and Swalla, 
2007). Recently, the Piwi ascidian stem-cell marker 
was identified in the colonial tunicate Botrylloides 
leachi (Rinkevich et al., 2010). Piwi belongs to the 
evolutionarily conserved PIWI/Argonaute 
superfamily of RNA interface effector proteins, 
which are essential for both self-renewal and 
maintenance of germ-line and somatic stem cells in 
various multicellular organisms (Cox et al., 1998; 
Carmell et al., 2007; Brown et al., 2009). 

Hemoblasts play a key role in tissue renewal 
during reproduction and regeneration. Some of 
them differentiate into somatic-lineage cells, such as 
endodermal multipotent epithelial, cardiac, muscle 
and blood cells (Burighel and Cloney, 1997); and 
others into germ cells, known to regenerate the 
whole body of botryllid ascidians (Sunanaga et al., 
2006; Rinkevich et al., 2013). This phenomenon can 
be explained when the proportion of hematopoietic 
stem cells found in humans (Pike-Overzet et al., 
2009) is compared with that in ascidians: humans 
have 1 stem cell per 100,000 circulating blood cells, 
whereas botryllid ascidians have 1 per 5,000 (Laird 
et al., 2005; Brown et al., 2009). 

 
Hematopoietic cells in invertebrates 

 
Although the concept of a niche was initially 

proposed by Schofield (1978) for mouse 
hematopoiesis, it is probably fair to say that the in 
vivo signaling properties of niche cells were first 
discovered in invertebrate germline stem cells, 
including Drosophila and Caenorhabditis elegans (Xie 
and Spradling, 2000; Kiger et al., 2001; Crittenden et 
al., 2002). Studies on the regulatory functions of local 
cell types in hematopoietic niches of invertebrates 
have been reviewed by Adams and Scadden 
(2006). Four main ideas derived from invertebrates 
were described in the review: 1) the number of stem 
cells in a niche is tightly regulated; 2) physical 
interaction among heterologous types of cells is 
important for the maintenance of the stem-cell state; 
3) products of the niche provide the molecular basis 
for physical interactions and a balance of inhibitory 
and stimulatory signals governing stem-cell number 
and function; and 4) niche occupancy can impose 
'stem cell-like' characteristics on some cells, even if 
they are not stem cells. Therefore, the authors 
suggested that examination of the pathways and 
perhaps the structural components of invertebrate 

stem-cell niches may improve the understanding of 
how the specialized microenvironment can affect 
mammalian stem cells (Adams and Scadden, 2006). 

The hematopoietic tissue in invertebrates (HPT) 
is responsible for the production and release of 
circulating blood cells (hemocytes). In crustaceans 
the HPT is composed of a number of ovoid lobules, 
which form a thin sheet on the dorsal part of the 
stomach (foregut), and are surrounded by 
connective tissue (Chaga et al., 1995; Martin et al., 
1993; Johansson et al., 2000). This location makes 
crustaceans a suitable model for studying 
hematopoiesis, because the tissue can be readily 
isolated, and the proliferation of stem cells and their 
differentiation can be studied both in vivo and in 
vitro. In many crustaceans, the various types of 
hematopoietic cells are mainly characterized by 
their morphology as seen under either light or 
electron microscopy, and are described based on 
the amount of granules and/or through biochemical 
analyses (Söderhäll and Smith, 1983; Johansson et 
al., 2000). However, the characterization of the 
hematopoietic cells depends on the species. 
According to van de Braak et al. (2002), in the shrimp 
Penaeus monodon, the type 1 cells are the presumed 
precursor cells that originate a large- and a small-
granular hemocyte, called type 2 and type 3 cells, 
respectively. The type 4 cells show typical features of 
interstitial cells. In contrast, five different cell types 
have been found in crayfish: the type 1 and 2 cells 
are the main proliferating cells in the HPT, whereas 
the other cell types are precursors of granular and 
semigranular cells (Lin and Soderhall, 2011). 

Recently, Noonin et al. (2012) demonstrated 
that the hematopoietic system in crustaceans is far 
more extensive than previously recognized. A 
specialized region of the hematopoietic system, 
called the anterior proliferation center (APC) and 
located near the brain, is proposed to constitute a 
multipotent stem-cell center. In fact, the APC is only 
one part of a much more extensive hematopoietic 
system. It contains actively proliferating cells in the 
anterior part of the tissue near the area linking the 
HPT to the brain (Fig. 2). 

Anatomical and morphological analyses 
showed that the APC lies within the cor frontale, or 
auxiliary heart, which pumps hemolymph to the 
brain and eyes through the cerebral and ophthalmic 
arteries, respectively. Interestingly, in both areas 
there is neurogenesis. These data, together with the 
fact that BrdU-positive cells were observed within 
the dorsal median artery, which comes from the 
posterior HPT forward to the brain, suggest that 
APC cells are multipotent stem cells (Chaves da 
Silva et al., 2013). The hypothesis is that APC cells 
probably establish a communication with the brain in 
order to populate the neurogenic niche located in 
the brain of crustaceans (Sullivan et al., 2007), and 
possibly to interact with resident niche cells by 
releasing growth factors or even to transdifferentiate 
into neural progenitor cells (Chaves da Silva et al., 
2013). Although there is no evidence for 
transdifferentiation of hemocytes into neural cells, 
the study of Benton et al. (2014) identified 
hemocytes as a source of adult-born neurons in 
crayfish, and demonstrated that the immune system 
is a key contributor to adult neurogenesis. 
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Fig. 2 Scheme of the crayfish Procambarus clarkii, showing the hematopoietic system. (A) The posterior 
hematopoietic tissue (HPT-blue) extends bilaterally toward the head, raising the anterior proliferation center 
(APC-red). (B) Scheme showing only the hematopoietic system and the brain. The dorsal median artery (DMA-
red line) links the posterior HPT (blue) to APC (red), which is between the posterior-HPT and the brain. The APC 
surrounds the cor frontale muscles (CFM), within the cor frontale, an auxiliary heart that pumps hemolymph 
toward the brain through the cerebral artery (CA) (Image modified from Chaves da Silva et al., 2013). (C) Scheme 
of brain (illustrated in B) showing the cerebral artery (CA) entering the brain and bilaterally accessing the 
neurogenic niche (niche) on the surface of the accessory lobe (AL). (OL) olfactory lobe.  
 
 
 
 
 
Adult neurogenesis in invertebrates 

 
Neurogenesis persists in the adult brains of 

various animals, and is a common phenomenon that 
is not correlated with their phylogeny or the overall 
complexity of their brains. Based on the review by 
Cayre et al. (2002), it is very likely that similar 
processes underlie neurogenesis in the adult brain 
of both invertebrates and vertebrates. In vertebrates, 

adult neurogenesis has been widely explored in 
specific regions of the brain, including the 
hippocampus of mammals (Altman and Das, 1965, 
Gheusi and Lledo, 2007; Ninkovic et al., 2007). 
Among invertebrates, adult neurogenesis has been 
analyzed mainly in arthropods, i.e. in several 
species of insects and decapod crustaceans, with 
no information available for numerous other taxa 
and countless species (Schmidt, 2007). 
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Fig. 3 Scheme of the role of hematopoietic stem cells in the crustacean Procambarus clarkii during adult 
neurogenesis and in the ascidian Styela plicata during brain repair. In the crayfish, the anterior proliferation center 
(APC), a part of the hematopoietic tissue, produces multipotent stem cells that have access to the brain and 
populate the neurogenic niche, possibly differentiating into neurons. In the ascidian, after the injection of a 
neurotoxin into the brain, the hematopoietic stem cells migrate to the cerebral ganglion for repair. 
 
 
 
 

In insect brains, adult neurogenesis only occurs 
in the mushroom bodies, which are higher-order 
multimodal integration centers (Cayre et al., 1994, 
1996; Gu et al., 1999; Dufour and Gadenne, 2006; 
Cayre et al., 2007). However, neurogenesis does 
not occur in many insect groups, such as 
Dictyoptera and Acrididae (Cayre et al., 1996) or in 
honeybees (Fahrbach et al., 1995); and lasts only 
several days into adulthood in cockroaches (Gu et 
al., 1999). 

In decapod crustaceans, new neurons are 
continuously produced in two brain areas: the optic 
lobes and the central olfactory system (Harzsch and 
Dawirs, 1996; Schmidt, 1997; Sandeman et al., 
1998; Sullivan et al., 2007), which makes them 
useful animal models for providing insights into adult 
neurogenesis. In the crayfish Procambarus clarkii 
(phylum Arthropoda; subphylum Crustacea), adult 
neurogenesis involves at least three generations of 
precursor cells (Sullivan et al., 2007). The first-

generation precursor cells reside in a vascularized 
neurogenic niche. These bipolar niche cells also 
provide a stream along which their progeny migrate. 
The second-generation cells are migratory 
precursors that move toward the proliferation 
(medial and lateral) zones where the neuron cell 
bodies are grouped in clusters (clusters 9 and 10). 
The progeny differentiate into cluster 9 (local) and 
cluster 10 (projection) olfactory neurons, 
respectively (Sullivan and Beltz, 2005). Interestingly, 
the first generation of neuronal precursors migrate 
away from the niche after each cellular division, 
suggesting that niche cells are not self-renewing 
and that the niche is supplied by another cellular 
source. Several studies have shown, by different 
techniques, a close relationship between the 
neurogenic niche and the vascular system/blood 
cells: 1) dye-conjugated dextran injections within the 
dorsal artery showed that the neurogenic niche lies 
on a complex vasculature network (Sullivan et al., 
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2007; Sandeman et al., 2009); 2) the vasculature is 
connected to the niche beginning in the early stages 
of development (Sintoni et al., 2012); and 3)  the 
mature brain is surrounded by blood vessels, as 
observed in semi-thin sections (Zhang et al., 2009), 
and blood cells are frequently found in the 
connective tissue below the neurogenic niche, 
showing similar morphology with one of the cell 
types in the niche (Chaves da Silva et al., 2012). 
Taken together, these data reinforce the close 
relationship of the blood cells and vasculature with 
the neurogenic niche. 

Blood cells are selectively attracted to the niche 
via the vasculature. In vivo experiments using 
blood cells (hemocytes) and cells from three 
different types of tissue were isolated and labeled 
with a fluorescent marker. They were then set on a 
crayfish brain culture in order to observe the 
affinity of these cells to the neurogenic niche. 
Interestingly, only hemocytes, especially 
semigranular cells, were significantly attracted to the 
niche, particularly to the vascular cavity (Benton et 
al., 2011). Semigranular cells are derived from a 
precursor cell named type I, the hematopoietic stem 
cell (Lin and Söderhäll, 2011). Recently, Benton et 
al. (2014) have also shown that hemocytes are 
able to invade the neurogenic niche and that their 
descendants are able to differentiate into neurons. 
This suggests that the crustacean brain has an 
"open" niche which is populated by blood-born cells, 
and that they are able to differentiate into neural 
progenitors. These studies reinforce the classical 
view that stem cells possess greater differentiation 
potential than previously thought, as we stated 
above for vertebrates. In crustaceans as well, it 
seems that the ectodermal origin of embryonic 
neural tissues is not the only source of neurons in 
the adults. 

A morphological study, using transmission 
electron microscopy, also demonstrated a specific 
cell type in the niche, which is by far the most 
numerous cell type, and that shows characteristics 
which suggest a role in regulating transport from the 
blood into the niche cells. It lines a vascular cavity 
located in the center of the niche, which is confluent 
with the vascular system of the animal (Chaves da 
Silva et al., 2012). Through different lines of 
reasoning, studies in the crayfish P. clarkii have led 
to the idea that cells emerging from the 
hematopoietic system, and circulating in the 
hemolymph may reach the neurogenic niche and 
transform into neuronal precursor cells (Zhang et 
al., 2009; Beltz et al., 2011; Sintoni et al., 2012; 
Chaves da Silva et al., 2012). The reasoning is as 
follows: 1) ablation of the hematopoietic tissue 
results in a decrease of proliferating cells within the 
neurogenic niche (Benton et al., 2014); 2) cells that 
surround the niche show similar morphology to cells 
of the APC (Chaves da Silva et al., 2013); 3) blood 
vessels, perivascular cells and hemocytes have the 
capacity to penetrate the tissue surrounding the 
neurogenic niche (Zhang et al., 2009; Benton, 2011; 
Chaves da Silva et al., 2012, 2013). These data 
suggest that blood stem cells may be a cellular 
source to supply the niche and also to 
‘‘transdifferentiate’’ into a neural progenitor (for a 
review, see Hartenstein, 2014). 

Regeneration and repair in invertebrates 
 
Many animals are able to regenerate at least to 

some degree, as a strategy to maintain form and 
function throughout life. Many studies, closely linked 
with stem-cell research, have been conducted in 
different animal models, and have provided some of 
the most promising information to advance 
regenerative medicine. However, not all animal 
tissues have the same capacity to regenerate. The 
extreme example of loss of the regenerative 
function is the most complex and intriguing system 
of the body, the nervous system (Tanaka and 
Ferretti, 2009; Bonfanti, 2011). Some representative 
published data on the use of different invertebrate 
models for regeneration are shown in Table 1. 

In metazoans in general, the capacity of the 
CNS to regenerate decreases in parallel with an 
increase in complexity (Brockes and Kumar, 2008). 
However, tunicates, the group to which ascidians, 
the sister group of vertebrates, belong, have a high 
CNS regenerative capacity. The first complete study 
of the regeneration of their brain used Ciona 
intestinalis as the experimental model (Mingazzini, 
1891). The CNS was ablated and the recovery of 
neural components was observed. This recovery is 
considered a unique phenomenon among chordates 
(Jeffery, 2015). Experiments using the same 
method of mechanical ablation of the cerebral 
ganglion of C. intestinalis showed that the entire 
CNS can be regenerated within a few weeks 
(Bollner et al., 1997; Dahlberg et al., 2009). Bollner 
et al. (1997) suggested that post-mitotic cells 
migrate to the redeveloping ganglion cells external 
to the CNS, and Dahlberg et al. (2009) showed that 
neurons supply cells for reformation of the central 
network. Our group has recently shown that 
hematopoietic stem cells were present in the 
regenerating nervous tissue of the ascidian S. 
plicata, after neuronal damage was produced with 
3-acetylpyridine (Medina et al., 2014). 

In some groups such as annelids, the CNS is 
efficiently and functionally regenerated following 
mechanical trauma (Baylor and Nicholls, 1971; 
Jansen and Nicholls, 1972), and the attraction of 
microglia/macrophages is a key step in the 
engagement of an adaptive response leading to 
axonal sprouting. This may suggest that an optimal 
regeneration requires microglia/macrophages for 
initiation of CNS regeneration (Baylor and Nicholls, 
1971). Interestingly, regeneration in the leech 
Hirudo medicinalis (phylum Annelida) proved to 
remain possible when glial cells were destroyed by 
intracellular injection of protease (Elliott and Muller, 
1983). In this context, we can ask what other cell 
types might be involved in the regeneration of the 
leech CNS. In the leech, it has been suggested that 
blood cells are important to facilitate and accelerate 
the process of regeneration (Boidin-Wichlacz et al., 
2012). Furthermore, circulating blood cells also 
appeared capable of infiltrating the injured CNS 
where, in conjunction with microglia, they limited the 
formation of a scar (Boidin-Wichlacz et al., 2012). In 
contrast, in mammals, CNS injury leads to the 
generation of a glial scar that blocks the mechanism 
of regeneration by preventing axonal regrowth (Fitch 
and Silver, 2008). 
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Table 1 Some representative published data on the use of different invertebrate models for regeneration and 
neurogenesis 
 

 
 
 
 

As noted above, a hematopoietic site was found 
to be correlated with adult neurogenesis in 
crustaceans (Noonin et al., 2012). However, 
although neurogenesis is associated with 
regeneration in adult animals, to better comprehend 
regeneration in crustaceans, the first step is to 
understand the cellular and molecular basis of 

nerve-fiber degeneration. We have addressed this 
issue by characterizing cellular and biochemical 
strategies peculiar to neurodegeneration in 
crustaceans (Corrêa et al., 2005; Chaves da Silva et 
al., 2010, 2013). Immune cellular features, such as: 
1) the recruitment of granulocytes, and secondarily, 
of hyalinocytes to the lesion site; 2) the attraction of 
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a larger number of cells 48 h after the lesion 
(subacute phase) than 24 h after the lesion (acute 
phase); and 3) the presence of activated glial cells, 
revealed with microglia/macrophage markers, 
suggest that molecules released from granulocytes 
in the acute phase attract hyalinocytes, thus 
producing more undifferentiated cells that are able 
to differentiate into either mature blood cells or even 
other lineages (Chaves da Silva et al., 2010, 2013). 
According to Hartenstein (2006), hemocyte 
progenitors are rarely released into circulation under 
normal conditions, but they can appear under 
pathological conditions, such as injuries and 
pathogen invasion. 

In conclusion, we suggest that the blood-
lineage cells are associated not only with the 
functions that are usually attributed to them, but are 
the cells that produce neuroactive substances that 
induce other cell types to differentiate into neural 
cells. Another possibility is that the blood-lineage 
cells are those cells that eventually differentiate into 
neural cells. Figure 3 summarizes what is currently 
known regarding the role of hematopoietic stem 
cells in a crustacean during adult neurogenesis and 
in an ascidian during brain repair.  
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