REVIEW

The antimicrobial peptides of the immune response of shrimp

XF Zhao, JX Wang

School of Life Sciences, Shandong University, Jinan, Shandong, China

Accepted October 23, 2008

Abstract

The cultivation of penaeid shrimp is a worldwide economic activity which has the potential to contribute to increasing shrimp production. However, penaeid shrimps are susceptible to bacterial and viral diseases, and may thus cause significant losses to the aquaculture industry. In view of this, it is imperative to understand the immune response of shrimp against pathogens as this could help in devising efficient strategies to control, and eventually eradicate, shrimp diseases. At present, a considerable number of research studies on the identification and characterization of antimicrobial peptides/proteins (AMPs) in penaeid shrimps. Such research activities will contribute to finding solutions to shrimp diseases. AMPs are widespread in animals and plants, involved in their innate immunity, and considered as the front liners of host defense against pathogens. In penaeid shrimps, eight kinds of AMPs have been found. These are the penaeidins, whey acidic protein (WAP) domain single WAP [crustins and domain containing containing proteins peptides (SWD)], antilipopolysaccharide factors (ALFs), lysozymes, a C-type lectin, histones, anionic hemocyanins, and peritrophins. In this study, the structures, distributions, expression profiles, phylogenetic evolution, and functions of some AMPs are discussed, focusing on the WAP-domain containing peptides and ALF in penaeid shrimp.

Key words: antimicrobial peptides; innate defense effectors; innate immunity; penaeid shrimp

Introduction

The cultivation of penaeid shrimp is an important economic activity in the world. This industry, however, has been suffering serious problems brought by viral and bacterial diseases. One specific disease is the white spot syndrome virus (WSSV) infection which has caused a drastic decline in production and multi-national economic losses. Based on the report of the Fisheries and Aquaculture Department of Food and Agriculture Organization (2007), there is an exceeding 2.4 million tons per annum of shrimp global aquaculture production. However, up to 25 % of this production was estimated to have been lost due to diseases. Given that pathogenic diseases are one significant cause of production and economic loss in the shrimp industry, this phenomenon calls for an urgent understanding of the immune defenses of shrimp. At present, research studies are being conducted to

Corresponding author: Jin-Xing Wang School of Life Sciences Shandong University Jinan, Shandong 250100, China E-mail: jxwang@sdu.edu.cn examine the innate immunity of shrimp, and such activities have been continuously contributing to the development of shrimp aquaculture. In fact, it has been found that comparable to insects, the innate defense of shrimp is triggered by the pattern recognition receptors, such as the Gram-negative binding proteins (Vargas-Albores et al., 1997; Yepiz-Plascencia et al., 1998; Jimenez-Vega et al., 2002; Roux et al., 2002; Sritunyalucksana et al., 2002; Romo-Figueroa et al., 2004; Cheng et al., 2005; Du et al., 2007; Lin et al., 2008) and the C-type lectins (Luo et al., 2006; Liu et al., 2007; Sun et al., 2008). Generally, the recognition of non-self activates a proteolytic cascade of serine proteases that amplify the signal and trigger downstream effector responses. This becomes possible through the signal transduction pathways which lead to the elimination of the invader. Moreover, the serine proteinase and its inhibitors was found in shrimp (Okumura, 2007), and the Toll-like receptors and other signal pathway molecules also reported in several shrimp (Arts et al., 2007; Yang et al., 2007; Yang et al., 2008).

Anti-microbial peptides (AMPs) are a diverse group of innate immune effector molecules in multi-

cellular organisms. They are considered as effector molecules for immune cells that prevent or withstand microbial infection. Similar to those found in other animals, AMPs are also key factors in the innate immunity of shrimp (Bachère *et al.*, 2004).

Since AMPs play a significant role in the inherent immunity of shrimp, research studies have been actively focusing on the identification and characterization of AMPs in penaeid shrimp. In fact, eight kinds of AMPs have been found in penaeid shrimps. These are the penaeidins (Destoumieux et al., 1997, 1999, 2000; Cuthbertson et al., 2004; Muñoz et al., 2004; Kang et al., 2004, 2007), whey acidic protein (WAP) domain containing proteins [crustins and single WAP containing peptides (SWD)] (Gross et al., 2001; Amparyup et al., 2008a; Jia et al., in press), antilipopolysaccharide factors (ALFs) (Gross et al., 2001; Liu et al., 2005; Liu 2006; Somboonwiwat et al., 2005, 2008; Tharntada et al., 2008), histones (Patat et al., 2004), hemocyanin (Destoumieux-Garzon et al., 2001; Zhang et al., 2004), lysozymes (Hikima et al., 2003 Sotelo-Mundo *et al.*, 2003; Bu *et al.*, 2008; de la Re Vega *et al.*, 2006; Burge *et al.*, 2007; Xing *et al.*, in press), a C-type lectin (Sun et al., 2008), and peritrophins (Loongyai et al., 2007).

This study presents a discussion of the structures, distributions, phylogenetic evolution, expression profiles, and functions of some AMPs, particularly on the WAP-domain containing peptides and ALF from penaeid shrimp.

Whey acidic protein (WAP)-domain containing peptides (WDPs)

A major milk protein in most mammals. WAP. has eight cysteine residues arranged to form a tightly packed structure called a four-disulphide core (4-DSC) at the carboxyl terminus (Hennighausen and Sippel, 1982). These WAP domain-containing proteins are found to prevail among metazoans (Beg, 1995; Devinoy et al., 1988; Ali et al., 2002; Carro et al., 2004; Furutani et al., 2004). They are further found to have highly diverse biological proteinase including inhibition functions. (Ranganathan et al., 1999; Schalkwijk et al., 1999; Ota et al., 2002), antimicrobial activity (Relf et al., 1999; Hagiwara *et al.*, 2003), and association to ovulation (Garczynski *et al.*, 1997). In addition, WAP-domain proteins have antiviral functions, specifically against the human immunodeficiency virus (Alvarez et al., 2008).

Crustins, which are anti-microbial peptides containing a WAP-domain, were first identified in the shore crab *Carcinus maenas*, characterized as cysteine-rich 11.5 kDa antimicrobial peptides which function against Gram-positive bacteria (Relf *et al.*, 1999). There have been more than 50 crustins or crustin-like peptides reported to have been found from a variety of decapods, including crabs, lobsters, shrimp, and crayfish (refer to the review of Smith *et al.*, 2008). In this study, they were termed as WAP-domain containing peptides (or WDPs) and were classified into two sub-families, namely, crustins and SWD (the justification for such is discussed below). These WDPs are apparently a large family of antimicrobial peptides ubiquitous among penaeid shrimp. In fact, the cDNAs of crustins and WDPs have been reported to be present in a variety of penaeid shrimp, including Litopenaeus vannamei, Litopenaeus setiferus (Gross et al., 2001; Bartlett et al., 2002; Vargas-Albores et al., 2004), Penaeus monodon (Chen et al., 2004; Supungul et al., 2004, 2008; Amparvup et 2008a, b), Marsupenaeus al.. japonicus (Rattanachai *et al.*, 2004), *Fenneropenaeus chinensis* (Zhang *et al.*, 2007; Jia *et al.*, in press), Farfantepenaeus paulensis, Farfantepenaeus Farfantepenaeus brasiliensis, subtilis, and Litopenaeus schmitti (Rosa et al., 2007). Accordingly, the crustins in shrimp are diverse in amino acid sequences. However, they are conserved with the C-terminus of 12 cysteine residues, thereby leading it to be termed as crustindomain, in which a single WAP domain is contained. The SWDs have no crustin domain, and only contain a single WAP-domain (8 cysteine residues).

Classification of shrimp WDPs

Recently, the crustins (WPDs) in crustaceans were comprehensively reviewed by Smith et al. (2008). In the review they discussed three main types of crustins (Crustin type I, II and III) in crustaceans. Here, we focused on the crustins and SWDs in penaeid shrimp, including the new functions of the peptides. There have been several studies that have revealed the presence of crustins and SWDs in different penaeid shrimp species (refer to the above citations), in this study, most of the sequences WDPs in penaeid shrimp and in other crustaceans were collected, including some Expressed Sequence Tags (EST) from the GenBank database. A multiple alignment analysis for the amino acid sequences (Fig. 1) and the phylogenetic analysis of the proteins were performed. The neighbor-joining tree revealed that the WDPs in crustaceans could be divided into four different clusters (Fig. 2), namely, crustins I and II, carcinin and carcinin-like peptides, and the SWD. It is noteworthy to mention that in this study, our classification is considerably different from that of Smith et al. (2008). The crustin type I that they discussed in their study is similar to carcinin and carcinin-like peptide discussed in this study. Similarly, the crustin type II is equivalent to our crustins I and II, and the crustin type III is equivalent to our SWDs.

The WDPs in the penaeid shrimp are divided into three classes, namely, crustin I, crustin II, and SWDs. The first class is characterized by the following: (1) a relatively conserved signal peptide, (2) an N-terminal glycine-rich domain, and (3) a Cterminal cysteine-rich domain (12-cysteine crustin domain) with the following signature: $C1(X_3)C2(X_X)C3C4(X_{16})C5(X_6)C6(X_n)C7(X_5)C8(X_5)$ C9(X₅)C9C10(X₃)C11(X₅)C12. The second class of crustins have similar sequence domains as class I, but in terms of signal peptide, there are sequence differences between them. Another difference between them lies in the sequence of their crustin domain, as crustin II have the following signature: $C1(X_2)C2(X_7)C3C4(X_4)C5(X_6)C6(X_n)C7(X_5)C8(X_5)C9$ C10(X₃)C11(X₅)C12, specifically in the residue numbers between C4 and C5 (Fig.1A). Finally, the

Α	Signal peptide					
Crustin I FchCL AY871268 LseC1 AF430077 LseC2 AF430079 LvaC1 AF430079 LvaC1 AF430071 LvaC2 AF430072 LvaC3 AF430072 LvaC AY488492 LvaC AY488494 LvaC AY488495 LvaC AY488495 LvaC AY488495 LvaC AY488497 MjaC1 AB121740 MjaC2 AB121740 MjaC3 AB121742 MjaC4 AB121743 MjaC5 AB121744 PmoC1 CF415873 PmoC3 BI018073 Crustic U	MKGLG-VILFC-VLAVASA- MKGLG-VILCC-VLAVVPAHA- MKGIKAVILCG-LFTAVLAGKY MKGIKAVILCG-LFTAVLAGKF MKGIKAVILCG-LFTAVLAGKF MKGIKAVILCG-LFTAVLAGKF MKGIKAVILCG-LFTAVLAGKF MKGIKAVILCG-LFTAVLAGKF MKGIKAVILCG-LFTAVLAGKF MKGIKAVILCG-LFTAVLAGKF MKGFKAVVLCS-LLASALAGKL MKGFKAVVLCS-LLASALAGKL MKGFKAVVLCS-LLASALAGKL MKGFKAVVLCS-LLASALAGKL	QSRHG I		Glycine Rich Domain RPGGFPGGFPG GFPGGVPG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFPGGCLG GGFQGGCVGCVHGGCLGNGFGC F-GGVQGGCVGCVHGGCLGNGFGC F-GGVQGGCVGCVHGGCLGNGFGC F-GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC GGVQGGCVGCVHGGGLGNGFGC 	n GGLGGLGGGLGGLGGGLGG-GLGGGLGG- GGLGV-GGGLGV-GGGLGVGG- GGGLGV-GGGLGV-GGGLGVGG- GGGLGV-GGGLGV-GGGLGVGG- GGGLGV-GGGLGV-GGGLGVGG- GGGLGV-GGGLGV-GGGLGVGG- GGGLGV-GGGLGV-GGGLGVGG- GGGLGV-GGGLGV-GGGLGGFGG	GFG
FchC DQ097703 PmoC EF654658	M——LKFVVLSVVAVAVVHAQNK M——LKFVVLSVVAVAVVHAQNK	DDTRFLG GNADTRFLGGVGVPGGGVPGV	GVPGVGGG GVPGVGGG	FVPGVPGHGGVAPVGGGLVPG FLPGVPGHGGVVPG	GGGLIPGGG	
Crustin I FchCLAY871268 LseC1AF430077 1 LseC2AF430078 2 LseC3AF430079 1 LvaC1AF430071 - LvaCAF430073 - LvaCAY488492 - LvaCAY488492 - LvaCAY488495 - LvaCAY488495 - LvaCAY488496 - LvaCAY488496 - LvaCAY488497 - MjaC1AB121741 (MjaC3AB121742 (MjaC5AB121744 (PmoC1CF415873 - PmoC3B1018073 - Crustin II FchC D0097703 -	TAPPAT RRW RT TAPPAT RRW KT SHGTSD RYW KT TAPPAT RRW KT TAPPAT RRW KT TSD RYW KT SGSSD RYW KT SGSSSD RY	PERAAY CETSFEPEAPVGTKI PERQAY ETIFEPEAPVGTKI PERQAY ETIFEPEAPVGTKI PERQAY ESAHEPETPVGTKI PEGQAY ESAHEPETPVGTKI 	Crustin Domain ILD PRVRDT PPVRFGGLAP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP ILD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFHG-PP PLD PQVRPT P-RFGGGGP PLD PQVRPT P-RFQGGGP PLD PQVRPT P-RFQGGAP PLD PQVRPT P-RFQGGAP PLD PQVRPT P-RFQGGAP PLD PQVRPT P-RFQGAP PLD PQVRPT P-RFQGAP	VT SSDYK GG IDK OFDRULGE VT SSDYK GG VDK FDRULGE VT SSDYK GG LDK OFDRULGE VT SSDYK GG LDK OFDRULGE TT SNDYK AG LDK OFDRULGE VT SNDYK AG IDK OFDTULGE VT SNDYK AG IDK OFDTULGE TT SNDYK AG IDK OFD	HVCKPPSFYNFFN HVCKPPSFFGQIFG HVCKPPSFFGQVFG HVCKPPSFFGSQVFG HVCKPPSFFGSQVFG HVCKPPSFFGSQVFG HVCKPPSFFGSQVFG HVCKPPSFFGSQVFG HVCKPPSFFGSQVFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSFGSQVFG HVCKPPSVFGKPLFG HVCKPPSVFGKPLFG HVCKPPSFGNVKG HVCKPPSFGSQFFG	
ГШОСЕГОЭ4038 -	1 2	34	$5 \qquad 6$	7 8 910 11	12	
В	Signal peptide	P,R-rich motif	WAP domain			
FchSWD EF216349 LvaSWD AY465833 MjaSWD AU176270 PmoSWD AY464465 PmoSWD EU623979 PmoSWD EU623980 PmoSWD EU623981	MVNIKEVLIVSVLVAAVAVSPA MVSVKEVLVVLVLVAAVAVSPA MVSIKELLIVAVLVAAVAVSPA MVNIKAVLIVCVLVAAVAVSPA MVSIKAVLIVCVLVAAVAVSPA MVSIKAVLIVCVLVAAVAVSPA MVSLKEVLILSVLVVAMVVSPA	DAVPT RHARPRPOPRPOPGTOPDT SD1 DAVPT RHSRPRPOPRPRPGTOPDT SDV NASPR RFDRPGTOPNT DG1 DAVPT RHSRPRPOPKPRPGTOPDT SD1 DAVPT RHSRPRPRPKPRPGTOPDT SD1 DAVPT RHSKPRPOPLPRPGTOPDT SG1 DAVPT GLEKPGRORRPEEY 1	VSIOVVTERNOFSDGEUGAGQA VIGPOVITERNOLSDSQCAPGQA LIGIOVITEANOSLDAEGGPRQA LIFSIOVVTERNOFSDSEOGPGQA LIFSIOVVTERNOFSDSEOGPGQA LITTCEVTERNOFSDSQOGPGQA (HSIOPLRAISONDDSROSNGYA 2 3 4	C PIGUGRE LAVGSPYGK C PIGUGRE LAVGPPYGNGRR C PYGUGRE LAVGPPYGNGRW C PIGUGRE LAVVPPYKGGRW C PIGUGRE LAVVPPYGSGR C PIGUGRE LAVGPPYGKGRW C LVGUGKR MPVAIWT 56 7 8		

;	Crustin I	Crustin domain			
	Signal Peptide Gly-rich domain		ain CX ₃ CX _x CCX ₁₆ CX ₆ CXnCX ₅ CX ₅ CCX ₃ CX ₅ C		
	Crustin II	Crustin domain			
	Signal Peptide	Gly-rich doma	ain $CX_2CX_7CCX_4CX_6CXnCX_5CX_5CCX_3CX_5C$		
-	SWD	SWD WAP domain			
	Signal peptide	P,R-rich motif CX	CX ₉ CX ₆ CX ₅ CX ₅ CCX ₃ CX ₃ C		

Fig. 1 Alignment of amino acid sequences of Crustins (A), and SWDs (B), and the domain signature of penaeid shrimp and other Crustacea (C). Fch, *Fenneropenaeus chinensis*; Lse, *Litopenaeus setiferus*; Lva, *Litopenaeus vannamei*; Mja, *Marsupenaeus japonicus*; Pmo, *Penaeus monodon*; The sequences of signal peptides are presented in yellow, the identical cysteines that characterize crustin or WAP domain are in purple, and the WAP domains are shown in blue.

class III WDPs are single WAP domain-containing peptides (SWD) which are characterized by the following: (1) a highly conserved signal peptide, (2) a proline- and arginine-rich motif between the signal peptide and the WAP domain, and (3) a WAP-domain (8 cvsteine residues) in the C-terminus with the signature: C1(X₉)C2(X₆)C3(X₅)C4(X₅)C5C6(X₃)C(X₃)C (Fig.1B). In crustaceans, carcinin and carcinin-like peptides have a signal peptide and a crustin domain, without the N-terminal glycine-rich domain. Moreover, SWDs are significantly different from Crustins I and II, and Carcinins because they have no crustin-domain in their sequences. We therefore consider the idea that the four groups of WDPs in crustaceans should be divided into two sub-families. namely, the crustins (which present crustin-domain in their sequences) and the SWDs (which only have WAP-domain). As such, these two sub-families also have different functions in vitro (as discussed below).

Structure comparison of shrimp WDPs with other AMPs

To date, a wide variety of AMPs in metazoans have been identified. On the basis of sequence and structural features, these cationic AMPs can be grouped into three classes: (i) the linear peptides which form α -helices and do not contain cysteine residues; (ii) the cyclic peptides which contain cysteine residues; and (iii) the peptides with an over-representation in one or two residues, such as proline, glycine, arginine, and tryptophan (Bulet *et al.*, 2004).

Several antibacterial glycine-rich polypeptides have been isolated from various insect species. They are actually considered effective against Gram-negative bacteria and are inactive against Gram-positive bacteria, yeasts and mammalian cell lines (Mackintosh *et al.*, 1998). Another example is that of short-chain proline-rich peptides, which are mostly active against Gram-negative bacteria, while the Gram-positive cells remain generally unaffected (Bulet *et al.*, 1999). Furthermore, the cyclic peptides containing cysteine residues, like insect defensins, are active against a wide range of Gram-positive bacteria and only for a few Gram-negative bacteria, fungi and yeasts (Bulet *et al.*, 1999).

Crustins I and II are composed of an N-terminal glycine-rich domain, and a C-terminal region which contains 12 cysteine residues (crustin domain) organized in two doublets. These crustins are similar with the two classes of insect AMPs, that is glycine-rich peptides and cyclic peptides containing cysteine residues (Bulet et al., 1999). On the other hand, the SWDs are composed of a short prolinearginine-rich region and a C-terminal region containing 8 cysteine residues (the WAP domain). They are also similar in terms of the two classes of insect AMPs, particularly the cyclic peptides containing cysteine residues and the proline- and arginine-rich peptides. Similar to the penaeidins found in shrimp, the crustins and the SWD are chimera molecules of glycine- or proline-rich AMPs and cysteine-rich AMPs.

Chimera-like features often reflect the multifunctional properties of a molecule, such that each domain performs different functions. For example, crustins I and II have glycine-rich and crustin domains, and therefore should have anti-Gram positive and negative bacterial activities. Supungul et al. (2008) reported that crustinPm1 (which belongs to crustin I) exhibited anti-microbial activity against only a Gram-positive bacteria, whereas the rCrus-likePm (crustin II) showed remarkable antimicrobial activity against both Gram-positive and negative bacteria (Amparyup *et al.*, 2008b). Likewise, the CruFc (crustin II) from *F. chinensis* exhibited high activity against Gram-positive bacteria but low activity was exhibited against Gram-negative bacteria and fungi (Zhang et al., 2007). The SWDs have Pro- and Arg-rich and WAP domains. They exhibit the following activities: relatively high against Gram-positive and/or negative

Fig. 2 Phylogenetic analysis of WAP containing proteins/ peptides in penaeid shrimps by MEGA 4. Five thousand bootstraps were performed for the neighbour-joining trees to verify the reliability of the results. Cma, *Carcinus maenas*; Ham, *Homarus americanus*; Hga, *Homarus gammarus*; Par, *Panulirus argus*; Ple, Pacifastacus leniusculus. Others are the same with Fig. 1.

bacteria, moderate against fungi, and strong antiproteinase activity, especially against the bacterial proteinases (Amparyup et al., 2008a; Jia *et al.*, in press). Therefore, they are bi-function peptides.

From above results, we can see that the primary structures of AMP are not corresponding to their functions. It need further study for their tertiary structures.

Expression profiles and functions of shrimp WDPs

The spatio-temporal expression of WDPs in shrimp was not well-understood. Most of them seem to be constitutively expressed in the hemocytes. Apparently, the expression patterns was only reported during the development of the larvae of shrimp, *P. monodon*. High level expression of a crustin are recorded at all stages of development from the nauplii stage IV to juvenile period(Jiravanichpaisal *et al.*, 2007).

Furthermore, the expression patterns of WDPs to bacterial challenge were reported in several shrimps, but the results showed no consistent patterns of change in expression subsequent to bacterial injection. Vargas-Albores et al. (2004) found two isoforms of crustin I in L. vannamei, which showed different expression patterns after bacterial inoculation. First, crustin-P seems to be constitutively expressed, and second, the crustin-I mRNA concentration drops after 6 h. Results also revealed that there was a decrease in the transcribed expression of crustin in P. monodon subjected to bacterial challenge (Supungul et al., 2004). In hemocytes, the M. japonicus crustin-like peptide mRNA was identified, and the expression level of this peptide mRNA increased significantly 1, 3, and 7 days after peptidoglycan feeding (Rattanachai et al., 2004). The Crus Pm1 (crustin I) in P. monodon was also expressed in hemocytes, but the expression profile was not analyzed (Supungul et al., 2008). The mRNA transcript of a Crus-like Pm2 (crustin II) in P. monodon was found to be abundantly expressed in hemocytes and was significantly up-regulated after Vibrio harveyi injection (Amparyup et al., 2008b).

Jiménez-Vega et al. (2004) reported that the expression of the SWD gene in L. vannamei hemocytes increased after 3 to 6 h it was inoculated with V. alginolyticus, but slowly returned to nonstimulated levels within 12 to 24 h. The Fc-SWD from Chinese shrimp is constitutively expressed and increased in hemocytes 24 h after bacterial challenge (Staphylococcus aureus and Vibrio The results of the Reverse anguillarum). Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis revealed a weak expression in heart and gill and challenged stomachs in addition to hemocytes. Moreover, results showed that the signal from challenged tissues was stronger than from those unchallenged. Consequently, these results suggest that Fc-SWD is an inducible gene and is essential in responding to bacterial infection (Jia et al., in press). The tissue distribution of SWDs in P. monodon was as well analyzed through RT-PCR. Results indicated the presence of all three SWD transcripts in hemocytes. The transcript expression of SWDPm1 was down-regulated upon

injection with *S. aureus* while no change was recorded in temrs of *SWDPm2* and *SWDPm3* expressions. Contrastingly, the results obtained from the WSSV injection showed that in a biphasic response, there was an up-regulation of the *SWDPm1* and *SWDPm2* transcripts at 6 h followed by a significant down-regulation by 24 h after infection (Amparyup *et al.*, 2008a).

The WDPs are a large family of antimicrobial effectors in shrimp immunity. In fact, more than 30 WDPs, including isoforms and ESTs, have been found in shrimp. Despite this, many of them are poorly characterized for their functions. One of the P. monodon crustins (crustin I), recombinant expressed in E. coli, exhibited an antimicrobial activity against only Gram-positive bacteria, specifically with strong inhibition against S. aureus and Streptococcus iniae (Supungul et al., 2008). Zhang et al. (2007) similarly reported that the recombinant CrusFc (crustin II) had relatively high activities against Gram-positive bacteria and low activities against Gram-negative bacteria and fungi. Moreover, another recombinant crustin 1 (EF654658) from P. monodon has been recently reported to have a strong activity not only against Gram-positive bacteria, but also against Gramnegative bacteria, such as Escherichia coli 363 and Vibrio harveyi (Amparyup et al., 2008b).

In penaeid shrimp, there were less than 10 SWDs found, and two of them were studied for their functions in vitro. The functions of SWD molecule from Chinese shrimp were analyzed (Jia et al., in press). The recombinant Fc-SWD has manifested antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi, as well as a strong inhibitory activity against subtilisin A and protein K with an inhibition constant (Ki) of 2.14 nM and 2.27 nM, respectively; but a much lesser activity against trypsin was recorded. Amparyup et al. (2008a) also analyzed the biological functions of recombinant SWDPm. Based on the results they obtained, recombinant SWD*Pm* exhibits activity against several Gram-positive, but not Gramnegative bacteria and is a competitive inhibitor of subtilisin A with an inhibition constant (Ki) of 1.98 nM. This phenomenon indicates the dual functions of SWDs, that is antimicrobial activity and antiproteinase activity against pathogenic proteinase. Therefore, these SWDs might have an important role in the immunity of shrimp in vivo.

So far, it is generally accepted that both activities could not co-exist in the same (unique) domain. Why does SWD show both anti-microbial and anti-proteinase activities? In fact, similar situations were found in some peptides with a single domain, which is the Avian WAP (AWAP IV) originally found in chicks (Townes *et al.*, 2006). This has a broad-spectrum of antibacterial activities against both Gram-positive and Gram-negative bacteria. In addition to that, the Avian WAP lysate significantly inhibited the activities of the microbial serine proteinases subtilisin and proteinase K. Furthermore, Li et al. (2007) reported the occurrence of a small serine proteinase inhibitor with antimicrobial capability in a diskless-fingered odorous frog, Odorrana grahami. Based on a disulfide-bridged hendecapeptide loop of this serine

Fig. 3 The possible divergent evolution of WPDs in crustaceans.

proteinase inhibitor, a series of peptides have been synthesized. They found that seven synthetic peptides exhibited trypsin inhibitory activity, while the other five have both the trypsin inhibitory and antimicrobial activities. In terms of SWDs, the findings showed that they have high anti-proteinase activities to bacterial serine proteinases (subtilisin A and proteinase K) and antimicrobial activities. The recombinant WAP domain (Fc-WAPD) shows relatively low activities against the bacterial serine proteinases (Jia et al., in press), and manifests quite a low activity against bacteria. Comparing their sequence, it was found that Fc-SWD contain higher positively charged amino acids than the Fc-WAPD. The net charge of Fc-SWD is +4, while that of Fc-WAPD is -2. In addition, it is generally known that most antimicrobial cationic peptides have the same unique features, that is, they are both polycationic (having a net positive charge of more than +2) and fold into amphipathic structures (having both a hydrophobic and a hydrophilic domain). As such, these characteristics enable them to interact with the negatively charged surface molecule of bacteria and to interact with and penetrate into the negatively charged cytoplasmic membranes of most bacteria (Hancock, 1997). This is therefore the reason for the high anti-microbial activity of Fc-SWD compared to that of Fc-WAPD's low activity against bacteria (Jia et al., in press).

The possible divergent evolution of the WAP domain in crustaceans

The WAP domain was initially identified in the primary milk protein of rats and mice (Hennighausen and Sippel, 1982). WAP proteins have one or more WAP domains containing about 50 amino acids with eight highly conserved cysteine residues that form a four-disulphide core (4-DSC). Amino acids in the WAP domain, except for the conserved cysteine residues, are significantly diverse, and proteins with a WAP motif perform variety of functions. In fact, a large biological diversity exists between the proteins that contain one or two WAP domains, with many being identified as proteinase inhibitors or AMPs. The most studied WAP proteins, for example, are the elafin and antileukoproteinase, which are two serine-proteinase inhibitors with anti-microbial and inflammatory activity (Bouchard et al., 2006). In several WAP crustaceans. domain-containing proteins were found. In addition to the aforementioned four WAP-containing proteins, double WAP domain containing proteins were also reported in shrimp [the L. vannamei secretory leukocyte proteinase inhibitor, EF467169; the M. japonicus double WAP domain-containing protein, EU095018; the F. chinensis double WAP domaincontaining protein (our unpublished data)]. Many identified genes that code for WAP proteins in human are clustered on chromosome 20g12-13.1 (Bouchard et al., 2006). The results of Southern analysis show that a large family of sequences related to the crustins is present in L. vannamei genome (Bartlett et al., 2002). This may indicate some similarities in gene locations. Based on the domain structure and functions of the WAPcontaining proteins in crustaceans, we therefore propose the possible divergent evolution of WAP domain in crustaceans (Fig. 3). In this proposal, the different groups may have different functions, including antimicrobial and anti-proteinase activities among others.

ALF factors

ALF, a basic peptide, was initially found as a potent anticoagulant from horseshoe crabs, Limulus polyphemus and Tachypleus tridentatus, which inhibited the endotoxin mediated activation of the coagulation cascade (Tanaka et al., 1982). Thereafter, several studies demonstrated that the ALF from hemocytes of the horseshoe crab L. polyphemus have similar characteristics with that of the binding and neutralizing lipopolysaccharide (LPS). Additionally, ALF was indicated to have a strong antibacterial activity, particularly on the growth of Gram-negative bacteria (Morita et al., 1985; Aketagawa et al., 1986; Muta et al., 1987). In shrimp, the cDNA clones homologous to the horseshoe crab ALFs were initially identified in hemocytes of *P. monodon* and *L. setiferus* by means of EST analysis (Gross *et al.*, 2001; Supungul et al., 2004). In recent years, there have been a growing number of studies on shrimp ALF available to provide pertinent information. To note, several ALFs have been isolated and characterized from hemocytes in penaeid shrimp, F. chinensis (Liu

Signal peptide	LPS-binding motif
Fch_AY859500 MR-VSVLASLVLVVSLVALFAPQCQAQG-WEAVAAAVAVKIVGLWRNEKTELLGHE	K FT VK PY IK RF QL YY KG RMWC P GW TA IR GE AK TR SR SG VA GR TA KD FV RK AF QQ GL I S QQ QA NQ WL NS -
Fch-Alf-2 MR-VSVLASLVLVVSLVALLAPQCQAQG-WEAVAAAVAVKIVGLWRNEKTELLGHE	CK FT VK PY IK RV QL YY K <mark>G RMWC</mark> P GW TA IR <mark>GE</mark> AS TR SR SG VA GR TA K <mark>D FV RK A</mark> F QQ GL IS QQ QA NQ WL NS —
Fpa_EF601051_ <mark>MR</mark> -VSVLTSLVLAVFVVAPFAPECQAQG-WQAVAAAVASKIVGLWRNEETELLGHK	CR FT VK PY IK RI QL YY R <mark>G KMWC</mark> PGW TP IR <mark>GE</mark> AS TR SH <mark>SG V</mark> A GR TA R <mark>D FV QK A</mark> F RD <mark>GL I</mark> S EQ DA KR WL NS – – –
Lsc_DQ991357_ <mark>MR-VSVLT</mark> SLVVAVF <mark>LVALFAPECQAQG-WQAVAAAVA</mark> SKIVGLWRNEETELLGHK	CR <mark>FT VKPY IK RLQLHY KG KMWC</mark> P GWTP IT <mark>GE</mark> AR <mark>TR S</mark> H <mark>SG V</mark> A GR TA R <mark>D FV QK A</mark> F ER <mark>GL I</mark> S EQ DA KR <mark>WL</mark> SS – – –
Lva_DQ208701_ <mark>MR_VSVL</mark> T <mark>SLV</mark> VVVF <mark>LVALFAPECQAQG_WQAVAAAVA</mark> SKIVGLWRNEETELLGHK	CR <mark>FT VKPY IKRLQLNY KG KMWC</mark> PGWTT IR <mark>GE</mark> AR <mark>TR S</mark> H <mark>SG V</mark> A GR TA R <mark>DFV EK A</mark> F RD <mark>GL I</mark> S EQDA KR WLN
Lva_DQ208702 MR-VSVLTSLVVAVFLVALFAPECQAQG-WQAVAAAVASKIVGLWRNEETELLGHK	CR <mark>FTVKPY IKRLQLNYKGKMWCPGW</mark> TT IR <mark>GE</mark> AR <mark>TRS</mark> HSGVAGRTAR <mark>DFV</mark> EKAFRDGL IS EQDAKRWLN
Lva_DQ208703 MR-VSVLTSLVVAAFLVALFAPECQAQG-WQAVAAAVASKIVGLWRNEETELLGHK	CR <mark>FT VK PY IK RL QL NY KG KMWC P GW</mark> TT IK <mark>GE</mark> AR <mark>TR SH SG V</mark> A GR <mark>TA RD FV EK A</mark> F RD <mark>GL I</mark> S EQDA KR <mark>WL</mark> N
Lva_DQ208704_MR=VSVLTSLVVAAFLVALFAPECQAQG=WQAVAAAVASKIVGLWRNEETELLGHK	CR FT VK PY IK RLQLNY KG KMWC P GW TT IK GE AR TR SH SG VA GR TA RDFV EK AF RDGL I S EQDA KR WLN
Lva_DQ208705_MR-VSVLTSLVVAAFLVALFAPECQAQG-WQAVAAAVASKIVGLWRNEETELLGHK	CR FT VK PY IK RL QL NY KG KMWC P GW TT IK GE AR TR SH SG VA GR TA RD FV EK AF RD GL I S EQ DA KR WL N
Lva_DQ208706 MR-VSVLTSLVVVVFLVALFAPECQAQG-WQAVAAAVASKIVGLWRNEETELLGHK	CR FT VK PY IK RLQLNY KG KMWCP GW TT IR GEAR TR SH SG VA GR TA RDFV EK AF RDGLIS EQDA KR WLN
Pmo_EF523559 MR- <mark>VSVLVSLVLVVSLVALFAPQCQAQG-WEAVAAAVASKIVGLWRNE</mark> KTELLGHE	CK FT VK PY LK RF QV YY KG RMWC P GW TA IR GE AS TR SQ SG VA GK TA KD FV RK AF QK GL IS QQ EA NQWL SS -
Pmo_EU617325_MR-VSVLVVSLVALFAPQCQAQG-WEAVAAAVASKIVGLWRNEKTELLGHE	CKFT VKPY LKRF QV YY KG RMWCP GW TA IR GEAS TR SQ SG VA GK TA KDFV RKAF QK GL IS QQEA NQWL SS -
Fpa_EF601052 ————————————————————————————————————	CRFT VK PY IKRI QL YY RG KMWCP GW TP IR GEAS TRNH SG VA GR TA RDFV QK AF RDGL I SEQ DA KRWLNS –
Fpa_EF601053 —————————————————————WE <mark>AVAAAV</mark> GS <mark>KIVGLWRNEETELLGH</mark> K	CRFTVKPY IKRIQLYYRGKMWCPGWTP IRGEAS TRSHSGVAGK——————————————
Fpa_EF601054 ————————————————————————————————————	CR <mark>FT VKPY IK RI QL YY KG KMWC PGW</mark> TP IR GE AR TR SH SG VA GR TA RD FV QK AF RD GL IS EQ DA KR W
Ham_EU625516_MRQ=SVLVSVLVVSLLVTTTTPQCNAQG=WAAVAAAVASKVVGLWQNGHVDLLDHP	CRES VKPT VR REQLYEKG RMWC PGWTS IR GEAK TR SR SG VV GKTT RDEV NK AF QA GLITER DA QQ WL SH-
Ham_EU625517 MRQCVLLVSVLVVGVLLAPFAPQCHAQG-WETLVAGVSSQLVSLWHQGELELMGHY	NFQ VKPK IR RWQL YF VG SMWCP GWTN IR GSAQ TS SR SG V GK TTTDFV RKAF RAGL IT QQDAQE WLDN-
L SE_BES 46 66 1 MGLS STEV SA VL VV AL VAPLAPPCHGES LKDLEV PV IKDQVS DLWR IGDI DL VGHS	UTYNYKPD IQGFELYFIGSY IUPGWITLD COUNTRAL COUNTRAL WARD WARD WARD WARD WARD WARD WARD WARD
L ST_DQ010421 MGLSSIFV SAVLVVALVAPLAPPCHGFSLKDLFVPV IKDQVSDLWRIGDIDLVGHS	LI YN VKPD IQGF EL YF IG SV IUPGWII LKGE SN IKSK SG VY NSAV KDFI QKAL KAGL VI EE EAKPHL V
M Ja_ABZ 10 11 0 MR-V SV-1 SM IL VV VAAAAF AP KU HAQG-WEALV PA IA EK LI GLWE NGELELLIGHY	NEY VERKERING UP NO KING POWTA TO CEAD TREE CONTRACTOR TO DEVENT ADDRESS OF THE A ON MAN DOWN ADDRESS OF THE ADDRESS OF T
MOI_EU289220 MK-VSV VPSV VNVGIMISSLLPICEAQG-WEAVAAAVAEKIAGLWVNDHWVPLGHI	EQ IS VIPKIK ALEL WE AGAINA DE CALERATINE AD INSKOG VIN IT QUEV KAAP ES GIVIEA QA AA WENSK
FIE_EF52560 MIX - IWEELVIVEELVALUE TAIMOD COCOC VODIL DALVEWING VERMORI D	EN 13 13 FT 13 NF WETT NENN WETT WAT F 3 UN SKITK SKAUSTEILAT KUTVITKAT DUR VIL AT BERAK AT MET MUSKIN -
THO_EF525501 MR Y EV OF LARD OF LARD OF A LEAD OF OA OF WEAVA AAVA SK TVCL WOND KE LOUD	EN 15 YANDAL YANDE DU YANDE OMALET UKOK INOFOZALENA LAPYANA KOVALASALU I LEDAKI MLEH
	UND IN THE TEAM AND THE WIND CALLE IN ON A THE CONTRACT IN THE AND A THE AND
L DO 13 UT ZU TA EA EA D <mark>O</mark> IW IQLIFILV NNLA IL WQSGDFQFLDHE	HIK INFIFKING AN WERSWISTIGKAIKSSK SUAVEHSVKNEV GUAKSSGLIDUK QA EQETSUAVI

Fig. 4 Alignment of ALFs-based amino acid sequence. All sequences of ALFs are from GenBank. Fch, *Fenneropenaeus chinensis*; Fpa, *Farfantepenaeus paulensis*; Ham, *Homarus americanus*; Lse, *Litopenaeus setiferus*; Lsc, Lst; *Litopenaeus stylirostris:Litopenaeus schmitti*; Lva, *Litopenaeus vannamei*; Mja, *Marsupenaeus japonicus*; Mol, *Macrobrachium olfersii*; Pmo, *Penaeus monodon*; and Ple, Pacifastacus leniusculus, Lpo, *Limulus polyphemus*.

et al., 2005; Zhou et al., 2008) *M. japonicus* (Nagoshi et al., 2006), *P. monodon* (Supungul et al., 2004; Somboonwiwat et al., 2005; Tharntada et al., 2008), *L. vannamei* (de la Vega et al., 2008), *L.* setiferus (Gross et al., 2001), *F. paulensis* (EF601051, EF601054), *L. schmitti* (DQ991357), and *L. stylirostris* (DQ010421).

Classification of shrimp ALF

Twenty-nine crustacean ALF sequences collected from GenBank were aligned using the Alignment Editor of the MEGA 4 software (Tamura *et al.*, 2007). The results obtained by the multiple alignment (Fig. 4) revealed that all the molecules of ALFs contain two preserved cysteine residues which form a disulfide bridge. It was also found out that ALF contained a relatively conserved sequence of a positively-charged amino acid residue cluster within the disulfide loop. This structure of the β -hairpin loop in shrimp ALF suggests a conservation of the LPS binding activity.

With the use of neighbor joining method of MEGA 4, a phylogenetic tree was constructed (Tamura *et al.*, 2007). To attain and assess the reliability of the tree, bootstrapping using 5,000 replications was as well performed. The phylogenetic tree analysis categorized the various ALF proteins into three main groups. Accordingly, most ALFs from shrimp belong to cluster I, including the ALFs from L. setiferus (white gulf shrimp); then cluster II contains the L. stylirostris (blue shrimp) and Eriocheir sinensis (Chinese mitten crab). Finally, cluster III contains the ALFs from L. vannamei (Pacific white shrimp), P. monodon (black tiger shrimp) and other crustacean Pacifastacus leniusculus (signal crayfish), L. polyphemus (Atlantic horseshoe crab), and Tachypleus tridentatus (horseshoe crab) (Fig. 5). It can be observed that in L. vanamei and P. monodon, two kinds of ALFs.

Expression profiles and functions in shrimp innate immunity

The transcription of ALFs in some species was specified in tissues. In Chinese shrimp (F. chinensis), for example, the ALF (Cluster I) has high expression in hemocytes, gills, and intestine exhibited low expression but in ovarv. hepatopancreas, and muscle (Liu et al., 2005). Similar observations had been reported in P. monodon, in which ALF (Cluster I) was constitutively expressed in hemocytes, hearts, gills, intestines, and lymphoid organs, while there was no observed transcription in the hepatopancreas (Supungul et al., 2004). Another example is that in the kuruma shrimp (M. japonicus), in which the ALF (Cluster I) was reported to be expressed at higher levels in hemocytes, lymphoid organs, hearts, intestines, and gills. The expression of ALFs, on the other hand, was found to be at lower levels in stomachs, hepatopancreas, and muscles (Nagoshi et al., 2006). In L. vannamei, ALF1 (which belongs to Cluster III) was found to have high mRNA levels in the lymphoid organ and heart, intermediate levels in the gills, eyestalk, and hemocytes, and very low levels in the muscle and hepatopancreas (de la Vega et al., 2008). The aforementioned reports are

considerably in contrast with the patterns of many other AMPs in shrimp which are carried out primarily in hemocytes (Munoz *et al.*, 2002; Bachère *et al.*, 2004; Kang *et al.*, 2004). It is important to note that in shrimp, however, it is clear that ALF transcription, although it is tissue-specific, occurs in multiple organs and could thereby provide systemic protection against pathogens.

The transcription of the ALF is induced upon bacterial challenge in several shrimp (Supungul et al., 2004; Liu et al., 2005; Nagoshi et al., 2006). In a study, ALF was induced upon WSSV infection or exposed to UV-inactivated WSSV (Liu et al., 2006). On the other hand, in *L. vanname*, the infection with pathogenic bacterium, Vibrio penaeicida or fungus, Fusarium oxysporum, did not cause any significant change in the LvALF1 mRNA levels compared to saline-injected controls. An considerable increase was recorded in the LvALF1 mRNA expression in WSSV-infected shrimp at 54-h time point (de la Vega et al., 2008). Similarly, in L. vannamei, ALF was significantly up-regulated in the infected viral hepatopancreas (Robalino et al., 2007). This upregulation of antimicrobial proteins as a response to viral infection has also been reported in Drosophila (Zambon et al., 2005). Despite these multitude studies, the mechanism in anti-viral responses of ALF still needs to be clarified. The results reported by different authors indicate the inconsistent expression patterns of the ALFs after the shrimps have been injected with bacteria or viruses. As such, this further indicates the different functions in vivo of the ALFs.

To date, only a few ALFs and their characteristics have been analyzed. In P. monodon, ALF*Pm*3. a predominant antimicrobial peptide, was identified in both the unchallenged and V. harveyichallenged shrimp (Supungul et al., 2004). In their study, a strong activity against multiple Grampositive and Gram-negative bacteria and filamentous fungi (Somboonwiwat et al., 2005) has been recorded. Another study found out that a synthetic peptide, corresponding to the LPS-binding domain of Mj-ALF from M. japonicus, exhibited a LPS-neutralizing and hemolytic activities on LPSsensitized human red blood cells (Nagoshi et al., 2006). Moreover, ALF was found to have a potential in interfering with the replication of WSSV in crayfish P. leniusculus (Liu et al., 2006).

The in vivo function of ALF in protecting shrimp from bacterial, fungal, and viral infections was also studied in L vanamei through the RNA interference (RNAi) method (de la Vega et al., 2008). The double-stranded RNA (dsRNA) iniection of corresponding to the LvALF1 message resulted in a significant reduction of the abundant LvALF1 mRNA levels. Following knockdown of the LvALF1, the shrimps were challenged with low pathogenic doses of pathogenic V. penaeicida, or F. oxysporum. The results showed a significant increase in the mortality among the LvALF1 low-level shrimps, specifically those with V. penaeicida and F. oxysporum infections, compared to the control shrimps. The result showed that this gene functions in protecting shrimp from both bacterial and fungal infections. In the viral challenge using WSSV, the ALF dsRNA injection caused no significant increase in mortality

Fig. 5 Phylogenetic analysis of ALFs from shrimp using the sequence information from Fig. 4.

compared to the non-specific dsRNA controls in the *L. vannamei* (de la Vega *et al.*, 2008). Other experiments that focused on ALF RNAi in freshwater *P. leniusculus* indicated that ALF can protect against WSSV infection, as observed in the ALF low-level through RNAi, which specifically resulted in higher rates of viral propagation (Liu *et al.*, 2006). The differences in the two above-mentioned reports emphasize the diverse taxonomic groups of crustacea and their varying responses to infection and immunity mechanisms (de la Vega *et al.*, 2008).

Possible mechanisms of LPS binding and antimicrobial activity

ALFs contain two conserved cysteine residues which form a disulfide bridge. They also contain a relatively conserved sequence of a positively charged amino acid residue cluster within the disulfide loop, which is regarded as ALF's functional domain. Hoess *et al.* (1993) reported the high resolution structure of a recombinant *Limulus*-ALF (L-ALF). In their report, they stressed that it contains an N-terminal α -helix (that opens into a α -helix in its final turn), a simple four-stranded anti-parallel β sheet, and two C-terminal α -helices. The three helices form a bundle that packs against the β -sheet and encloses a hydrophobic and highly-aromatic core. Their study performed a structural analysis of L-ALF through the X-ray crystallography, and the results demonstrated the β -hairpin loop with an alternating series of hydrophilic (mainly basic amino acids) in the central disulfide-bonded loop region thus obtaining an amphipathic protein molecule (Hoess et al., 1993). This amphipathic loop structure is believed to be a LPS-binding motif which can bind a single fatty acid with the phosphoglucosamine portion of lipid A (the membrane anchor of LPS). This amphipathic loop of L-ALF were compared to the ALF sequences (Cys^{1st} to Cys^{2nd}) of shrimp, and the results revealed similarity between the alternating residues pattern (Fig. 4). As such, the structure of the *β*-hairpin loop in shrimp ALF suggests that there is a conservation of LPS binding activity.

Somboonwiwat *et al.* (2008) also studied the binding activity of rALF*Pm*3 and found that it could strongly bind to both Gram negative and Gram positive bacterial cells. Further analysis demonstrated that ALF*Pm*3 could bind to both the immobilized LPS and lipoteichoic acid (LTA), with a high dissociation constant (K_d) of 1.26×10^{-8} and 1.34×10^{-8} M, respectively. This suggested that they

Fig. 6 Phylogenetic analysis of penaeidins from shrimp using the sequence information from GenBank. The UPGMA tree was obtained using MEGA with complete deletions of gaps. Bootstraps (5000) were performed for the UPGMA trees to verify repeatability and reliability of results. Fch, *Fenneropenaeus chinensis*; Fpa, *Farfantepenaeus paulensis*; Fpe, *Fenneropenaeus penicillatus*; Fsu, *Farfantepenaeus subtilis*; Fbr, *Farfantepenaeus brasiliensis*; Lva, *Litopenaeus vannamei*; Lst, *Litopenaeus stylirostris*; Lsc, *Litopenaeus schmitti*; Lse, *Litopenaeus setiferus*, and Pmo, *Penaeus monodon*

are at least one of the target molecules for the ALF*Pm*3 on Gram-negative and Gram-positive bacteria, respectively. Assuming that ALF binds to bacterial cells before they exterminate the cells, it is still unknown as to how such extermination is performed.

ALF has both the ability to inhibit the endotoxin or LPS mediated coagulation system and to exhibit strong anti-microbial activity against the Gramnegative and Gram-positive bacteria and fungi. Thus, ALF is also one of the pivotal effectors in shrimp immunity.

Penaeidins

Penaeidins, initially isolated from the Pacific white shrimp L. vannamei (Destoumieux et al., 1997), are also a large family of AMPs that have been detected in several penaeid shrimp, including L. setiferus, M. japonicus, P. monodon, F. chinensis (Bachère et al., 2004; Kang et al., 2004, 2007; Cuthbertson et al., 2008), L. stylirostris (AAY33770), L. schmitti (AAX58698; AAX58697), Fenneropenaeus penicillatus (ABY56821), F. paulensis (AAX58696), F. subtilis (ABO93321), and F. brasiliensis (ABO93324). In fact, among the AMP family, the penaeidins are considered the most well-characterized in terms of the level of gene expression and biological activities. There are four classes of penaeidins (penaeidins 2, 3, 4, and 5) that have been characterized so far (Bachère et al., 2004; Kang et al., 2007) (Fig. 6). This classification and characterization of penaeidin isoforms have been summarized in the database, PenBase (Gueguen et al., 2006) and were reviewed by several authors (Bachère et al., 2004; Cuthbertson et al., 2008). The evolution pattern of these peptides was likewise analyzed (Padhi et al., 2007). Table 1 presents the primary characteristics and functions of penaeidins.

Lysozymes

Lysozyme (muramidase, EC.3.2.1.17), an important antibacterial protein, catalyzes the hydrolysis of bacterial cell walls and acts as a nonspecific innate immunity molecule against the invasion of bacterial pathogens (Jollés and Jollés, 1984). Initially found among eukaryotes and prokaryotes, the lysozymes are classified into six types. These are the chicken-type lysozyme (ctype), goose-type lysozyme (g-type), plant lysozyme, bacteria lysozyme, T4 phage lysozyme (phage-type), and invertebrate lysozyme (i-type) (Hikima et al., 2003). Similarly, these lysozymes had been reported in several shrimps, such as L. vannamei (Sotelo-Mundo et al., 2003; de-la-Re-Vega et al., 2006; Burge et al., 2007; Xing et al., in press), M. japonicus (Hikima et al., 2003), P. monodon, (Xing et al., in press), P. semisulcatus (Xing et al., in press) and F. chinensis (Bu et al., 2008). Furthermore, most lysozymes identified in shrimps belong to a c-type lysozyme, like those from L. vannamei (AF425673), M. japonicus (BAC57467), P. monodon (B1784440), and F. chinensis (AAV83994). In addition, there were i-type lysozymes identified in shrimp, such as lysozymes from L. vannamei (BF023863, BF024192) and L.

setiferus (BF024309) (Hikima et al., 2003).

In some penaeid shrimp, the lysozymes are well-characterized, and they possess lytic activity against a range of Gram-positive and Gramnegative bacterial species, including pathogenic Vibrio spp. (Hikima et al., 2003; de-la-Re-Vega et al., 2006). Hikima et al. (2003) used the RT-PCR analysis and reported that the lysozyme from M. japonicus was strongly expressed in samples from hemocytes, moderately expressed in the epidermis, and weakly expressed in the gills, midgut, and muscle. Furthermore, the post-infection expression profile of a lysozyme EST was analyzed using the macro-array, Northern blot, and real-time PCR. The results revealed that the hemocyte lysozyme expression during the V. penaeicida challenge was significantly lower at 12 h after the infection, but had returned to control levels within 24-96 h after the challenge as observed in the surviving shrimps (de Lorgeril et al., 2005). Similarly, the lysozyme mRNA from Chinese shrimp (FcLyz) was analyzed by semiquantitative RT-PCR. The lysozyme was actually expressed in various tissues of the unchallenged shrimp and the expression of FcLyz was increased in the bacterial-challenged tissues of the hemocytes, heart, hepatopancreas, and gills as compared to the mock (saline)-challenged ones (Bu et al., 2008).

C-type lectin

C-type lectins have diverse functions. Aside from their agglutinating activity and opsonic effects, some C-type lectins perform antimicrobial activities. A hepatopancreas specific C-type lectin, designated Fc-hsL, has been found from the hepatopancreas of the Chinese shrimp, F. chinensis (Sun et al., 2008). This type of lectin was constitutively expressed in the hepatopancreas of normal shrimp, and its expression was up-regulated after the bacterial and viral challenge. In addition to Fc-hsL's calciumdependent agglutinating and binding activity to some Gram-positive and Gram-negative bacteria, it also has high anti-microbial activity against some Gram-positive and Gram-negative bacteria and fungi. Therefore, Fc-hsL may act as a pattern recognition receptor and an effector molecule in the innate immunity of Chinese shrimp.

Other antimicrobial peptides/proteins

Hemocyanin, as the main protein component of hemolymph, is prevalent in several invertebrate animals. It typically represents up to 95 % of the total amount of protein (Sellos et al., 1997). Meanwhile, the hexamer is the predominant form in the most primitive crustacean Decapoda, such as Penaeus setiferus or P. monodon (Sellos et al., 1997). The hemocyanin, in relation to crustaceans, primarily functions as anthropods' oxygen carrier. It is also the multi-functional proteins involved in physiological processes, such as osmoregulation, protein storage or enzymatic activities. In some reports, the fragments generated from the Cterminus of hemocyanin of L. vanamei and L. stylirostris have exhibited a high anti-fungal activity (Destoumieux-Garzon et al., 2001). Contrary to most

Table 1 Antimicrobial peptides/proteins in penaeid shrimp

AMPs	Expression tissues	Functions	References				
1. Penaidins							
Penaeidin II	Primarily in hemocytes	Broad spectrum of anti-Gram-	Destoumieux <i>et al.</i> , 1997,				
Penaeidin III	and in highly vascular	positive and anti-fungal	1999, 2000; Bachère et				
Penaeidin IV	tissues	activities and weak activity	al., 2004; Cuthbertson et				
Penaeidin V		against Gram-negative strains	<i>al.</i> , 2004, 2008; Kang <i>et</i> <i>al.</i> , 2004, 2007				
2. WDPs							
Crustin I	Hemocytes	Anti-Gram-positive activity	Supungul <i>et al.</i> , 2008				
Crustin II	Hemocytes	Anti Gram-positive and anti- Gram-negative activities	Zhang <i>et al.</i> , 2007; Amparyuo <i>et al.</i> , 2008				
SWD	Hemocytes	Anti-Gram-positive, anti- Gram-negative, anti-fungal and anti-proteinase activities	Amparyup <i>et al.</i> , 2008; Jia <i>et al.</i> , in press				
3. ALFs							
ALF I	High expression in	Anti-Gram-positive, anti-	Gross et al., 2001;				
	hemocytes, gills and intestine and low expression in ovary, hepatopancreas and muscle	Gram-negative and anti- fungal activities; LPS- neutralizing and hemolytic activities; interference with the replication of WSSV	Supungul <i>et al.</i> , 2004; Liu <i>et al.</i> , 2005; Nagoshi <i>et</i> <i>al.</i> , 2006				
	?	?	(DO010421 BE846661)				
ALF III	f High level in lymphoid organ and heart,	Anti-Gram-positive, anti- Gram-negative and anti-	de la Vega <i>et al.</i> , 2008; Somboonwiwat <i>et al.</i> ,				
4	intermediate levels in the gills, eyestalk and hemocytes and very low levels in the muscle and hepatopancreas	fungal activities	2005; Zhou <i>et al.</i> , 2008				
4. Lysozymes		Anti Oran positiva and anti	Catala Murada at al. 2002				
c-type lysozyme	hemocytes, lymphoid organ, hepatopancreas, gill, heart, midgut, muscle, epidermis, and evestalk	Gram-negative activities	Sotelo-Mundo <i>et al.</i> , 2003; Hikima <i>et al.</i> ,2003; de-la- Re-Vega <i>et al.</i> , 2006; Burge <i>et al.</i> , 2007; Xing <i>et al.</i> , in press; Bu <i>et al.</i> , 2008				
i-type lysozyme	?	?	(BF023863, BF024192)				
5. C-type lectin			(DFU24309)				
HsL	Hepatopancreas	Anti-Gram-positive, anti- Gram-negative and anti- fungal activities	Sun <i>et al.</i> , 2008				
6. Hemocyanin-derived peptides							
C-terminal fragment 7.9 kDa, 8.3 kDa	Hepatopancreas	Anti-fungal activity	Destoumieux-Garzón et al., 2001				
Hemocyanin subunits	Hepatopancreas	Anti-viral activity	Zhang et al., 2004				
7. Histones H2A, H2B, and H4	Hemocytes	Anti-Gram-positive activity	Patat <i>et al.</i> , 2004				
8. Peritrophin	ovary	Anti Gram-positive and anti- Gram-negative activities	Loongyai <i>et al.</i> , 2007				

Fig. 7 Distribution of anti-microbial peptides/proteins in shrimp.

AMPs with highly-cationic charges, the antifungal substances present a negative net charge at physiological pH with a *p*l ranging from 5.65 to 6.54. Zhang *et al.* (2004) also reported that shrimp hemocyanin had antiviral property as it inhibited the virus replication.

Histone proteins are primarily involved in DNA packaging and regulation of DNA replication and transcription. A number of reports have shown that histone proteins or histone-derived peptides from various vertebrates possess antimicrobial activity (Hirsch, 1958; Robinette *et al.*, 1998; Fernandes *et al.*, 2002). Patat *et al.* (2004) as well reported that the hemocyte histone H2A, a mixture of histones H2B and H4 and an H1-derived fragment in *L. vannamei*, have anti-microbial activity against the tested bacterium. They believed that histone proteins or histone-derived peptides can be secreted to the cytoplasm from the nucleus and be localized in it along with other antimicrobial peptides.

Shrimp peritrophin, a major protein in jelly layer (JL) and cortical rods (CRs) (Du *et al.*, 2006; Loongyai *et al.*, 2007), was inducing expression in hemocytes, heart, stomach, intestine and gill, and was constitutively expressed in ovary (Du *et al.*, 2006). The recombinant peritropnin exhibited a chitinase activity and efficiently inhibited the growth of *Vibrio harveyi* and *S. aureus*, with minimum inhibitory concentrations of 2.4 and 15.7 µM, respectively (Loongyai *et al.*, 2007).

Conclusions

To summarize, shrimps have efficiently developed and used their innate immune system in defense against pathogenic microorganisms. To date, eight kinds of AMPs have been identified in penaeid shrimp, namely, penaeidins, WDPs (crustins and SWDs), ALFs, lysozymes, anionic hemocyanin, histones, and a C-type lectin. These kinds of AMPs have different distribution and expression profiles and functions in shrimp (Table 1 and Fig. 7). Furthermore, there are several subclasses or isoformes for each kind of AMPs in one species. An example is the three subgroups of WDPs (Crustin I, II, and SWD) in Chinese shrimp. This only suggests that they had different functions *in vivo* in the shrimp. Even though large groups of AMPs were found in penaeid shrimp, there is still a limited number of studies conducted about the AMPs' antibacterial properties and their other functions. In view of this, there is a need to have more studies that will delve on the functions and the anti-bacterial properties of AMPs, especially with respect to the diverse bioactivities of the natural proteins *in vivo*. As such, some AMPs in shrimp can be better candidates for clinical uses in the aquaculture.

Acknowledgements

This work was supported by grants from the National High Technology Research and Development Program of China (863 Program) (No. 2007AA09Z425), the Ph. D. program foundation of the Ministry of Education of China (No. 20060422034), and the Major State Basic Research Project (No. 2006CB101806)

References

- Aketagawa J, Miyata T, Ohtsubo S, Nakamura T, Morita T, Hayashida H, *et al.* Primary structure of limulus anticoagulant anti-lipopolysaccharide factor. J. Biol. Chem. 261: 7357-7365,1986.
- Ali MF, Lips RK, Knoop CF, Fritzsch B, Miller C, Conlon JM. Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, *Rana areolata*. Biochim. Biophys. Acta 1601: 55-63, 2002.

Alvarez R, Reading J, King DF, Hayes M, Easterbrook P, Farzaneh F, *et al.* WFDC1/ps20 is a novel innate immuno-modulatory signature protein of HIV permissive CD4+ CD45RO+ memory T-cells that promote infection by up-regulating CD54 integrin expression and is elevated in HIV-1 infection. J. Virol. 82: 471–486, 2008.

- Amparyup P, Donpudsa S, Tassanakajon A. Shrimp single WAP domain (SWD)-containing protein exhibits proteinase inhibitory and antimicrobial activities. Dev. Comp. Immunol. 32: 1497-1509, 2008a.
- Amparyup P, Kondo H, Hirono I, Aoki T, Tassanakajon A. Molecular cloning, genomic organization, and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp *Penaeus monodon*. Mol. Immunol. 45: 1085-1093, 2008b.
- Arts JA, Cornelissen FH, Cijsouw T, Hermsen T, Savelkoul HF, Stet RJ. Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, *Penaeus monodon*. Fish Shellfish Immunol. 23: 504-513, 2007.
- Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B. Insights into the antimicrobial defense of marine invertebrates: The penaeid shrimps and the oyster *Crassostrea gigas*. Immunol. Rev. 198: 149-168, 2004.
- Bartlett TC, Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS, Warr GW. Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, *Litopenaeus vannamei* and *Litopenaeus setiferus*. Mar. Biotechnol. 4: 278-293, 2002.
- Beg OU. Partial characterization of platypus (*Ornithorhynchus anatinus*) milk proteins. Protein Pept. Lett. 2: 431-434, 1995.
- Bouchard D, Morisset D, Bourbonnais Y, Tremblay G.M. Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol. 7: 167-174, 2006.
- Bu XJ, Du XJ, Zhou WJ, Zhao XF, Wang JX. Molecular cloning, recombinant expression, and characterization of lysozyme from Chinese shrimp *Fenneropenaeus chinensis*. Chinese J. Biotechnol. 24: 723-732, 2008.
- Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, *et al.* A novel inducible antibacterial peptide from *Drosophila* carries an *O*-glycosylated substitution. J. Biol. Chem. 268: 14893-14897, 1993.
- Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects: structure and function. Dev. Com. Immunol. 23: 329-344, 1999.
- Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198: 169-184, 2004.
- Burge EJ, Madigan DJ, Burnett LE, Burnett KG. Lysozyme gene expression by hemocytes of Pacific white shrimp, *Litopenaeus vannamei*, after injection with *Vibrio*. Fish Shellfish Immunol. 22: 327-339, 2007.
- Carro S, Bergo A, Mengoni M, Bachi A, Badaracco G, Kilstrup-Nielsen C, *et a*l. A novel protein, *Xenopus* p20, influences the stability of MeCP2 through direct interaction. J. Biol. Chem. 279: 25623–25631, 2004.
- Chen JY, Pan CY, Kuo CM, cDNA sequence encoding an 11.5-Kda antibacterial peptide of the shrimp *Penaeus monodon*. Fish Shellfish Immunol. 16: 659-664, 2004.
- Cheng W, Liu CH, Tsai CH, Chen JC. Molecular cloning and characterization of a pattern recognition molecule, lipopolysaccharide- and

beta-1, 3-glucan binding protein (LGBP) from the white shrimp, *Litopenaeus vannamei*. Fish Shellfish. Immunol. 18: 297-310, 2005.

- Cuthbertson BJ, Büllesbach EE, Fievet J, Bachère E. Gross PS. A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (*Litopenaeus setiferus*) exhibits target specificity and an independent proline-rich-domain function. Biochem. J. 381: 79-86, 2004.
- Cuthbertson BJ, Deterding LJ, Williams JG, Tomer KB, Etienne K, Blackshear PJ, *et al.* Diversity in penaeidin anti-microbial peptide form and function. Dev. Comp. Immunol. 32: 167-181, 2008.
- de la Vega E, O'Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, *et al.* Antilipopolysaccharide factor in *Litopenaeus vannamei* (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol. Immunol. 45:1916-1925, 2008.
- de la Re-Vega E, García-Galaz A, Díaz-Cinco ME, Sotelo-Mundo RR. White shrimp (*Litopenaeus vannamei*) recombinant lysozyme has antibacterial activity against Gram negative bacteria: *Vibrio alginolyticus*, *Vibrio parahemolyticus*, and *Vibrio cholerae*. Fish Shellfish Immunol. 20: 405-408, 2006.
- de Lorgeril J, Saulnier D, Janech MG, Gueguen Y, Bachère E. Identification of genes that are differentially expressed in hemocytes of the Pacific blue shrimp (*Litopenaeus stylirostris*) surviving an infection with *Vibrio penaeicida*. Physiol. Genomics 21: 174-183, 2005.
- Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachère E. Penaeidins: a new family of anti-microbial peptides isolated from the shrimp *Penaeus vannamei* (Decapoda). J. Biol. Chem. 272: 28398-28406, 1997.
- Destoumieux D, Bulet P, Strub JM, van Dorsselaer A, Bachère E. Recombinant expression and range of activity of penaeidins, anti-microbial peptides from penaeid shrimp. Eur. J. Biochem. 266: 335-346, 1999.
- Destoumieux D, Muñoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, *et al.* Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell Sci. 113: 461-469, 2000.
- Destoumieux-Garzon D, Saulniner D, Garnier J, Jouffrey C, Bulet P, Bachère E. Crustacean immunity: antifungal peptides are generated from the terminus of shrimp hemocyanin in response to microbial challenge. J. Biol. Chem. 276: 47070-47077, 2001.
 Devinoy E, Hubert C, Jolivet G, Thepot D, Clergue
- Devinoy E, Hubert C, Jolivet G, Thepot D, Clergue N, Desaleux M,*et al.*. Recent data on the structure of rabbit milk protein genes and on the mechanism of the hormonal control of their expression. Reprod. Nutr. Dev. 28: 1145-1164, 1988.
- Du XJ, Wang JX, Liu N, Zhao XF, Li FH, Xiang JH. Identification and molecular characterization of a peritrophin-like protein from fleshy prawn (*Fenneropenaeus chinensis*). Mol. Immunol. 43: 1633-1644, 2006.

- Du XJ, Zhao XF, Wang JX. Molecular cloning and characterization of a lipopolysaccharide and beta-1, 3-glucan binding protein from fleshy prawn (*Fenneropenaeus chinensis*). Mol. Immunol. 44: 1085-1094, 2007.
- Food and Agriculture Organization Fisheries and Aquaculture Department. The State of World Fisheries and Aquaculture 2006. Food and Agriculture Organization of the United Nations, Rome, 2007.
- Fernandes JM, Kemp GD, Molle MG, Smith VJ. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, *Oncorhynchus mykiss*. Biochem. J. 368: 611-620, 2002.
- Furutani Y, Kato A, Kawai R, Fibriani A, Kojima S, Hirose S. Androgen-dependent expression, gene structure, and molecular evolution of guinea pig caltrin II, a WAP-motif protein. Biol. Reprod. 71: 1583-1590, 2004.
- Garczynski MA, Goetz FW. Molecular characterization of a ribonucleic acid transcript that is highly up-regulated at the time of ovulation in the brook trout (*Salvelinus fontinalis*) ovary. Biol. Reprod. 57: 856-864, 1997.
- Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr G.W. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, *Litopenaeus vannamei*, and the Atlantic White Shrimp, *L. setiferus*. Dev. Comp. Immunol. 25: 565-577, 2001.
- Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, *et al.* PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Dev. Comp. Immunol. 30: 283-288, 2006.
- Hagiwara K, Kikuchi T, Endo Y, Huqun Usui K, Takahashi M, Shibata N, *et al.* Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J. Immunol. 170: 1973-1979, 2003.
- Hennighausen LG, Sippel AE. Mouse whey acidic protein is a novel member of the family of 'fourdisulphide core' proteins. Nucleic Acids Res. 10: 2677-2684, 1982.
- Hikima S, Hikima J, Rojtinnakorn J, Hirono I, Aoki T. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against *Vibrio* species. Gene 316: 187-195, 2003.
- Hirsch JG. Bactericidal action of histones. J. Exp. Med.108: 925-944,1958.
- Hoess A, Watson S, Siber GR, Liddington R, Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, *Limulus* anti-LPS factor at 1.5 Å resolution. EMBO J. 12: 3351-3356, 1993.
- Hancock RE. Peptide antibiotics. Lancet 349: 418-422, 1997.
- Jia YP, Wang ZH, Wang Q, Zhao XF, Wang JX. A single whey acidic protein domain (SWD)containing peptide from the fleshy prawn with antimicrobial and proteinase inhibition activities. Aquaculture doi:10.1016/j.aquaculture.2008.07.046, (in press).
- Jimenez-Vega F, Sotelo-Mundo RR, Ascencio F, Vargas-Albores F. 1, 3-beta-D glucan binding

protein (BGBP) from the white shrimp, *Penaeus vannamei*, is also a heparin binding protein Fish. Shellfish. Immunol. 13: 171-181, 2002.

- Jiménez-Vega F, Yepiz-Plascencia G, Soderhall K, Vargas-Albores F. A single WAP domaincontaining protein from *Litopenaeus vannamei* hemocytes. Biochem. Biophys. Res. Commun. 314: 681-687, 2004.
- Jiravanichpaisal P, Puanglarp N, Petkon S, Donnuea S, Söderhäll I, Söderhäll K. Expression of immune-related genes in larval stages of the giant tiger shrimp, *Penaeus monodon*. Fish Shellfish Immunol. 23: 815-824, 2007.
- Jollés P, Jollés J. What's new in lysozyme research? Always a model system, today as yesterday. Mol. Cell. Biochem. 63: 165-189, 1984.
- Kang CJ, Wang JX, Zhao XF, Yang XM, Shao HL, Xiang JH. Molecular cloning and expression analysis of ch-penaeidin, an antimicrobial peptide from Chinese shrimp, *Fenneropenaeus Chinensis*. Fish Shellfish Immunol. 16: 513-525, 2004.
- Kang CJ, Xue JF, Liu N, Zhao XF, Wang JX. Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from *Fenneropenaeus chinensis*. Mol. Immunol. 44: 1535-1543, 2007.
- Li J, Zhang C, Xu X, Wang J, Yu H, Lai R, *et al.* Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J. 21: 2466-2473, 2007.
- Lin YC, Vaseeharan B, Chen JC. Identification and phylogenetic analysis on lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) of kuruma shrimp *Marsupenaeus japonicus*. Dev Comp Immunol. 32: 1260-1269, 2008.
- Liu H, Jiravanichpaisal P, Söderhäll I, Cerenius L, Söderhäll K. Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish *Pacifastacus leniusculus*. J Virol. 80: 10365-10371, 2006.
- Liu Y, Liu C, Li FH, Dong B, Xiang JH. Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (*Fenneropenaeus chinensis*). Mar. Biotechnol. 7: 600-608, 2005.
- Liu YC, Li FH, Dong B, Wang B, Luan W, Zhang XJ, et al. Molecular cloning, characterization, and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp *Fenneropenaeus chinensis*. Mol. Immunol. 44: 598-607, 2007.

Loongyai W, Avarre J-C, Cerutti M, Lubzens E, Chotigeat W. Isolation and functional characterization of a new shrimp ovarian peritrophin with antimicrobial activity from *Fenneropenaeus merguiensis*. Mar. Biotechnol. 9: 624-637, 2007.

- Luo T, Yang H, Li F, Zhang X, Xu X. Purification, characterization, and cDNA-cloning of a novel lipopolysaccharide-binding lectin from the shrimp, *Penaeus monodon*. Dev. Comp. Immunol. 30: 607-617, 2006.
- Mackintosh JA, Gooley AA, Karuso PH, Beattie AJ, Jardine DR, Veal DA. A gloverin-like

antibacterial protein is synthesized in *Helicoverpa armigera* following bacterial challenge. Dev. Comp. Immunol. 22: 387-399, 1998.

- Morita T, Ohtsubo S, Nakamura T, Tanaka S, Iwanaga S, Ohashi K, *et al.* Isolation and biological activities of limulus anticoagulant (anti-LPS factor) which interacts with lipopolysaccharide (LPS). J. Biochem. 97: 1611-1620,1985.
- Muñoz M, Vandenbulcke F, Saulnier D, Bachère E. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur. J. Biochem. 269: 2678-89, 2002.
- Muñoz M, Vandenbulcke F, Garnier J, Gueguen Y, Bulet P, Saulnier D, *et al.* Involvement of penaeidins in defense reactions of the shrimp *Litopenaeus stylirostris* to a pathogenic vibrio. Cell Mol. Life Sci. 61: 961-972, 2004.
- Muta T, Miyata T, Tokunaga F, Nakamura T, Iwanaga S. Primary structure of antilipopolysaccharide factor from American horseshoe crab, *Limulus polyphemus*. J. Biochem. 101: 1321-1330, 1987.
- Nagoshi H, Inagawa H, Morii K, Harada H, Kohchi C, Nishizawa T, *et al.* Cloning and characterization of a LPS-regulatory gene having an LPS-binding domain in kuruma prawn *Marsupenaeus japonicus.* Mol Immunol. 43: 2061-2069, 2006.
- Okumura T. Effects of lipopolysaccharide on gene expression of anti-microbial peptides (penaeidins and crustin), serine proteinase, and prophenoloxidase in haemocytes of the Pacific white shrimp, *Litopenaeus vannamei*. Fish Shellfish Immunol. 22: 68-76, 2007.
- Ota Y, Shimoya K, Zhang Q, Moriyama A, Chin A, Tenma K, *et al.* The expression of secretory leukocyte protease inhibitor (SLPI) in the Fallopian tube: SLPI protects the acrosome sperm from inhibitory effects of elastase. Hum. Reprod. 17: 2517-2522, 2002.
- Padhi A, Verghese B, Otta SK, Varghese B, Ramu K. Adaptive evolution after duplication of penaeidin antimicrobial peptides. Fish Shellfish Immunol. 23: 553-566, 2007.
- Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schey K L. Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem. 271: 4825-4833, 2004.
- Ranganathan S, Simpson JK, Shaw CD, Nicholas KR. The whey acidic protein family: A new signature motif and three dimensional structure by comparative modeling. J. Mol. Graph. Mod. 17: 106-113, 1999.
- Rattanachai A, Hirono I, Ohira T, Takahashi Y, Aoki T. Cloning of kuruma prawn *Marsupenaeus japonicus* crustin-like peptide cDNA and analysis of its expression. Fish. Sci. 70: 765-771, 2004.
- Relf JM, Chisholm JR, Kemp GD, Smith VJ. Purification and characterization of a cysteine-rich 11.5 kDa antibacterial protein from the granular haemocytes of the shore crab, *Carcinus maenas*. Eur. J. Biochem. 264: 350–357, 1999.
- Robinette D, Wada S, Arroll T, Levy MG, Miller WL Noga EJ. Antimicrobial activity in the skin of the

channel catfish Ictalurus punctatus: Characterization of broad-spectrum histone-like antimicrobial proteins. Cell. Mol. Life Sci. 54: 467-475,1998.

- Robalino J, Almeida JS, McKillen D, Colglazier J, Trent HF 3rd, *et al.* Insights into the immune transcriptome of the shrimp *Litopenaeus vannamei*: Tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiol. Genomics 29: 44-56, 2007.
- Romo-Figueroa MG, Vargas-Requena C, Sotelo-Mundo RR, Vargas-Albores F, Higuera-Ciapara I, Soderhall K, *et al.* Molecular cloning of a betaglucan pattern-recognition lipoprotein from the white shrimp, *Penaeus* (*Litopenaeus*) *vannamei*: Correlations between the deduced amino acid sequence and the native protein structure Dev. Comp. Immunol. 28: 713-726, 2004.
- Rosa RD, Bandeira PT, Barracco MA. Molecular cloning of crustins from the hemocytes of *Brazilian penaeid* shrimps. FEMS Microbiol. Lett. 274: 287-290, 2007.
- Roux MM, Pain A, Klimpel KR, Dhar AK. The lipopolysaccharide and beta-1, 3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (*Penaeus stylirostris*). J. Virol. 76: 7140-7149, 2002.
- Schalkwijk J, Wiedow O, Hirose S. The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a Cterminal four-disulphide core. Biochem. J. 340: 569-577, 1999.
- Sellos D, Lemoine S, Wormhoudt AV. Molecular cloning of hemocyanin cDNA from *Penaeus vannamei* (Crustacea, Decapoda): Structure, evolution, and physiological aspects. *FEBS Lett.* 407: 153-158, 1997.
- Smith VJ, Fernandes JM, Kemp GD, Hauton C. Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev. Comp. Immunol. 32: 758-772, 2008.
- Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, *et al.* Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp *Penaeus monodon*. Dev. Comp. Immunol. 29: 841-851, 2005.
- Somboonwiwat K, Bachère E, Rimphanitchayakit V, Tassanakajon A. Localization of antilipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, *Penaeus monodon*, and characterization of its binding properties. Dev. Comp. Immunol. 32: 1170-1176, 2008.
- Sotelo-Mundo RR, Islas-Osuna MA, de-la-Re-Vega E, Hernández-López J, Vargas-Albores F, Yepiz-Plascencia G. cDNA cloning of the lysozyme of the white shrimp *Penaeus vannamei*. Fish Shellfish Immunol. 15: 325-331, 2003.
- Sritunyalucksana K, Lee SY, Söderhall K. A beta-1, 3-glucan binding protein from the black tiger shrimp, *Penaeus monodon*. Dev. Comp. Immunol. 26: 237-245, 2002.
- Sun YD, Fu LD, Jia YP, Du XJ, Wang Q, Wang YH, et al. A hepatopancreas specific C-type lectin from the Chinese shrimp *Fenneropenaeus chinensis* exhibits antimicrobial activity. Mol. Immunol. 45: 348-361, 2008.

- Supungul P, Klinbunga S, Pichyangkura R, Hirono I, Aoki T, Tassanakajon A. Antimicrobial peptides discovered in the black tiger shrimp *Penaeus monodon* using the EST approach. Dis. Aquat. Organ. 61: 123-135, 2004.
- Supungul P, Tang S, Maneeruttanarungroj C, Rimphanitchayakit V, Hirono I, Aoki T, *et al.* Cloning, expression, and anti-microbial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp *Penaeus monodon*. Dev. Comp. Immunol. 32: 61-70, 2008.
- Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599, 2007.
- Tanaka S, Nakamura T, Morita T, Iwanaga S. Limulus anti-LPS factor: An anti-coagulant which inhibits the endotoxin mediated activation of Limulus coagulation system. Biochem. Biophys. Res. Commun. 105: 717-723, 1982.
- Townes CL, Milona P, Hall J. Characterization of AWAP IV, the C-terminal domain of the avian protein AWAK. Biochem. Soc. Trans. 34: 267-269, 2006.
- Tharntada S, Somboonwiwat K, Rimphanitchayakit V, Tassanakajon A. Anti-lipopolysaccharide factors from the black tiger shrimp, *Penaeus monodon*, are encoded by two genomic loci. Fish Shellfish Immunol. 24: 46-54, 2008.
- Vargas-Albores F, Jiménez-Vega F, Yepiz-Plascencia GM. Purification and comparison of beta-1, 3glucan binding protein from white shrimp (*Penaeus vannamei*). Comp. Biochem. Physiol. 116B: 453-458, 1997.

- Vargas-Albores F, Yepiz-Plascencia G, Jiménez-Vega F, Avila-Villa A. Structural and functional differences of *Litopenaeus vannamei* crustins. Comp. Biochem. Physiol. 138B: 415-422, 2004.
- Xing Y, Feng-Ying G, Qing-Mei Z, Jun-Jie B, Huan W, Hai-Hua L, *et al.* Cloning and characterization of the tiger shrimp lysozyme. Mol. Biol. Rep. doi: 10.1007/s11033-008-9303-7, (in press).
- Yang C, Zhang J, Li F, Ma H, Zhang Q, Jose Priya TA, *et al.* A Toll receptor from Chinese shrimp Fenneropenaeus chinensis is responsive to *Vibrio anguillarum* infection. Fish Shellfish Immunol. 24: 564-74, 2008.
- Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP. A Toll receptor in shrimp. Mol. Immunol. 44: 1999-2008, 2007.
- Yepiz-Plascencia G, Vargas-Albores F, Jimenez-Vega F, Ruiz-Verdugo L M, Romo-Figueroa G. Shrimp plasma HDL and beta-glucan binding protein (BGBP): Comparison of biochemical characteristics. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 121: 309-314, 1998.
- Zhang J, Li F, Wang Z, Xiang J. Cloning and recombinant expression of a crustin-like gene from Chinese shrimp, *Fenneropenaeus chinensis*. J. Biotechnol. 127: 605-614. 2007
- Zhang X, Huang C, Qin Q. Anti-viral properties of hemocyanin isolated from shrimp *Penaeus monodon*. Antiviral Res. 61: 93-99, 2004.
- Zhou WJ Wang S, Wang JX. Molecular cloning and expression analysis of anti-lipopolysaccharide factor gene from *Fenneropeneus chinensis*. Sichuan J of Zool. 27: 771-773 2008 (in Chinese).