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Abstract 
It is anticipated that invertebrate processes will be subject to seasonal variations because of their 

poikilothermal characteristics. In the present study we determined if the morphine coupled nitric oxide 
(NO) release, which is constitutive in nature, exhibits seasonal characteristics, which has previously 
been shown for catecholamine processes in the marine mollusc Mytilus edulis. In this regard, 
morphine induced NO release measured on a monthly basis for one year revealed a peak release 
value (39 ± 4 nM) during the late spring and early summer. The lowest NO release occurred during the 
months of January (6.0 ± 0.5 nM) through March (6.5 ± 1.1 nM). The lowest sea surface temperatures 
(1.3 °C) were also recorded in these same three winter months in New York. Relative mu opiate 
receptor gene expression was assessed by real time PCR during these seasons. The mRNA 
expression reached a relative peak during the month of June and was at its lowest in February and 
March, further demonstrating the direct coupling of morphine with this receptor. We conclude that the 
temperature an animal is chronically exposed to serves to control cellular processes, i.e., opiate 
signaling. 
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Introduction 
 

Through homeostasis, living organisms 
maintain their survival in the face of both internally 
and externally generated stimuli. This balance is 
constantly challenged and therefore the ability to 
overcome these normal perturbations is essential to 
survival and longevity (Chrousos and Gold, 1992; 
Fricchione and Stefano, 1994). In this regard, 
subjecting invertebrate animals to temperature 
changes has been shown to alter the ganglionic 
monoamine levels as well as affecting functionality 
of gill cilia in Mytilus edulis (Stefano et al., 1977a, 
1977b; Stefano and Catapane, 1977b). Additionally, 
opiate processes respond to various types of 
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stressors in both vertebrates and invertebrates ( Lee 
and Spector, 1991; Marrazzi et al., 1997; Sonetti et 
al., 1999; Zhu et al., 2001; Cadet et al., 2002; 
Guarna et al., 2002). 

We have previously demonstrated that 
endogenous morphine represents the terminal 
component of a successful stress response and that 
its actions are generally down regulating immune 
responses and metabolic rates (Stefano et al., 
2000). This down regulation occurs because of 
coupling of the mu opiate receptor to nitric oxide 
(NO) release (Cadet et al., 2003). Our group has 
also demonstrated that opiate receptors and 
subsequent morphine induced NO release can be 
profoundly impacted by temperature changes in M. 
edulis (Cadet et al., 2002; Mantione et al., 2003). 
Furthermore, we have presented molecular 
evidence on the effect of rapid temperature changes 
on mu opiate receptor expression and morphine 
levels in this invertebrate’s nervous system (Cadet 
et al., 2002). In cold stressed organisms, ganglionic 
mu opiate receptor decreases and morphine levels 
increase (Cadet et al., 2002). In the present study, 
we investigated the seasonal variation in ganglionic 
mu opiate receptor expression in M. edulis. In 
addition, we performed a morphine induced NO 
release assay to determine the functionality of the 
morphine signaling system in this model organism. 
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Fig. 1 Monthly measurements of sea surface temperature and morphine (1 µM) stimulated NO release from 
Mytilus edulis pedal ganglia (20 ganglia per assay, n = 4). Paired t-tests revealed statistically significant 
differences between January or February or March and May or June or July (p = 0.002).  
 
 
 
 
 
Material and Methods 
 
Animal collection and Nitric Oxide (NO) 
determination 

Mytilus edulis collected from Shinnecock Bay 
on Long Island were immediately transported to the 
laboratory in seawater for processing. The ambient 
seawater temperature was maintained using 
insulated coolers until dissection of animals. 
Samples were collected monthly on the 15 day of 
the month and sea surface temperature was 
recorded. For NO determination, approximately 20 
pedal ganglia were placed in 1 ml phosphate 
buffered saline (PBS) at room temperature. NO 
release from the tissues was immediately directly 
measured using a 200 μm flexible NO-specific 
amperometric probe (World Precision Instruments, 
Sarasota, FL) connected to a 4-channel Biostat 
(ESA, Chelmsford, MA). The system was calibrated 
daily with S-nitroso-N-acetyl-DL-penicillamine 
(SNAP) in 0.1 M Cu+2. The amperometric probe was 
allowed to equilibrate in PBS for at least 10 min 
prior to being transferred to the tube containing the 
tissue. Morphine-stimulated NO release was 
evaluated at a final concentration of 10-6 M. Each 
experiment was repeated four times (4 groups of 20 
ganglia for each month) along with a control (PBS 
only). A paired student’s t-test was performed to 
evaluate differences between selected months. 
 
Mu opiate receptor expression  

Pedal ganglia (15) were immediately processed 
after dissection. The ganglia were placed in 1.5 ml 
tubes and then washed with PBS (Invitrogen, 
Carlsbad, Ca). Total RNA was isolated using the 
RNeasy mini kit (Qiagen, Valencia, Ca). Ganglia 
were homogenized in 600 µl lysis buffer. The 
samples were then processed following the 
manufacturer’s instructions. In the final step, the 

RNA was eluted with 50 µl of RNase-free water. 
This RNA isolation process was repeated four times 
for each group of 15 ganglia. 

First-strand cDNA synthesis was performed 
using random primers (Invitrogen, Carlsbad, CA). 1 
µg of total RNA was denatured at 95 °C and reverse 
transcribed at 40 °C for 1 h using Superscript III 
Rnase H-RT (Invitrogen, Carlsbad, CA). Ten 
microliters of the RT product was added to the PCR 
mix containing primers for the mu opiate receptor. 
Primers and probes specific for the mu-opiate 
receptor gene (MOR) were designed by the 
software Primer Express (Applied Biosystems, 
Foster City, CA). The forward primer was 5’-
ATGCCAGTGCTCATCATTAC-3’ and the reverse 
primer sequence was 5’-
GATCCTTCGAAGATTCCTGTCCT-3’. The Taqman 
probe was constructed with the 5’-reporter dye, 6-
carboxyfluorescein (FAM), and a 3’-quencher dye, 
6-carboxy-tetramethyl-rhodoamine (TAMRA). The 
probe sequence was 5’-
CGCCTCAAGAGTGTCCGCATGCT-3’. The 
endogenous control gene, β-actin, was used to 
normalize the RT-PCR. The 2X universal master 
mix (Applied Biosystems) containing the PCR buffer, 
MgCl2, dNTP’s, and the thermal stable AmpliTaq 
Gold DNA polymerase was used in the PCR 
reactions. In addition, 200 µM reverse and forward 
primers, 100 µM Taqman probe, 3 µl of RT product 
and Rnase/DNase-free water was added to the 
master mix to a final volume of 50 µl. The PCR 
reaction mixture was transferred to a MicroAmp 
optical 96-well reaction plate and incubated at 95 °C 
for 10 min to activate the Amplitaq Gold DNA 
polymerase and then run for 40 cycles at 95 °C for 
30 s and 60 °C for 1 min on the Applied Biosystems 
GeneAmp 7500 Sequence Detection System(SDS). 
Each PCR was performed in triplicate. The PCR 
results were analyzed with the GeneAmp 7500 SDS 
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Fig. 2 Relative mu opiate receptor gene expression in Mytilus edulis pedal ganglia determined by real time PCR 
for each monthly sample (n = 4). Paired t-tests revealed statistically significant differences between February or 
March and May or June or July (p  = 0.004).  
 
 
 
software (Applied Biosystems). Relative gene 
expression was calculated using the method of 
Yoshikawa et al. (2001). Standard curves were 
generated by serial dilution of the June cDNA 
sample. R values were calculated and used to 
directly compare the monthly measurements. A 
paired student’s t-test was performed to evaluate 
differences between selected months.  
 
Results 

 
Morphine induced NO release measured on a 

monthly basis for one year revealed a average peak 
value of 39 ± 4 nM, during the late spring and early 
summer (Fig. 1). The lowest NO release occurred 
during the months of January (6.0 ± 0.5nM) through 
March (6.5 ± 1.1nM) (Fig. 1). The lowest sea 
surface temperatures (1.3 °C) were also recorded in 
these same three months (Fig. 1). Student’s t-tests 
revealed a statistically significant difference (p = 
0.002) between the warm season high NO values 
and cold season low NO values. 

Relative gene expression was assessed by real 
time PCR. The mRNA expression reached a relative 
peak during the month of June and was at its lowest 
in February and March (Fig. 2). Student’s t-tests 
revealed a statistically significant difference (p = 
0.004) between the warm season high R values (1.2 
± 0.10) and cold season low R values (0.46 ± 
0.052). 

A regression analysis using mu opiate receptor 
expression as the independent variable and NO 
release as the dependent variable showed a 
correlation between the measurements. The 
calculated R value was 0.729.  
 
Discussion 

 
M. edulis neural tissues contain the typical 

biogenic amines, which includes dopamine (Stefano 

et al., 1976). Biogenic amines display variations in 
their ganglionic levels, which corresponds to the 
seasons and temperature, being high in warmer 
months and low in the winter months (Stefano et al., 
1977a, 1977b; Stefano and Catapane, 1977a, 
1977b). Interestingly, this same relationship occurs 
with opioid peptide expression along with their 
receptors (Stefano et al., 1980; Stefano and Leung, 
1986). As demonstrated in this report, this same 
phenomenon involves NO release, which is coupled 
to opiate receptor activation, namely via μ3 ( Liu and 
Stefano, 1996; Liu et al., 1996; Magazine et al., 
1996; Stefano and Scharrer, 1996; Stefano et al., 
1996). 

The coupling of catecholamine, NO and 
morphinergic signaling has recently been reviewed 
(Kream et al., 2009; Stefano and Kream, 2009; 
Stefano et al., 2009; Zhu and Stefano, 2009). It is 
important to note that dopamine is a morphine 
precursor in this animal, which synthesizes 
endogenous morphine ( Zhu et al., 2005; Kream 
and Stefano, 2006). The significance of this 
precursor status of dopamine emanates from 
previously noted reports in this document showing 
seasonal and temperature alterations of 
catecholamine levels, which can now be directly 
compared to morphinergic phenomena, including 
the ability of morphine to release constitutively 
derived NO. We surmise that at colder “winter” 
temperatures all processes appear to be down 
regulated, including the homeostasis between an 
opiate receptor and its ligand levels, as currently 
demonstrated. This probably occurs because very 
cold temperatures influence all metabolic processes 
to decrease their activity levels, including those 
involved in various survival processes. This 
homeostasis mechanism occurs in all living 
organisms, including those with a pathogenic ability. 
Thus, in both types of organisms processes 
providing a survival benefit are not required. This 
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probably extends into the energy metabolic 
processes found in mitochondrial-like structures 
where morphine exerts actions (Kream and Stefano, 
2009). 

In conclusion, the therapeutic value of 
performing medical operations, maintaining food, 
etc., at very low temperatures probably arises from 
the ability of low temperatures to disassociate 
adaptive cellular processes, allowing for a rather 
universal down regulation, which depending on the 
organism has tremendous survival advantage. In 
the case of Mytilus, if bacteria, viruses can’t survive 
or have a decreased infectious characteristic, why 
have a full functioning immune process with the 
activation of cytokines and opiate components at 
low temperature ( Stefano and Scharrer, 1994; 
Stefano and Salzet, 1999; Stefano et al., 2000, 
2008; Stefano and Kream, 2008). 
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