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Abstract 
Insect lipoproteins, called lipophorins, are non-covalent assemblies of lipids and proteins serving 

as lipid transport vehicles. The protein moiety of lipophorin comprises two glycosylated 
apolipoproteins, apolipophorin I (apoLp-I) and apolipophorin II (apoLp-II), constantly present in a 
lipophorin particle, and an exchangeable protein, apolipophorin III (apoLp-III). ApoLp-III is an abundant 
protein occurring in hemolymph in lipid-free and lipid-bound state and playing an important role in lipid 
transport and insect innate immunity. In immune response apoLp-III serves as a pattern recognition 
molecule. It binds and detoxifies microbial cell wall components, i.e., lipopolysaccharide, lipoteichoic 
acid, and β-1,3-glucan. ApoLp-III activates expression of antimicrobial peptides and proteins, 
stimulates their antimicrobial activity, participates in regulation of the phenoloxidase system and in 
hemolymph clotting. In addition, the protein is involved in cellular immune response, influencing 
hemocyte adhesion, phagocytosis and nodule formation, and in gut immunity. Although apoLp-III is the 
best studied apolipophorin in insect immunity so far, a literature review suggests that all the three 
apolipoproteins, apoLp-I, apoLp-II and apoLp-III, function together in a coordinated defense against 
pathogens. 
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Introduction 

 
Insect lipoproteins, called lipophorins, are well-

studied complexes of multifunctional molecules. 
These non-covalent assemblies of lipids and 
proteins serve as lipid transport vehicles. 
Lipophorins have a structure similar to mammalian 
lipoproteins. They possess a hydrophobic core 
composed of nonpolar lipid constituents, surrounded 
by a monolayer of amphiphilic phospholipids (PL) 
and apolipoproteins. The protein moiety of 
lipophorin comprises two glycosylated 
apolipoproteins, arising from a common precursor 
preproapolipophorin, i.e. apolipophorin I (apoLp-I, 
ca 240 kDa) and apolipophorin II (apoLp-II, ca 
80kDa) which are present in a 1:1 molar ratio in 
lipophorin particles (Ryan et al., 1984; Weers et al., 
1993; Blacklock and Ryan, 1994; Ryan and Van der 
Horst, 2000; Marinotti et al., 2006). 

The fat body, a functional analog of mammalian 
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liver, is the site of apoLp-I, apoLp-II and lipid 
synthesis as well as lipid storage, and assembling of 
lipoprotein particles. Lipophorins are released as 
high or very high density lipoproteins into the 
hemolymph, depending on the insect species 
(Prasad et al., 1986; Venkatesh et al., 1987; De 
Capuro and De Bianchi, 1990; Weers et al., 1992; 
Van Heusden et al., 1998). One of the major roles of 
lipoprotein is lipid transport during larval 
development and long-distance flight of insects. 
Adipokinetic hormones (AKHs), which are stored in 
the secretory granules of neuroendocrine cells 
(corpus cardiaca), are released during flight activity 
and are involved in lipid mobilization (Beenakkers et 
al., 1985; Van der Horst, 2003). AKHs trigger 
conversion of the fat body triacylglycerol (TAG) 
stores into diacylglycerol (DAG) by a specific lipase. 
The insect lipids are then released as DAG and, 
after being assembled with apoLp-I and apoLp-II, 
form high-density lipophorins (HDLp). Two proteins, 
apoLp-I and apoLp-II, are constantly present in a 
lipophorin particle, whereas the third protein, 
apolipophorin III (apoLp-III), is an exchangeable 
molecule in these complexes. Association of DAG 
and apoLp-III with HDLp converts them to low-
density lipophorins (LDLp), which serve as transport 
vehicles for lipids in hemolymph to a target tissue. 
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Fig. 1 Main functions of apolipophorin III in insects. (*) denotes processes in which lipophorin particles or apoLp-
I/II are involved 
 
 
 
 
 
From 14 to 16 molecules of apoLp-III can be 
associated with the LDLp surface (Kawooya et al., 
1984, 1986; Wells et al., 1987; Van der Horst et al., 
1991). After release of a lipid load, apoLp-III 
dissociates from the complex and together with 
HDLp can be reused for another cycle of DAG 
transport (Weers et al., 1992; Blacklock and Ryan, 
1994; Soulages et al., 1995; Ryan and Van der 
Horst, 2000; Niere et al., 2001). 

Among apolipophorins, especially apoLp-III is 
considered to be an important factor of insect 
immunity. The review summarizes available data on 
apoLp-III involvement in insect immune response 
(Fig. 1). 
 
Apolipophorin III and lipid interactions 

 
ApoLp-III was detected in different insect 

tissues, e.g., eggs, fat body, hemocytes, and 
hemolymph. This protein was found in hemolymph 
plasma of larvae, pupae, adults as well as in the 
molting fluid. It is a water-soluble and heat-stable 
protein of molecular mass 17-20 kDa depending on 
the insect species (Table 1). ApoLp-IIIs contain no 
cysteine, some of them are glycosylated in 
Orthoptera species, but other, e.g. in Lepidoptera 
species, lack this modification (Kawooya et al., 
1984; Chino and Yazawa, 1986; Chung and Ourth, 
2002). The studies on L. migratoria and G. 
mellonella have shown that the protein can occur as 

isoforms, differing in pI values (Chino and Yazawa, 
1986; Van der Horst et al., 1991; Wiesner et al., 
1997; Zdybicka-Barabas and Cytryńska, 2011). The 
apoLp-III molecule is formed by a bundle of five 
antiparallel amphipathic α-helices organized in an 
up-and-down topology, which are connected by 
short hinged loop regions (Breiter et al., 1991). This 
bundle motif is a stable arrangement of the protein, 
which allows it to exist in hemolymph. A majority of 
residues in the molecule interior are hydrophobic, 
while hydrophilic residues are exposed to the 
aqueous environment of hemolymph. Although the 
degree of amino acid sequence identity of apoLp-
IIIs from evolutionally divergent species is low, the 
three-dimensional structure of these proteins in their 
lipid-free state shows a striking similarity in 
molecular architecture, which is connected with the 
physiological functions of apoLp-III. Physiologically, 
the protein occurs in a lipid-free or lipid-bound state 
that readily converts from one to the other 
depending on the metabolic setting. The low 
intrinsic stability of the helix bundle in the lipid-free 
state probably facilitates interaction with lipid 
surfaces. During the formation of the complex 
between apoLp-III and lipid, considerable 
conformational changes in the protein were 
observed, i.e., helix-helix interactions were replaced 
by helix-lipid interactions in the lipid-bound open 
conformation (Wientzek et al., 1994; Raussens et 
al., 1995). The lipid-bound state is the active form of 
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Table 1 Properties of apolipophorin III of selected insect species 
 

 
Molecular 
mass (a,b) 

(Da) 

Number 
of 

residues 

 
pI (a,b)/ 

isoforms 
 

Reference 

 
Lepidoptera 
 

Acherontia atropos 17247b 

20 kDaa 161  Surholt et al., 1988 

Bombyx mori 18420 
18378b 164 8.04b Yamauchi et al., 2000 

Diatraea grandiosella 17964b 165 6.8a Burks et al., 1992 

Galleria mellonella 18075.5a 

18075b 163 

6.38b 

6.5a 

5.9a 

6.1a

Weise et al., 1998 
Zdybicka-Barabas and 

Cytryńska, 2011 

Heliothis virescens 18 kDaa 

17965.9a   Chung and Ourth, 2002 

Hyalophora cecropia 18 kDaa   Telfer et al., 1991 

Hyphantria cunea 18.3 kDaa 

18344b 165 6.23b Kim et al., 2004 

Manduca sexta 18364 
18380b 166 5.88b Kawooya et al., 1984 

Spodoptera exigua 16523b 149 6.25b Rizwan-Ul-Haq et al., 2011 
Spodoptera litura 18.3 kDaa 166  Kim et al., 1998 

Thitarodes pui 18606a 171 5.61b Sun et al., 2012 
 
Orthoptera 
 

Acheta domesticus 17248b 

17.2 kDaa 161  Smith et al., 1994 
Strobel et al., 1990 

Locusta migratoria 
20488a (Glc) 

17583a (non-Glc) 
17327b

162-164 
5.35a /5.43a 

5.10ba/5.11a 

4.98a

Van der Horst et al., 1984; 1991 
Weers et al., 2000 

Chino and Yazawa, 1986 
 
Coleoptera 
 

Derobrachus geminatus 18039b 

18 kDaa 165  Smith et al., 1994 

 
Diptera 
 

Anopheles gambiae 19247b 170 4.82b Gupta et al., 2010 
 

a molecular mass and isoelectric point (pI) determined empirically; b theoretical molecular mass and pI; Glc – 
glycosylated; non-Glc – non-glycosylated 
 
 
 
 
the protein and occurs when apoLp-III associates 
with lipid-enriched lipophorins. It has been 
demonstrated that interaction of apoLp-III with 
model phospholipid vesicles, composed of 
dimyristoylphosphatidylcholine (DMPC), transforms 
them into discoidal particles surrounded by apoLp-III 
(Weers et al., 1999, 2000; Weers and Ryan, 2003; 
Vasques et al., 2009; Narayanaswami et al., 2010; 
Wan et al., 2011). The interaction of the protein with 
membrane lipid bilayers does not affect their 
permeability and occurs via polar and/or 
electrostatic forces at the bilayer surface without 
penetration of the hydrophobic core of the bilayer 
(Zhang et al., 1993; Sahoo et al., 1998). The 

packing defects in the phospholipid bilayer generate 
sites of apoLp-III binding, which was reported for 
various DMPC and sphingomyelin (SM) vesicles 
(Chiu et al., 2009). It is known that lipid binding 
involves the hydrophobic surface of the helix 
bundle. Upon lipid binding, apoLp-III molecule 
undergoes conformational changes and its 
hydrophobic interior is exposed to the lipid 
environment, which allows hydrophobic amino acid 
side-chains to gain direct access to the lipid surface 
(Wientzek et al., 1994; Garda et al., 2002; Sahoo et 
al., 2002). A plausible model of the interactions of 
apoLp-III with model phospholipid particles is based 
on reorientation in the bundle of α-helices, i.e., three 
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of them move away from the two others (Breiter et 
al., 1991; Ryan and Van der Horst, 2000; Van der 
Horst et al., 2001, 2002). It has been suggested that 
the lipid binding is initiated at one end of the helix 
bundle. Different models have been proposed for 
description of the initial binding steps. One model 
has been suggested for L. migratoria apoLp-III by 
Breiter et al. (1991), where directed helix-lipid 
contact is made possible by conformational opening 
of the bundle involving ‘hinged’ loops connecting 
helices 2 and 3 and helices 4 and 5. The resulting 
exposure of its interior permits formation of a stable 
interaction with hydrophobic patches on lipophorin 
particles which appear as a function of DAG 
enrichment. In turn, Kawooya et al. (1986) have 
proposed that M. sexta apoLp-III recognizes 
potential lipid surface binding sites via one of its end 
and then Breiter et al. (1991) have shown that loop 
A connecting helices 1 and 2 and loop C between 
helices 3 and 4 play this role. Furthermore, in the 
structure of apoLp-III of L. migratoria, M. sexta, and 
Thitarodes pui short additional helices (called 4’ and 
3’) located at one end of the α-helix bundle are 
present. They adapt an orientation nearly 
perpendicular to the long axis of the bundle (Wang 
et al., 1997; Narayanaswami et al., 1999; Fan et al., 
2003; Sun et al., 2012). Because they are exposed 
to the solvent, it has been suggested that these 
short helices play a critical role in initiating the lipid 
binding with apoLp-III. It is believed that 
repositioning of the first and last helices in the 
molecule is an essential step in the binding process 
of apoLp-III, facilitating further opening of the 
hydrophobic helix bundle interior and separation of 
all helices from each other, which allows the protein 
to spread out on the lipid surface (Narayanaswami 
et al., 1996; Garda et al., 2002; Sahoo et al., 2002). 
It has been demonstrated that apoLp-III of M. sexta, 
L. migratoria and G. mellonella were unable to bind 
lipid surfaces when helix 1 and helix 5 were tethered 
by a disulfide bond (Garda et al., 2002; Sahoo et al., 
2002; Leon et al., 2006a). Based on spectroscopic 
analyses, Raussens et al. (1995) inferred that the 
helices of M. sexta apoLp-III in the lipid-bound state 
are oriented perpendicularly to fatty acyl chains. 

ApoLp-III shares similarities in the structure and 
in the mechanism of lipid binding with the N-terminal 
domain of human apolipoprotein E (apoE) and 
apolipoprotein A-I (apoA-I). The structure of the 22 
kDa N-terminal domain in apoE3 in the lipid-free 
state comprises four amphipathic α-helices with 
buried hydrophobic residues and exposed 
hydrophilic residues (Aggerbeck et al., 1988; Wilson 
et al., 1991). This domain can alter its conformation 
in a manner similar to apoLp-III on the lipoprotein 
particle. Like the human apolipoproteins, apoLp-III 
forms discoidal complexes with phospholipid 
liposomes in which extended helices of the protein 
are wrapped around nanodiscs (Saito et al., 2004; 
Hatters et al., 2006; Davidson et al., 2007; 
Narayanaswami et al., 2010). 
 
Involvement of apolipophorin III in insects 
immunity 

 
The level of apoLp-III in hemolymph of immune-

challenged insects, e.g., G. mellonella, Heliothis 

virescens, Plutella xylostella, undergoes changes, 
depending on the insect species and the 
pathogen/parasite, which indicates participation of 
apoLp-III in immune response against microbial 
infections (Chung and Ourth, 2002; Song et al., 
2008; Zdybicka-Barabas and Cytryńska, 2011). It 
has been postulated that during an early step of 
insect immune response an interaction of apoLp-III 
with lipids occurs and that apoLp-III in the lipid-
bound state is involved in insect immunity (Wiesner 
et al., 1997; Dettloff et al., 2001a,b). A relationship 
between the lipid transport and immune function of 
apoLp-III has been shown in crickets. It appeared 
that the two processes compete for the protein, as 
after flight, the crickets became less able to fight 
bacterial infection (Adamo et al., 2008). 
 
Recognition of non-self 

 
Proper recognition of invading pathogens by 

the immune system is a necessary prerequisite for 
activation and mounting of effective humoral as well 
as cellular immune response. It has been 
documented that apoLp-III binds microbial cell wall 
components, such as Gram-negative bacteria 
lipopolysaccharide (LPS), Gram-positive bacteria 
lipoteichoic acids (LTA), and fungal β-1,3-glucan 
(Dunphy and Halwani, 1997; Halwani et al., 2000; 
Pratt and Weers, 2004; Whitten et al., 2004; Leon et 
al., 2006a, b; Ma et al., 2006). Due to this property, 
apoLp-III is considered as a pathogen recognition 
receptor (PRR). 

In their work, Halwani et al. (2000) reported on 
interaction of G. mellonella apoLp-III with LTAs of 
Bacillus subtilis, Enterococcus hirae, and 
Streptococcus pyogenes. They also demonstrated 
that E. hirae LTA promoted binding of apoLp-III to E. 
hirae cells. In addition, binding of LTAs by apoLp-III 
prevented loss of plasmatocytes caused by B. 
subtilis LTAs in G. mellonella larvae. Our recent 
study has demonstrated binding of G. mellonella 
apoLp-III to different Gram-positive and Gram-
negative bacteria. The results suggested that, in 
addition to LTAs, apoLp-III interacted with other cell 
surface components of Gram-positive bacteria, 
since it bound to some of the tested bacteria lacking 
LTAs in their cell walls, e.g., B. circulans (Zdybicka-
Barabas and Cytryńska, 2011). 

Lipid A and the carbohydrate part of the LPS 
molecule are involved in interaction with apoLp-III. 
The binding causes conformational changes in the 
apoLp-III molecule, leading to rearranging and 
opening of the bundle of α-helices, similar to binding 
to lipid surfaces upon interaction with lipoprotein 
complexes (Leon et al., 2006a, b). Recently, a 
model of interaction between G. mellonella apoLp-III 
and E. coli LPS aggregates has been proposed. 
ApoLp-III disaggregated LPS by forming protein-
LPS complexes. According to this model, the initial 
step is binding of apoLp-III to the LPS carbohydrate 
moiety through ionic interactions. The second step, 
leading to strong lipid A binding, is likely to be driven 
by hydrophobic interaction. It has been calculated 
that four apoLp-III molecules can interact with 24 
molecules of E. coli LPS. Analysis of similar 
complexes formed between apoLp-III and K. 
pneumoniae LPS revealed that the complexes 
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contained three apoLp-III and nine LPS molecules 
(Oztug et al., 2012). 

Whitten et al. (2004) demonstrated binding of 
apoLp-III to β-1,3-glucan, a fungal cell wall 
component. Moreover, they showed that the survival 
rate of G. mellonella larvae injected with conidia of 
entomopathogenic fungus Metarhizium anisopliae 
coated by apoLp-III was higher in comparison with 
that one in larvae challenged by non-coated conidia, 
indicating a protective role of apoLp-III against 
fungal infection. Binding of G. mellonella apoLp-III to 
the cell surface of different yeasts and conidia of 
filamentous fungi has also been demonstrated 
(Zdybicka-Barabas et al., 2012). An analysis of in 
vitro treatment of Candida albicans, 
Zygosaccharomyces marxianus, and Fusarium 
oxysporum with apoLp-III revealed morphological 
and metabolic activity changes, suggesting a role of 
this protein not only in fungi recognition but also in 
antifungal activity of hemolymph. 
 
ApoLp-III as a signaling molecule and its role in 
antimicrobial activity induction 

 
As reported by Dettloff et al. (2001a), shortly 

after injection into G. mellonella hemocoel, 
biotinylated apoLp-III was detected in the immune-
competent hemocytes, suggesting functioning of 
apoLp-III as a signaling molecule in insect 
hemolymph. In accordance with this finding, G. 
mellonella bacterial challenge led to formation of 
apoLp-III-lipid complexes, assembled into LDLp 
which were taken up by granulocytes (Dettloff et al., 
2001b; Niere et al., 2001). 

It was reported that apoLp-III potentiated 
antimicrobial activity in insect hemolymph. An 
injection of apoLp-III into the hemocoel of G. 
mellonella larvae led to an increase in hemolymph 
lysozyme and anti-E. coli activity, similar to bacterial 
challenge (Wiesner et al., 1997; Halwani and 
Dunphy, 1999; Niere et al., 1999). The constitutive 
presence of apoLp-III in hemolymph and the fact 
that intrahemocoelic injection of apoLp-III 
(recombinant or purified from insects) resulted in a 
negligible increase in the soluble apoLp-III fraction 
in hemolymph, ruled out hormone- or cytokine- 
related activity of the protein. Evidence provided by 
Dettloff et al. (2001b) for LDLp formation after 
bacterial challenge and uptake of lipid-bound 
apoLp-III by the hemocytes, indicated that activation 
of the immune system by apoLp-III might be rather 
connected with conformational changes and an 
increase in the lipid-bound fraction of the protein in 
hemolymph. Intensification of hemolymph 
antimicrobial activity after apoLp-III injection could 
result from activation of antimicrobial gene 
expression, which was demonstrated in apoLp-III-
challenged Hyphantria cunea. In this insect, apoLp-
III injection induced the expression of lysozyme and 
cecropin-like peptides (hyphancins). In addition, 
apoLp-III was detected in H. cunea granulocytes 
which underwent degranulation and degradation 
upon E. coli immune challenge. The authors 
postulated a relationship between a local discharge 
of apoLp-III from the granulocytes in response to 
bacterial challenge and activation of immune 
response (Kim et al., 2004). 

The existence of immune signals upstream of 
cell-bound receptors has been postulated by 
Rahman et al. (2006). They found that lipophorin 
particles mediated recognition and inactivation of 
LPS and bacteria in immune-challenged flour moth 
Ephestia kuehniella larvae. Moreover, an 
association of pattern recognition receptors, lectins 
as well as regulatory proteins activating 
prophenoloxidase with sub-population of lipophorin 
particles has been demonstrated (Rahman et al., 
2006). 
 
Detoxification of non-self components 

 
The ability of apoLp-III to bind microbial cell wall 

components, e.g., LPS, implies participation of the 
protein in detoxification processes. Dunphy and 
Halwani (1997) demonstrated that G. mellonella 
apoLp-III bound to LPS isolated from the outer 
membrane of insect pathogenic bacteria 
Xenorhabdus nematophilus, which reduced the LPS 
toxicity and prevented G. mellonella hemocyte 
damage. The role of lipophorins, in which apoLp-III 
is an exchangeable component, in LPS 
detoxification was suggested by Kato et al. (1994a, 
b) in their study on Bombyx mori. The results 
indicated that formation of the lipophorin-LPS 
complex in B. mori hemolymph, similar to the 
lipoprotein-LPS complex in mammalian serum, 
caused a striking decrease in LPS biological activity, 
reflected by significant reduction in cecropin gene 
inducibility. As demonstrated by Ma et al. (2006), 
antibodies against LPS-binding proteins, such as 
immulectin-2, cross-reacted with proteins associated 
with purified lipophorin particles formed in G. 
mellonella hemolymph in vitro upon LPS addition. 
The results also indicated that lipophorin particles 
responded to LPS by forming insoluble aggregates 
sequestering LPS into non-toxic complexes. 

ApoLp-III can also be considered as an LTA-
neutralizing protein, since binding of G. mellonella 
apoLp-III to B. subtilis LTAs prevented loss of 
plasmatocytes caused by LTA, indicating protection 
of the insect against the toxin (Halwani et al., 
2000). 
 
Antimicrobial activity of apoLp-III and 
synergistic action with defense peptides 

 
Our study has revealed that G. mellonella 

apoLp-III exhibits antibacterial activity against 
certain Gram-positive and Gram-negative bacteria. 
Among the most susceptible bacteria were 
Salmonella typhimurium, K. pneumoniae, B. 
circulans, and Listeria monocytogenes (Zdybicka-
Barabas and Cytryńska, 2011). Interestingly, 
apoLp-III also inhibited significantly growth of 
Legionella dumoffii cultured in a medium 
supplemented with choline (Palusinska-Szysz et 
al., 2012). AFM imaging and analysis of apoLp-III-
treated bacteria revealed considerable alterations 
of the structure and nanomechanical properties of 
the cell surface, e.g. roughness, elasticity, and 
adhesion (Fig. 2) (Zdybicka-Barabas et al., 2011). 
The results underline the important role of apoLp-
III in insect antibacterial defense, similarly to the 
role demonstrated for mammalian apoE in immune 
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Fig. 2 AFM analysis of K. pneumoniae cell surface alterations after treatment with G. mellonella apoLp-III. Three 
dimensional (a), amplitude (b), and topography (c) images are presented. Section profiles corresponding to lines 
in (c) are demonstrated in (d). 
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response against K. pneumoniae and L. 
monocytogenes (Roselaar and Daugherty, 1998; 
Bont et al., 1999). 

In G. mellonella, it was demonstrated that 
apoLp-III acted synergistically with other defense 
proteins and peptides against bacteria. Synergistic 
action of apoLp-III and lysozyme against M. 
lysodeikticus was suggested by Halwani and 
Dunphy (1999) on the basis of experiments on 
apoLp-III and EWL. In addition, they demonstrated 
an increase in hydrophobicity and the negative 
charge of the bacterial cells treated with apoLp-III, 
which could, to some extent, explain why apoLp-III 
enhances the antibacterial activity of cationic 
defense proteins and peptides. Recently, we have 
presented evidence for increasing G. mellonella 
lysozyme muramidase activity in the presence of 
apoLp-III, leading to an increase in lysozyme 
perforating activity of the E. coli cell membrane. Our 
research indicated that three defense factors 
present constitutively in G. mellonella hemolymph, 
namely apoLp-III, lysozyme, and anionic peptide 2, 
act in synergy against bacteria. ApoLp-III increases 
the enzymatic (muramidase) activity of lysozyme, 
whereas anionic peptide 2 seems to stimulate the 
non-enzymatic lysozyme activity (Zdybicka-Barabas 
et al., 2012, 2013). Moreover, an increase in 
cecropin A anti-E. coli activity in the presence of 
apoLp-III has been demonstrated (Park et al., 
2005). 

In addition to enhancing antibacterial activity of 
other defense proteins and peptides, involvement of 
apoLp-III in regulation of phenoloxidase activity in 
G. mellonella has been reported; however a 
possible mechanism of this phenomenon has not 
been explained yet (Halwani et al., 2000; Park et al., 
2005). 

Recently, Gupta et al. (2010) have reported on 
apoLp-III participation in midgut immune defense of 
Anopheles gambiae against Plasmodium berghei. In 
A. gambiae G3 females, invasion of P. berghei 
ookinetes triggered a strong transcriptional 
activation of apoLp-III in the midgut epithelial cells. 
Expression of apoLp-III in these cells stimulated 
antiplasmodial response, while silencing of apoLp-III 
by systemic injection of dsRNA greatly increased 
Plasmodium infection. 

Contribution of apoLp-I and apoLp-II, in addition 
to apoLp-III, in insect defense mechanisms against 
pathogens has been recently suggested (Hanada et 
al., 2011). It has been found that ApoLp, consisting 
of apoLp-I and apoLp-II, of the B. mori silkworms’ 
hemolymph is involved in resistance against 
Staphylococcus aureus infection by suppressing the 
expression of virulence genes encoding α- and β-
hemolysin. Moreover, ApoLp also decreased 
expression of saeRS and RNAIII, important for 
activation of these hemolysin genes. It is possible 
that apoLp-I and apoLp-II, together with apoLp-III, 
function in coordinated antimicrobial defense in 
insects. 
 
Role of apoLp-III in cellular immune response 

 
Analysis of the properties of G. mellonella 

hemocytes after treatment with apoLp-III in vitro and 
after injection of apoLp-III into larval hemocoel 

revealed impaired adhesion of plasmatocytes and 
subpopulation of granulocytes to glass slides 
(Zakarian et al., 2002; Whitten et al., 2004). Since 
the ability to adhere to and spread on non-self 
surfaces is essential for hemocytes involved in 
cellular immune response, the finding suggested a 
role of apoLp-III in this arm of insect immunity. In the 
same study, delayed removal of apoLp-III-coated B. 
subtilis cells from the hemolymph was reported. 
Given the reduced hemocyte adhesion upon apoLp-
III treatment, the authors postulated that apoLp-III 
may down-regulate nodule formation and/or 
phagocytosis (Zakarian et al., 2002). On the other 
hand, binding of apoLp-III to yeast cells (S. 
cerevisiae) enhanced the phagocytic activity of G. 
mellonella hemocytes in vitro, suggesting 
importance of apoLp-III opsonizing activity for 
effective clearance of the invaders (Wiesner et al., 
1997). Similarly, the findings described by Whitten 
et al. (2004) presenting more effective in vivo 
nodule formation in larvae injected with apoLp-III 
could point towards a stimulating role of apoLp-III in 
cellular response. In support of this idea are the 
results presented by Son and Kim (2011) on the role 
of apoLp-III in activation of cellular response in 
diamondback moth, P. xylostella. Knockdown of 
apoLp-III expression by RNA interference caused a 
significant decrease in the apoLp-III level and 
resulted in considerable suppression of hemocyte 
nodule formation in response to bacterial challenge. 
Injection of recombinant apoLp-III to P. xylostella 
larvae parasitized by an endoparasitic wasp Cotesia 
plutellae restored the hemocyte activity. In addition, 
apoLp-III reduced pathogenicity of 
entomopathogenic bacteria X. nematophila toward 
P. xylostella larvae (Son and Kim, 2011). Although 
the exact role of apoLp-III in cellular immune 
response is difficult to define clearly on the basis of 
available data, it seems that the effect of the protein 
activity depends on the pathogen. 
 
Involvement in clot formation 

 
Clot formation can be considered as an integral 

part of insect immune response, because in addition 
to sealing wounds and limiting loss of body fluids, a 
clot entraps microbes at the wound site, thereby 
preventing invading the hemocoel. Moreover, upon 
activation of the PO system, the entrapped 
pathogens can be more easily killed and eliminated. 
Lipophorins have been identified as a common 
clotting factor in several insect species, e.g. G. 
mellonella, Tenebrio molitor, L. migratoria, Periplaneta 
americana, and Leucophaea maderae (Duvic and 
Brehélin, 1998; Altincicek et al., 2008; Dushay, 
2009). The presence of apoLp-I and apoLp-I/II in the 
Anopheles gambiae and Drosophila melanogaster 
clots, respectively, has also been reported (Scherfer 
et al., 2004; Agianian et al., 2007). 

Proteomic analysis revealed that apoLp-III, 
together with other apolipoproteins, was a 
component of G. mellonella net-like coagulation 
structures containing endogenous extracellular 
nucleic acids. Moreover, apoLp-III was detected 
among specific RNA-binding proteins, suggesting its 
role in extracellular RNA-mediated immune 
response (Altincicek et al., 2008). 
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Apolipophorin III and entomopathogens 
 
One of the strategies developed by 

entomopathogenic organisms to cope with the host 
immune system is decreasing of the apoLp-III level. 
Reduction of the protein level is achieved by 
suppression of apoLp-III expression, which was 
described in P. xylostella parasitized by the 
entomopathogenic wasp C. plutellae (Son and Kim, 
2011). Another way involves proteolytic degradation 
of apoLp-III by extracellular proteinases produced 
by entomopathogenic bacteria during infection, e.g. 
Pseudomonas aeruginosa elastase B and protease 
IV in infected G. mellonella larvae (Andrejko et al., 
2005, 2008, 2013; Andrejko and Mizerska-Dudka, 
2012). A very interesting strategy developed by 
entomopathogenic nematodes Steinernema feltiae 
infecting G. mellonella larvae was reported by Brivio 
et al. (2005, 2010). Hemolymph of the infected 
larvae was depleted of humoral immune factors 
which were attracted by and adsorbed to specific 
nematode surface molecules. Among proteins 
removed in this way from the insect hemolymph, a 
lipopolysaccharide binding protein (LBP), a 
peptidoglycan recognition protein LB (PGRP-LB), 
gloverin-like peptide and apoLp-III were identified. 
Removal of the immune factors, including apoLp-III, 
from the insect hemolymph by S. feltiae seems to 
protect nematode symbiotic bacteria X. nematophila, 
which kill the insect host and establish suitable 
conditions for reproduction of the nematodes (Brivio 
et al., 2005, 2010). 
 
Summary 

 
Apolipophorin III is a multifunctional insect 

protein involved in lipid transport and immune 
response. In addition, its role during programmed 
cell death has been described in M. sexta skeletal 
muscles and neurons (Sun et al., 1995). In insect 
immune response apoLp-III serves as a pattern 
recognition molecule. It binds and detoxifies microbial 
cell wall components, i.e. LPS, LTA, and β-1,3-glucan. 
ApoLp-III activates expression of antimicrobial 
peptides and proteins, stimulates their antimicrobial 
activity, and participates in regulation of phenoloxidase 
activity in insect hemolymph. In addition, the protein 
is involved in cellular immune response, influencing 
hemocyte adhesion, phagocytosis and nodule 
formation, and in gut immunity. Reduction of the 
apoLp-III level by entomopathogens through e.g., 
suppression of apoLp-III expression and/or 
degradation of the protein by entomopathogen 
proteases seems to be a common strategy to avoid 
host immune response and indicates that apoLp-III 
is an important component of insect immunity. 
Although apoLp-III is the best studied apolipophorin 
in insect immunity so far, a literature review 
suggests that all the three apolipoproteins, apoLp-I, 
apoLp-II and apoLp-III, function together in a 
coordinated defense against pathogens. 
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