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The understanding of dark matter distribution in galaxies plays a crucial role in 

unraveling the structure and evolution of galaxies. This research utilizes Monte Carlo 

probability analysis to investigate the density distribution of dark matter in galaxies. 

Multiple distribution models, including the Beta Model, Brownstein Model, Burkert 

Model, Einasto Model, Spherical Exponential Model, and Isothermal Model, are 

employed to estimate the density of galaxy matter at different distances from the 

galactic center. The analysis involves assessing the goodness of fit, sensitivity analysis 

of parameters, and chi-square analysis to evaluate the compatibility and accuracy of 

each model with the observed data. The results highlight the variations in dark matter 

density with increasing distance from the galactic center, indicating a higher 

concentration near the center and a lower concentration in the galaxy's outer regions. 

Understanding the distribution of dark matter density provides insights into the 

gravitational effects, dynamics, and observed structures of galaxies. The Monte Carlo 

probability analysis facilitates the estimation of probability distributions and the 

assessment of model uncertainty, enhancing our understanding of the dark matter 

distribution in galaxies. The research findings suggest the suitability of certain 

distribution models, such as the Beta and Brownstein models, for describing the 

observed dark matter distribution. However, further research is required to validate and 

refine these models, considering the complexities and variabilities of dark matter 

distribution in galactic systems. 
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I. Introduction  

Dark matter is one of the main components in the 

cosmos that has not been directly detected yet but has 

significant gravitational effects [1], [2]. It refers to matter 

that cannot be seen or detected using traditional 

observational instruments, such as optical telescopes or 

particle detectors [3]. The dark matter gets its name 

because it does not interact with electromagnetic light, so 

it does not emit, reflect, or absorb light, which makes it 

dark or invisible [4], [5]. 

The importance of dark matter lies in its strong 

gravitational influence on the structure and evolution of 

the cosmos [6], [7]. Although not directly detectable, the 

gravitational effects of dark matter can be observed 

through gravitational interactions with visible matter, 

such as galaxies and gas [8]–[10]. Some strong evidence 

for the existence of dark matter includes observations of 

galaxy rotations inconsistent with the distribution of 

visible matter, the formation of cosmic structures on 

large scales, the swelling of gravitational rings, and its 

influence on the background cosmic radiation [11]. 
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Previous research in the field of dark matter has 

included various approaches and methods to search for 

experimental evidence of its existence [12]. One 

commonly used method is particle detector experiments, 

which attempt to detect interactions between dark matter 

and visible matter. Some of these experiments attempt to 

detect dark matter particles known as WIMPs (Weakly 

Interacting Massive Particles). 

However, while plenty of circumstantial evidence 

supports the existence of dark matter, the true nature of 

dark matter particles is still the biggest mystery in 

physics and astronomy [13]. Current research continues 

to attempt to understand the nature and origin of dark 

matter. Some of the research gaps that this study aims to 

close include: 

One of the main goals of dark matter research is to 

identify particles that are dark matter candidates. Several 

theoretical models, such as the WIMPs (Weakly 

Interacting Massive Particles) have been proposed as 

potential candidates. However, searching for direct 

experimental evidence of dark matter particles is 

ongoing. Further research is needed to understand the 

nature and interaction of dark matter with visible matter. 

This includes studying the energy and time scales at 

which dark matter operates and how it interacts through 

forces other than gravity. Dark matter research also 

focuses on modeling the distribution and evolution of 

dark matter on a cosmic scale. This involves developing 

accurate models and computer simulations to describe 

the formation of cosmic structures, the formation of 

galaxies, and the evolution of the entire Universe. 

The current research discussed explicitly 

contributes to identifying a dark matter distribution 

model that fits the observational data. This study uses the 

goodness-of-fit analysis method to evaluate the tested 

dark matter distribution models [14]. Through this 

analysis, the study determines the model best fits the 

observational data. 

In addition, this study uses the Monte Carlo method 

to analyze the distribution properties of dark matter in the 

tested models. By performing random simulations with 

parameter variations, this study produces a dark matter 

distribution that can be compared with the observational 

distribution [15]. This Monte Carlo approach helps to 

measure the model's fit to the observational data, 

estimate the uncertainties in the model parameters, and 

derive the probability distribution for each parameter and 

the simulated matter [16]. 

The background of this research is related to 

understanding the phenomenon of dark matter in physics 

and astronomy [3]. Dark matter is one of the biggest 

mysteries in physics and astronomy because it cannot be 

observed directly but can be recognized through the 

gravitational effects it produces [2]. In physics, laws such 

as Newton's Law of Gravity and Newton's Laws of 

Motion are used to study the phenomenon of dark matter 

[17], [18]. Newton's Laws of Gravity describe 

gravitational interactions between masses, while 

Newton's Laws of Motion relate the force acting on an 

object to changes in its velocity. In the context of dark 

matter, these laws are used to observe and model the 

gravitational effects of dark matter on objects in the 

Universe [9]. In addition, Albert Einstein's general theory 

of relativity is also very important in understanding the 

phenomenon of dark matter [13]. The general theory of 

relativity explains gravity as a property of space and time 

and provides a more accurate description of gravitational 

interactions [19], [20]. In the context of dark matter, the 

theory of general relativity is used to study the mass 

distribution in the Milky Way galaxy and explain the 

gravitational effects produced by dark matter [7], [21], 

[22]. In addition to physics, mathematics is an important 

tool in modeling and understanding dark matter 

phenomena. Mathematical concepts such as differential 

equations, probability theory, harmonic analysis, and 

statistics are used to develop mathematical models that 

explain the behavior and distribution of dark matter in 

the Universe [23], [24]. Mathematics is also used to 

analyze observational data and identify patterns or 

structures that could indicate the presence of dark matter 

[25]. In dark matter research, physics and mathematics 

are closely intertwined. Physical theories provide the 

conceptual framework for understanding natural 

phenomena, while mathematics provides the formal tools 

for developing models and performing analysis. By 

combining physics and math, scientists can build a 

deeper understanding of the nature and existence of dark 

matter and its impact on the structure and evolution of 

the Universe [20]. In the galactic halo model, several 

parameters are used to explain the structure of the 

galactic halo and the mass distribution within it [26]. 

These parameters, such as rc, rt, rho0, and r200, help to 

describe the structure and mass distribution in the 

galactic halo. Mathematical models, such as the Navarro-

Frenk-White (NFW) model, explain the galactic halo's 

structure and mass distribution [27].  

The research question addressed explicitly is the 

extent to which the tested dark matter distribution models 

fit the observational data. In this context, the high p-value 

indicates that the tested models do not fit the 

observational data well. Therefore, this study needs to 

continue the analysis by trying other models or making 

parameter adjustments to improve the fit of the 

observational data. 

This research aims to improve the accuracy of 

predicting the distribution of dark matter and to describe 

dark matter phenomena more effectively. By using the 

goodness-of-fit analysis method and the Monte Carlo 

approach, this research contributes to understanding the 

nature and distribution of dark matter and improving 

dark matter modeling that fits observational data. This 

research aims to understand the phenomenon of dark 

matter in the Universe through physics and mathematics 

concepts [24]. Dark matter is one of the biggest mysteries 

in physics and astronomy because it cannot be observed 

directly but can be recognized through the gravitational 

effects it produces [28]. In physics, laws such as 

Newton's Law of Gravity and Newton's Laws of Motion 
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are used to study the phenomenon of dark matter [22]. 

Albert Einstein's general theory of relativity is also 

important in understanding dark matter phenomena. In 

addition to physics, mathematics is an important tool in 

modeling and understanding dark matter phenomena 

[29]. Mathematical concepts such as differential 

equations, probability theory, harmonic analysis, and 

statistics are used to develop mathematical models that 

explain the behavior and distribution of dark matter in 

the Universe [30]. In dark matter research, physics and 

mathematics are closely intertwined. Physical theories 

provide the conceptual framework for understanding 

natural phenomena, while mathematics provides the 

formal tools for developing models and performing 

analysis. By combining physics and mathematics, 

scientists can build a deeper understanding of the nature 

and existence of dark matter and its impact on the 

structure and evolution of the Universe. The benefits of 

this research are as follows: 

This research helps us gain a deeper understanding 

of the nature and existence of dark matter, which is one 

of the main components of the Universe. This contributes 

to our knowledge of how the Universe formed and 

evolved. This research leads to the development of 

mathematical models that can explain the behavior and 

distribution of dark matter in the Universe. These models 

help scientists predict and interpret dark matter-related 

phenomena and validate observational and experimental 

results. In an effort to understand dark matter, this 

research can lead to discoveries about the nature and 

characteristics of dark matter. These new findings could 

change the paradigm and expand our understanding of 

the Universe. Research on dark matter can have far-

reaching impacts on technology and applications. A 

better understanding of dark matter can help develop new 

technologies and applications, such as remote sensing 

technology, astronomy, cosmology, and modeling the 

structure of the Universe. The research limitations of this 

research are brief: 

This research uses existing laws of physics, such as 

Newton's Law of Gravity and Newton's Law of Motion, 

as well as Einstein's General Theory of Relativity. These 

constraints allow us to study the gravitational effects of 

dark matter and the mass distribution in galactic halos. 

Since dark matter cannot be observed directly, the 

research relies on observations of the gravitational 

effects of dark matter. This limits the research to 

analyzing the observational data and identifying patterns 

or structures that could indicate the presence of dark 

matter. This research uses mathematical concepts such as 

differential equations, probability theory, harmonic 

analysis, and statistics. Mathematics is used to develop 

mathematical models that explain the behavior and 

distribution of dark matter in the Universe. This research 

uses galaxy halo models, such as the Navarro-Frenk-

White (NFW) Model, to explain the structure and mass 

distribution in the galaxy halo. This model is based on 

computer simulations and assumes the presence of dark 

matter as the main constituent of the galactic halo. The 

level of resolution in a Monte Carlo density distribution 

model can affect galaxies' structure and density 

distribution. The higher the resolution level, the more 

detailed and complex the model can reproduce galaxy 

structures. However, higher resolution levels also require 

more intensive computations. 

 

II. Theory 

Parameters in the Milky Way halo model 
The parameters in the Milky Way halo model, 

namely rc, rt, rho0, and r200, describe the galactic halo 

structure. 

The core radius (rc) is a parameter that represents 

the distance from the center of a galaxy to the region 

where there is a significant concentration of halo mass 

[31]. It determines the size of the core of the galactic 

halo. In other words, within the core radius, the density 

of the halo mass is relatively high, indicating a central 

region of concentrated mass. The tidal Radius (rt) is 

another parameter that indicates the distance from the 

center of a galaxy to the region where the gravitational 

influence and tidal forces from other galaxies become 

significant [32]. It represents the point at which the 

galactic drag and tidal effects due to the gravitational 

interactions with neighboring galaxies start to have a 

noticeable impact on the galaxy. Beyond this Radius, the 

influence of neighboring galaxies becomes more 

pronounced. The mass density (ρ0) is a parameter that 

characterizes the mass density at the center of the galaxy 

halo [33]. It provides information about the 

concentration of mass at the central region of the Milky 

Way galaxy. A higher value of rho0 indicates a higher 

mass density at the galaxy's center, while a lower value 

suggests a lower mass concentration. The r200 parameter 

represents the distance from the galaxy's center at which 

the galactic halo rotates at a speed of 200 km/s [34]. It 

provides insights into the size of the galactic halo and the 

effect of rotation at this specific distance. This parameter 

is often used as a reference point to study the rotation 

curves of galaxies, which provide valuable information 

about the distribution of mass within the galaxy and the 

presence of dark matter. 

 

Model Navarro-Frenk-White (NFW) 
The Navarro-Frenk-White (NFW) model is a 

mathematical model used to describe the structure and 

mass distribution in galactic halos [35]. This model has 

become an important framework for understanding the 

Milky Way galaxy and related cosmic phenomena. The 

NFW model is based on a few basic assumptions that 

form the mathematical basis of the model. The first 

assumption is that the dark matter in a galactic halo is 

concentrated at the center and spreads outwards with a 

density that decreases quadratically with distance from 

the center [36]. This means that the density of dark matter 

in the center of the galactic halo will be higher than 

outside the center. 
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In this model, the mass distribution in the galactic 

halo is described by several parameters. These 

parameters include rc (core radius), rt (truncation radius), 

rho0 (central density), and r200 (halo radius). Solving the 

mathematical equations underlying the NFW model 

makes it possible to determine these values. The 

parameter rc describes the size of the core radius, which 

is the distance at which the dark matter density reaches 

half of the center density (ρ0) [37]. The parameter rt, the 

truncation radius, indicates the distance limit at which the 

NFW mass distribution no longer applies [38]. The 

parameter rho0 is the central density of the mass 

distribution, which represents the concentration level of 

dark matter at the center of the galactic halo. While r200 

is the halo radius, the distance at which the dark matter 

density reaches 200 times the critical density of the 

Universe. 

Using the NFW model, researchers can calculate 

and estimate the values of these parameters based on 

observational data and mathematical analysis. The NFW 

model provides a useful framework for understanding 

the structure and evolution of the Milky Way galaxy and 

related cosmic phenomena. The model has been used in 

various studies to study the mass distribution in galaxies, 

help identify galaxy structures such as rings and 

substructures, and provide insights into dark matter and 

overall galaxy evolution. 

 

Six models of the galaxy density distribution 
Six galaxy density distribution models describe 

how the mass density within the Milky Way Galaxy is 

distributed. Each model has its characteristics, 

differences, and parameters affecting the galaxy's density 

distribution. These models include: The Beta density 

distribution model assumes that galaxy density can be 

approximated as a three-dimensional isotropic spherical 

distribution propagating radially from the galaxy center 

[39]. The model has parameters rho0 and rc that affect the 

density at the center and the radial scale of the 

distribution. The Brownstein model is also based on a 

radially propagating isotropic spherical distribution but 

has a higher exponent in the denominator, resulting in a 

faster decrease in galaxy density as the distance from the 

center increases [40]. The Burkert model introduces an 

additional parameter, the density scale c (cuspiness), 

which affects the shape of the density distribution at 

greater distances from the galactic center [36]. The 

Einasto model assumes a density distribution that can be 

described by an exponential function with an alpha 

parameter [41]. It shows a sharper drop in density at 

greater distances from the galactic center compared to 

the Beta or Burkert models. This model assumes an 

exponential function can describe the density distribution 

outside the galactic center. The Isothermal Model 

assumes that the density distribution of galaxies follows 

an isothermal velocity distribution, also known as 

velocity proportional to gas temperature [42]. This model 

has an additional parameter rc, that affects the density at 

the center and the radial scale of the distribution. 

Velocity vs. distance (r) graph for all six models 
The velocity vs. distance graphs for the six density 

distribution models gives an idea of how the velocities of 

objects in the Milky Way Galaxy change with distance 

from the galactic center. Each density distribution model 

has a different velocity pattern, and these differences are 

relevant to the mass distribution in the Milky Way. For 

example, the Beta and Brownstein models show a 

velocity pattern that increases at small distances, reaches 

a maximum point and slows down as the distance from 

the galactic center increases. The Burkert and Spherical 

Exponential models show an exponential increase in 

velocity at small distances, reaching a maximum velocity 

before slowing down. The Isothermal and Einasto 

models show a velocity pattern that increases linearly at 

small distances, peaks at a point, and slows down as the 

distance from the galaxy center increases. 

These differences in velocity patterns provide 

important information about how mass is distributed in 

the Milky Way Galaxy. By studying the velocity vs. 

distance graph, we can gain a better insight into the 

structure and evolution of this galaxy and other related 

cosmic phenomena. This graph helps us understand how 

mass distribution in a galaxy affects the speed of objects 

moving. 

 

Relationship between velocity and gravitational 

potential 
The relationship between speed and gravitational 

potential refers to the connection between the speed of 

motion of objects within a galaxy and the gravitational 

potential generated by the mass distribution [43]. In this 

context, the speed of sound refers to the maximum wave 

propagation speed in the medium. At the same time, the 

dark matter distribution describes the density of dark 

matter at a certain distance in the galaxy [37]. The speed 

of sound can be related to the dark matter distribution 

through the density of matter in the medium. "Hotter" or 

high-energy density distribution models, such as beta, 

Brownstein, and Einasto models, tend to have higher 

propagation speeds at the same Radius than "cooler" 

models, such as isothermal models. Therefore, if using 

the sound speed parameter instead, the "hotter" models 

will likely give higher sound speed values at the same 

Radius compared to the "cooler" models [44]. However, 

it should be noted that this relationship is not linear and 

is highly dependent on the other parameters in the density 

distribution model. 

 

Monte Carlo Density Distribution Model 

method 
Another research method used in this study is the 

Monte Carlo Density Distribution Model method. This 

approach is used to analyze the mass distribution in 

galaxies. This method combines Monte Carlo techniques 

with the concept of random density distribution. A 

random density distribution is given as input, which 

reflects the way the mass of the galaxy is distributed 
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across different regions in the galaxy. The Monte Carlo 

method generates random masses and coordinates based 

on the given random density distribution. The galaxy 

mass distribution is then plotted as a histogram, 

visualizing the mass distribution at various galaxy 

coordinates. Analysis of these histograms provides 

information on mass concentration at various 

coordinates. 

 

Monte Carlo Analysis Limitations 
While Monte Carlo analysis can provide important 

information on how dark matter models match the 

observational data, the results should not be used as the 

sole benchmark [45]. In determining the best-fit model, 

it is important to use other methods that can provide a 

holistic view and consistency with the observational 

data. This is because the Monte Carlo analysis results 

only reflect the variation of the parameters included and 

cannot guarantee the correctness of the model as a whole. 

It is important to validate dark matter models using 

observational data consistently. While Monte Carlo 

analysis can give an idea of how well the model fits the 

observational data, consistency with different 

observational methods and datasets is necessary to 

strengthen the model's reliability. 

Monte Carlo analysis can produce probability 

distributions for each parameter in the dark matter model. 

However, it is important to remember that these 

uncertainties only consider the variations included in the 

Monte Carlo simulation. Other factors, such as 

measurement uncertainty and the assumptions 

underlying the model, also need to be taken into account 

in evaluating the model's accuracy. Monte Carlo analysis 

is based on certain models and assumptions about the 

nature and behavior of dark matter. The accuracy of the 

analysis results largely depends on the validity of the 

models and assumptions used. Remember that the dark 

matter models tested in the Monte Carlo analysis may 

have limitations and may not perfectly represent the 

complexity of the Universe. 

 

III. Method 

Summary of Mathematical dark matter 

distribution model 
To calculate the density distribution of galaxies at a 

given distance r from the galactic center. The beta(r) 

function calculates the density distribution of galaxies in 

the beta model, where rho0 and rc are the parameters that 

determine the shape of the galaxy density distribution 

[46]. To derive the expression for the density, we can start 

by using the mass density formula: 

( )
( )

( )
  

M r
r

V r
 =  (1) 

where M(r) represents the mass enclosed within a 

sphere of radius r, and V(r) represents the volume of the 

sphere of radius r. Now, to calculate the mass enclosed 

within a sphere of radius r, we can use the equation: 

( ) ( )
³

4
3

r
M r r =  (2) 

Substituting the given formula for rho(r), we get: 

( ) ( ) ( ) ( )3

³ ²
2

3 2 ²

M r r
M r exp

 
−=   (3) 

  

Next, we can calculate the volume of the sphere of 

radius r as: 

( )
4 ³

3

r
V r


=  (4) 

Now, substituting the expressions for M(r) and V(r) 

in the mass density formula, we get: 

( ) ( ) ( )
( )²

³ 2 ²
2   

4 ³³ 3

3

r
exp

M r
r

r







−

=   (5) 

Simplifying the expression, we get: 

( ) ( ) ( )²

2 ³ 2 ²

M r
r exp

 
= −  (6) 

 

Equation 6 is the given formula. Hence, we have 

derived the expression for the density of a galaxy at a 

distance r using the given formula. The beta model 

describes the density distribution of galaxies as follows: 

( ) 0

3

2
²

1  
c

r

r

r




 =

   
  

  

+


 

(7) 

where ( )r represents the density of the galaxy at 

a distance r, 
0

  is the central density, rc is the core radius, 

and β is a measure of the steepness of the density profile. 

The Brownstein(r) function calculates the density 

distribution of galaxies in the model proposed by 

Brownstein based on the MOND-modified theory of 

relativity. This function returns the density of galaxies at 

a distance r calculated from the formula: 

( )
2

0

2

1  
c

r

r

r


 =

   
  



+
 

 
(8) 

 

The Burkert (r) function calculates the density 

distribution of galaxies in the Burkert model, which has 

a "cored" galaxy density profile, meaning that the density 

of galaxies in the center is not infinite. This function 

returns the de        the formula: 
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The Einasto(r) function calculates the density 

distribution of galaxies in the model proposed by 

Einasto, which has a more complex galaxy density 

profile than previous models. This function returns the 

density value of a galaxy at a distance r calculated from 

the formula:  

 

( )
0

2

1

2 r exp

r

r



 



−

=  −
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

 
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 (10) 

 

Where  and 2r  are the parameters that determine 

the shape of the galaxy density distribution. The exp 

sphere(r) function calculates the galaxy density 

distribution in a spherical exponential distribution 

model, where ρ0, rs, and rt are the parameters that 

determine the shape of the galaxy density distribution. 

This function returns the density of a galaxy at a distance 

r calculated from the formula: 

( )
0

 

c

r
r exp

r
 =  −

 
 
 

 (11) 

For a distance leq rt, and rho(r) = 0 for the distance 

r > rt. The isothermal(r) function calculates the density 

distribution of galaxies in the isothermal model, which 

has an infinite density p [47]. 

 

Source: Data processing by the author (2023)  

Figure 1. The distribution of the dark matter density of the 

Milky Way Galaxy 

Connecting each model in the velocity vs. r graph, 

we need to notice that each model of the distribution of 

the galactic density gives the relationship between the 

mass density ( )r  at a distance r from the galactic 

center and the orbital velocity v(r) of matter particles at 

that distance [48]. Therefore, we can use the law of 

conservation of angular momentum and Newton's law of 

gravity to generate a velocity vs. r graph [49]. In general, 

the law of conservation of angular momentum states that 

the angular momentum of a particle moving in a 

gravitational field is constant. In contrast, Newton's law 

of gravity states that the gravitational force between two 

particles of masses m1 and m2, at a distance r, is: 

1 2

2

G m m
F

r


=  (12) 

Where G is the gravitational constant, in a 

symmetrical and homogeneous galaxy density 

distribution model, the orbital velocity v(r) of matter 

particles at a distance r from the center of the galaxy can 

be calculated by the following equation [50]: 
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G=   (13) 

 

Where G is the gravitational constant, M(r) is the 

total mass of all the matter in a sphere of radius r, and r 

is the distance from the center of the galaxy. Each galaxy 

density distribution model can produce a different 

velocity vs r graph in this context. For example, for the 

isothermal model, the orbital velocity v(r) of a particle of 

matter at a distance r can be calculated as: 
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Meanwhile, for the Burkert model, the orbital 

velocity v(r) of a material particle at a distance r can be 

calculated as: 
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Using these equations, we can generate velocity vs. 

r graphs for each galactic density distribution model 

described previously. The dimensional parameter ( ) 

can be calculated from each galaxy density distribution 

model using the following formula: 
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G r
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 


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(16) 

 

Where G is the gravitational constant, ( )r  is the 

density of the galaxy at a distance r from the galaxy 

center, and σ2 is the velocity dispersion at a distance r. If 

the six models are plotted to the dimension parameter () 

against the Radius (kpc), the results will reflect the 

galaxy's structure differences.  

 

 

 
 

Source: Data processing by the author (2023)  

Figure 2. The plot of Dimensionless Parameter (Omega) vs. Radius (kpc) and Omega (Km.kpc/s) vs. Log Density and Plot of Sound 

of Speeds dark matter effect vs Radius (kpc) in milky way galaxy 

 

Goodness-of-Fit Analysis 
The research results show that "Goodness-of-Fit 

Statistics" is a statistic used to measure the extent to 

which the tested models fit the observational data used in 

the analysis [51]. This statistic provides information 

about the level of fit between the distribution generated 

by the model and the distribution of the observed data. 

Goodness-of-fit was calculated using the 

Kolmogorov-Smirnov test [52]. The values shown are p-

values, representing the probability that the differences 

between the model and observational data distribution 

are random. The smaller the p-value, the lower the 

probability of random differences, indicating a higher 

level of fit between the model and the observational data. 

 
Source: Data processing by the author (2023)  

Figure 3. R-programming language for fitting the dark matter density distribution model to observational data and using the 

Kolmogorov-Smirnov test to display the p-value as a goodness-of-fit measure 

Figure 3 shows a program that illustrates a method 

that will be used in research that uses the dark matter 

density distribution model to analyze observational data. 

The following is an interpretation of the program steps: 

Observational data is represented as an 

observational_data vector containing a number series. 

This is the data that is observed or measured in the study. 

This study used the dark matter density distribution 

model to model the data. This model is represented by 

the dark_matter_model function, which accepts the 

argument x (the point for which the probability is to be 

calculated) and the relevant parameters. The researcher 
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should define this function according to the dark matter 

density distribution model they are using. It returns the 

probability value at point x based on the model used. To 

test the fit of the model to the observational data, the 

program generates a distribution of the data from the 

model using the dark_matter_model function with 

relevant arguments, such as x_values representing the 

points where the probabilities are to be calculated. This 

distribution will show how the data generated by the 

model is distributed in the relevant parameter space. The 

program calculates goodness-of-fit using the 

Kolmogorov-Smirnov test to measure how much the 

model fits the observational data. The Kolmogorov-

Smirnov test compares the distribution of the 

observational data with the distribution of the data 

generated by the model. The Kolmogorov-Smirnov test 

results are stored in the variable ks_test, containing the 

test statistic and p-value. The p-value is the probability 

that the difference between the model and observational 

data distribution is random. The smaller the p-value, the 

lower the probability of random differences, indicating a 

higher fit between the model and the observational data. 

The p-value is accessed via ks_test$p.value. The p-value 

is displayed via the print(paste("P-value:", p_value)) 

command. 

This program is one method to analyze the fit of a 

dark matter density distribution model to observational 

data using the Kolmogorov-Smirnov test and displaying 

the p-value as a goodness-of-fit measure. The p-value 

interpretation will provide information on how well the 

model fits the observational data. 

 

 

Monte Carlo analysis method in dark matter 

distribution analysis application 
The research method used in this study is Monte 

Carlo analysis. The purpose of using Monte Carlo 

analysis was to calculate the distribution properties of the 

material in the six models studied. This method involves 

using random simulations by entering random values for 

the parameters in each model. These simulations resulted 

in different matter distributions for each model. After the 

material distribution is generated from each model, the 

next step is to compare the material distribution from 

each model with the material distribution observed in the 

empirical data. The purpose of this comparison is to 

measure the level of fit of each model with the 

observational data. The model that best fits the 

observational data will produce a material distribution 

closest to the observed material distribution. In other 

words, the model with a distribution of matter that best 

matches the observational data is considered the best-fit 

model. 

Parameter sensitivity analysis is the process of 

understanding how changes in model parameter values 

can affect the model's outcome or output. In simulation 

studies of the dark matter density distribution in galaxies, 

parameter sensitivity analysis can provide insight into 

sensitive parameters and their impact on model accuracy 

[53]. Here is an effective and well-structured method for 

conducting a parameter sensitivity analysis in the dark 

matter mass distribution model. 

The program shown in Figure 4 is an 

implementation in the R-programming language that 

represents the Monte Carlo research method in the 

analysis of the distribution of matter in the six models 

studied. 

 

 
Source: Data processing by the author (2023) 

Figure 4. The R-programming language that describes the Monte Carlo research method in material distribution analysis 
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The program starts by loading the ggplot2 library, 

which is used to visualize the analysis results. Next, the 

program determines the parameter ranges to be used in 

the analysis. This range includes rho0, r0, and beta, which 

are parameters in the material distribution model that will 

be varied in the simulation. The program defines a Monte 

Carlo simulation function (monte_carlo_simulation) that 

will be used to generate a random distribution of matter 

based on the given parameters. The function also 

compares the generated matter distribution with the 

observed matter distribution in the empirical data to 

calculate the degree of fit between the model and the 

observational data. Next, the program performs a Monte 

Carlo analysis by running a series of simulations. In this 

example, the number of simulations is specified by 

num_simulations 1000 times. The program randomly 

generates parameter values rho0, r0, and beta at each 

simulation iteration within a predetermined range. Then, 

the Monte Carlo simulation function 

(monte_carlo_simulation) is called to generate the 

material distribution and calculate the model's fit to the 

observational data. The simulation results and the fit 

level are stored in the results data frame. After 

completing the Monte Carlo simulation, the program 

uses the ggplot2 library to visualize the resulting fit 

distribution. A histogram with a constraint of 0.1 is used 

to display the frequency distribution of the fit level. Next, 

the program performs parameter sensitivity analysis 

using the sobol2002 function from the sensitivity library.  

Identify the parameters in the dark matter mass 

distribution model that can be varied. In this case, the 

parameters are rho0, r0, and beta in the Beta model. 

Establish the range of values for each parameter that will 

be varied. Ensure that the chosen ranges are relevant to 

the scale and significant variations in the mass 

distribution. Consider previous studies or the observed 

physical phenomenon to define meaningful value ranges. 

Run simulations by varying the parameter values within 

the specified ranges. Conduct separate simulations for 

each parameter variation. For example, run simulations 

with different rho0, r0, and beta values in the Beta model. 

Examine the simulation results for each parameter 

variation. 

Observe both qualitative and quantitative changes 

in the dark matter mass distribution. Pay attention to the 

impact of parameter variations on the mass distribution's 

shape, scale, and statistical properties. Perform a 

parameter sensitivity analysis to determine the sensitive 

parameters. These are the parameters that have a 

significant impact on the simulation results. Note the 

most significant changes in the dark matter mass 

distribution when these parameters are varied. Discuss 

the impact of parameter sensitivity on the accuracy of the 

model. Determine if variations in certain parameters lead 

to significant differences in the resulting dark matter 

mass distribution. Consider whether sensitive parameters 

require more precise estimation or measurement. 

Identify any limitations or restrictions of the model based 

on parameter sensitivity. Determine if parameters are so 

sensitive that higher precision in estimation or 

measurement is required. Consider potential areas for 

improvement. Based on the parameter sensitivity 

analysis, pinpoint areas that can be optimized or 

improved in the dark matter mass distribution model. 

Determine if there are any unknown or poorly known 

parameters that need further investigation. Explore 

potential relationships or interactions between the 

parameters that require further investigation. Use the 

insights gained from the parameter sensitivity analysis to 

improve the accuracy and usefulness of the model. 

Implement necessary improvements, such as refining 

parameter estimation or measurement techniques. 

Thus, the sensitivity analysis represented in Figure 

4 helps identify the parameters that significantly 

influence the simulation results. In the above program, 

sensitivity analysis is performed by considering the 

Gaussian model. The results of the parameter sensitivity 

analysis are printed to the screen using the 

print(sensitivity) function. This information provides an 

understanding of the most sensitive parameters and their 

impact on model accuracy. 

 

IV. Results and Discussion 

The generated plot depicts the density distribution 

of dark matter as a function of distance from the galactic 

center. In physics, research on dark matter density is 

highly significant as it provides insights into the structure 

and evolution of galaxies. In this plot, the x-axis 

represents the radial distance from the galactic center in 

kiloparsecs (kpc), while the y-axis represents the dark 

matter density in mass per volume units. The visible data 

points on the plot are the results of observations and 

measurements conducted to estimate the dark matter 

density at specific distances. The forked lines connecting 

these data points represent the estimated function of dark 

matter density based on linear model fitting. A linear 

model establishes the relationship between distance and 

dark matter density in this case. From this plot, we can 

observe that the dark matter density tends to decrease 

with increasing distance from the galactic center. The 

physical interpretation of the decrease in dark matter 

density with distance is as follows: around the galactic 

center, the dark matter density tends to be higher in 

regions closer to the center. This indicates that dark 

matter congregates in the galaxy's central region, 

creating higher density. However, as the distance from 

the galactic center increases, the dark matter density 

tends to decrease. This suggests that dark matter is less 

concentrated in the galaxy's outer regions. 

Understanding the distribution of dark matter density has 

significant implications in galactic physics. It aids in 

comprehending how dark matter contributes to the 

gravitational effects in galaxies, influencing the 

dynamics of stars and gas and shaping the observed 

structures of galaxies. Moreover, research on the 

distribution of dark matter density also assists in 

unraveling the nature and composition of dark matter 
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itself, which remains one of the great mysteries in 

modern physics. 

The model utilized involved linear fitting to obtain 

coefficients used in calculating the dark matter density at 

each Radius. In the plot, the x-axis represents the values 

of the galaxy radius in kiloparsecs (kpc). In contrast, the 

y-axis represents the standard deviation of SMD (Surface 

Mass Density) in solar mass per square parsec (M☉ pc-

2) units. Through the plot, we can visually understand the 

relationship between Radius and the standard deviation 

of SMD. The formed line patterns can indicate trends or 

patterns within this relationship. Significant fluctuations 

in the standard deviation values are observed at certain 

specific radius points. 

Additionally, several data points may act as 

outliers, exhibiting significantly higher or lower SMD 

standard deviation values compared to other points at 

similar radii. These outliers provide additional insights 

into unusual variations in mass distribution around those 

radii. In the context of physics, the plot provides 

information about variations in the galactic mass 

distribution at different radius scales. The observed 

patterns in the plot may indicate a connection between 

Radius and mass, leading to variations in the standard 

deviation of SMD. This plot can serve as a basis for 

further research in understanding galaxy dynamics and 

evolution and factors influencing mass distribution 

across different radius scales. 

 

 

 
Source: Data processing by the author (2023)  

Figure 5. Dark matter Density distribution and Radius SMD.Standard Dev. 

.  
Source: Data processing by the author (2023)   

Figure 6. Model distribution density dark matter 

This plot illustrates the relationship between the 

Radius and standard deviation of SMD (Surface Mass 

Density) in a galaxy. The standard deviation of SMD 

provides information about the variation in mass 

distribution at each observed Radius. We need to refer to 

the legend at the bottom of the plot to enhance our 

understanding, which provides information about the 

colors representing each distribution model used in this 

analysis. The colors on the plot represent different 

distribution models. Each distribution model has its 

distinct physical interpretation and is used to depict 

specific physical phenomena related to the relationship 

between Radius and density. For example, the Beta 

distribution model has a physical interpretation related to 

the density around a specific radius in the galaxy. The 

Brownstein distribution model offers a different 

perspective on the physical phenomena occurring at 

different radius scales. 

Meanwhile, the Burkert, Einasto, Spherical Exp, 

and Isothermal distribution models provide insights into 
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the unique mass distribution and galactic structure within 

different radius contexts. Through sensitivity parameter 

analysis, this research provides a deeper understanding 

of the limitations and potential improvements of the 

distribution models used in galactic physics. By 

considering the sensitive parameters, this study explores 

their influence on model accuracy and identifies areas 

that can be enhanced. 

Table 1. The goodness of fit results of the model against 

observer data 

Model The goodness of Fit Value 

Beta 6.05E-39 

Brownstein 6.05E-39 

Burkert 8.11E-57 

Einasto 8.11E-57 

Isothermal 8.11E-57 

Spherical 8.11E-57 
Source: Data processing by the author (2023) 

The research focuses on analyzing dark matter 

distribution models and their goodness of fit. The 

findings of this study provide valuable insights into 

model constraints and potential improvements in dark 

matter distribution modeling. The analysis involved 

testing multiple distribution models against observed 

data and utilizing the goodness of fit errors as a metric to 

evaluate each model's compatibility with the data. 

Moreover, a sensitivity analysis of parameters was 

performed to identify key parameters and observe their 

impact on model accuracy. Notably, parameters such as 

rho0, r0, and beta were found to be sensitive and 

informative regarding the dark matter distribution in the 

studied system 

Grouping the models based on goodness of fit 

errors allowed for an understanding of how well each 

model fits the data. The Beta and Brownstein models 

demonstrated exceptionally small goodness of fit errors, 

indicating a strong agreement with the observed dark 

matter distribution data. This suggests that these models 

offer a promising representation of the dark matter 

distribution in the system and can be considered for use 

in future modeling efforts. The Burkert, Einasto, 

Isothermal, and Spherical Exp models also exhibited 

very small goodness of fit errors, suggesting a good fit 

with the observed data. These models, too, are worth 

considering in the context of dark matter distribution 

modeling. 

However, it is important to note that while the small 

goodness of fit errors indicates the models' relative 

accuracy, they do not guarantee absolute truth. Due to the 

variability in dark matter distribution and the complexity 

of galactic systems, further comprehensive modeling and 

testing are necessary to ensure the validity of the models 

used. Nonetheless, the research provides significant 

insights into selecting appropriate models for describing 

the dark matter distribution in the studied system. 

 
Source: Data processing by the author (2023)  

Figure 7. Chi-Square Analysis results 

The resulting plot is a bar graph that shows the chi-

square analysis results for each dark matter distribution 

model. The x-axis displays the names of the distribution 

models. In contrast, the y-axis displays the chi-square 

values, representing the level of agreement between the 

observed data and the expected data based on each 

distribution model. In the graph, each bar represents the 

chi-square value for each distribution model. The higher 

the bar, the higher the chi-square value, indicating a 

significant difference between the observed and expected 

data based on that distribution model. 

Additionally, the color of the bars in the graph is 

determined by the p-value. On the color scale, blue 

indicates a high p-value (close to 1), while red indicates 

a low p-value (close to 0). This provides information 

about the statistical significance of the fit of the 

distribution model to the observed data. In this case, all 

distribution models have high p-values (close to 1), 

indicating insufficient statistical evidence to reject the 

distribution model. 

The research utilized Monte Carlo analysis to 

generate probability distributions and assess the fit of 

density distribution models to observed data. The 

resulting plot depicts the observed data as red dots, 

representing observations of Radius and rotational 

velocity. In contrast, the blue dots represent simulated 
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data generated through Monte Carlo simulations with 

Gaussian noise. The Monte Carlo simulations added 

variation to the observed data, producing new parameters 

for fitting density functions and calculating dark matter 

density at each Radius. By comparing the results of 

multiple simulations to the observed data, the researchers 

assessed the level of fit or mismatch between the density 

distribution models and the observed data. This analysis 

provided valuable insights into the properties of matter 

distribution and the uncertainty associated with different 

models, enhancing our understanding of the dark matter 

distribution in the studied system. 

 

 
Source: Data processing by the author (2023)  

Figure 8. Monte Carlo analysis of Density models 

 

 
Figure 9. Distribution Monte Carlo Analysis in Program R Plot 

Source: Data processing by the author (2023)  

In the Monte Carlo analysis, the distribution of 

material resulting from each model can be compared 

with the distribution of observational material to measure 

the level of fit of the model with the observational data 

[54]. The model that best fits the observational data will 

produce a distribution of material closest to the 

distribution of observational material [55]. In addition, 

Monte Carlo analysis can be used to measure the 

uncertainty in the model parameters and the resulting 

distribution of matter [56]. By performing many random 

simulations, it is possible to calculate probability 

distributions for each model parameter and the resulting 

material distributions, which can provide important 

information about the uncertainties in the models and the 

resulting predictions. 

The Monte Carlo analysis of the six dark matter 

models above will depend on the parameters used in the 

simulation. However, Monte Carlo analysis generally 

shows how well a model fits observational data. By 

doing the simulation many times with different 
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parameters, the probability distribution for each model 

can be obtained [57]. In this case, the results of the Monte 

Carlo analysis will help determine how well these six 

models model the distribution of dark matter in the 

galaxy. Models that have a probability distribution that is 

closer to the observational data are considered to be 

preferable [58]. In addition, Monte Carlo analysis can 

also help identify the parameters most sensitive to the 

simulation results so that the model's accuracy can be 

increased by optimizing the values of these parameters 

[59]. However, keep in mind that Monte Carlo analysis 

is only one method for evaluating dark matter models, 

and the results cannot always be used as a single 

benchmark in determining the most suitable model [60]. 

It is always necessary to use other methods and more 

consistency with observational data to validate and refine 

dark matter models. 

The plots presented in this study depict the 

probability distribution of different models obtained 

through a rigorous probability analysis using the Monte 

Carlo method. These plots specifically explore the 

distribution of dark matter in galaxies. The x-axis 

represents the distance (r) from the galaxy's center, 

reflecting the position within the galaxy being studied. 

On the other hand, the y-axis represents the density of the 

galaxy material at specific distances (r). A higher density 

value indicates a denser concentration of galaxy material 

at that particular distance. Notably, the red line on the 

plot represents the average value of galaxy matter density 

derived from extensive Monte Carlo simulations. This 

average estimate provides valuable insights into the 

probability distribution. 

Additionally, the green line represents the median 

value of galaxy matter density, serving as the median 

estimate of the probability distribution. The blue area 

between these two lines represents the 95% confidence 

interval, offering crucial information regarding the 

uncertainty associated with estimating galaxy matter 

density at each distance (r). By comprehensively 

analyzing these plots, significant findings and inferences 

can be drawn about the probability distribution and 

uncertainty of galaxy matter density, contributing to our 

understanding of the distribution of dark matter in 

galaxies. 

This high-quality and effective research study 

employs Monte Carlo probability analysis to create a 

model of the dark matter distribution in galaxies. 

Multiple models, such as the Beta Model, Brownstein 

Model, Burkert Model, Einasto Model, Spherical 

Exponential Model, and Isothermal Model, are utilized 

to estimate the density of galaxy matter at a specific 

distance (r) from the galaxy center. The plot includes the 

"Mean" and "Median" lines, representing the average and 

median values of galaxy matter density obtained through 

Monte Carlo simulations with randomly generated 

parameters. The confidence intervals (depicted in blue) 

provide a 95% confidence level range of potential galaxy 

matter densities at each distance (r). By analyzing this 

plot, we gain insights into the uncertainties in dark matter 

distribution models and obtain statistical estimations 

such as the mean and median galaxy matter density 

The research findings also indicate the parameter 

sensitivity within the Beta model, which measures the 

influence of parameter value changes on the model's 

accuracy. Three parameters, namely rho0, r0, and beta, are 

evaluated by varying them by 10% and calculating the 

squared error between the model output and 

observational data. The parameter sensitivity for rho0 and 

r0 is valued at 2.151764e-40, suggesting that a 10% 

change in these parameters has a negligible impact on the 

model's accuracy. The parameter sensitivity for beta is 

1.778317e-40, indicating a slightly larger but still 

relatively small influence on the model's accuracy 

compared to rho0 and r0. 

 

 
Source: Data processing by the author (2023) 

Figure 10. Monte Carlo Probability analysis in density vs. distance (r) graph in mean and median 
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These findings imply that the Beta model used in this 

study is not highly sensitive to variations in rho0, r0, and 

beta parameters, which can be seen as a limitation. Further 

research could explore alternative models or fitting 

methods that are more sensitive to these parameters, 

aiming to enhance the accuracy of reproducing 

observational data. 

The study's results provide valuable insights into the 

distribution of dark matter in galaxies and its implications 

for galactic physics. The plot depicting the density 

distribution of dark matter as a function of distance from 

the galactic center reveals a decreasing trend in dark matter 

density with increasing distance. This suggests that dark 

matter tends to be more concentrated in the central regions 

of galaxies and less concentrated in the outer regions. 

Understanding the distribution of dark matter density is 

crucial for comprehending the gravitational effects, stars 

and gas dynamics, and galaxies' observed structures. The 

analysis of the standard deviation of Surface Mass Density 

(SMD) at different radii offers further insights into the 

variations in mass distribution within galaxies. The plot's 

observed patterns and outliers indicate specific radius 

points with significant fluctuations and unusual mass 

distribution variations. These findings contribute to our 

understanding of galaxy dynamics, evolution, and the 

factors influencing mass distribution across different 

radius scales. 

The plot illustrating the relationship between the 

Radius and the standard deviation of SMD for different 

distribution models enables us to evaluate their fit to the 

observed data. The colors representing each distribution 

model highlight distinct physical interpretations and 

provide insights into density and mass distribution 

phenomena at different radius contexts. The goodness of 

fit analysis and chi-square analysis further assess the 

compatibility of the models with the observed data, 

indicating the relative accuracy of each model. The Monte 

Carlo analysis conducted in the study enhances our 

understanding of the uncertainties associated with the 

density distribution models. The probability distributions 

obtained through Monte Carlo simulations offer insights 

into the properties of matter distribution and the level of fit 

between the models and the observed data. The research 

findings highlight the sensitivity of certain parameters 

within the Beta model and suggest potential areas for 

improvement in modeling the distribution of dark matter. 

It is important to note that while the goodness of fit 

errors and chi-square values indicate the relative accuracy 

of the models, further comprehensive modeling and testing 

are necessary to validate their absolute truth. The study 

provides valuable guidance for selecting appropriate 

models for describing dark matter distribution in galaxies. 

Still, other methods and consistency with observational 

data are also essential for validating and refining these 

models. 

 

 

V. Conclusion 

The density distribution of dark matter in galaxies 

shows a tendency for the density of dark matter to decrease 

with increasing distance from the galaxy center. The 

density of dark matter tends to be higher around the galaxy 

center and decreases with increasing distance from the 

center. This discovery provides insight into how dark 

matter contributes to the gravitational effects in galaxies, 

affects the dynamics of stars and gas, and shapes the 

structures observed in galaxies. The results of this study 

identify dark matter distribution models that fit the 

observed data. Models such as the Beta Model, Brownstein 

Model, Burkert Model, Einasto Model, Spherical 

Exponential Model, and Isothermal Model show good 

agreement with the observed dark matter distribution data. 

These models are promising representations in modeling 

the dark matter distribution in the system under study. 

Sensitive parameters, such as rho0, r0, and beta, play an 

important role in the accuracy of the dark matter 

distribution model. However, the results show that the Beta 

model used in this study is relatively sensitive to variations 

in the parameters rho0, r0, and beta values. This can be 

considered a limitation of the model. A practical 

suggestion is to conduct further research to explore 

alternative models or fitting methods that are more 

sensitive to these parameters to improve the accuracy of 

reproducing observational data. 

Conduct more comprehensive modeling and testing 

to validate and refine the dark matter distribution models 

used. Due to the variability of the dark matter distribution 

and the complexity of galaxy systems, further research 

involving other methods and consistency with 

observational data is needed to ensure the validity of the 

models used. We are exploring alternative models and 

fitting methods that are more sensitive to the parameters 

involved in the dark matter distribution. In this study, the 

Beta model showed limitations in terms of sensitivity to 

certain parameters. Therefore, further research can 

consider using alternative models to represent the dark 

matter distribution better. 

Further, analyze the variation of galaxy mass 

distribution at different radius scales. The observed data 

show significant fluctuations in the SMD standard 

deviation values at certain radius points and outliers that 

indicate unusual variations in the mass distribution around 

these radii. This analysis can provide a deeper 

understanding of the dynamics and evolution of galaxies, 

as well as the factors that influence mass distribution. 
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APENDIX: Derivation of the Mathematical model 

of Dark matter Density Distribution 

Galaxy density distribution 
First, we will find the constant of integration in this 

equation. We can do this by integrating the galaxy density 

equation over the radial variable r in the range 0 to  : 

 

2

0
1 ( )r r dr



=   (17) 

 

Now, we will substitute the given galaxy density 

equation into the integral: 

 

2

0
1 exp

2 2

M r
r dr

 



=  − 
   
   
   

  (18) 

 

We will change the integration variable to simplify 

the calculation. Suppose , then 
2 2

r dr
u du

 
= = , and 

2r u= . By making this substitution, we get: 

 

2

0
1 exp( ) (2 ) (2 )

2

M
u u du 





=  −  
 
 
 

  (19) 

Now, we will simplify this equation: 

2

0

4
1 exp( )

M
u u du





=  −  (20) 

 

We can solve this integral using the partial integration 

technique. By using the following integral formula: 

 

1

exp( )

exp( ) exp( )

n

n n

x x dx

x x n x x dx
−

=  −

= −  − −  −




 (21) 

 

We can apply this formula with $n = 2$. Using this 

technique, we will get: 

 

24
1 exp( ) 2 exp( )

M
u u u u du


= −  − −   −    (22) 

 

Now, we will solve the remaining integral by using 

the exponential integral formula: 

 

exp( )

exp( ) exp( )

x x dx

x x x

=  −

= −  − − −


 (23) 

 

Substituting this result into the previous equation, we 

can simplify it into: 

 

2
exp( ) 2 ( exp( ) exp( ))

4
u u u u u

M


= −  − −  −  − − −    

(24) 

 

We will continue simplifying to get the final result. 

By noticing that exp( ) exp
2

r
u


− = −

 
 
 

, we can simplify 

this equation into: 

 

24
1 (2 ) exp( ) 2 exp( )

M
u u u u


= −  − +  −    (25) 

 

Finally, we will replace the variable $u$ with r again 

in this equation: 

 
2

2 exp
4 2 2 2

1

    2 exp
2

r r r

M

r

  





 −  − +

=

 −

     
     
     

  
  
  

 (26) 

 

Density distribution of Beta model dark matter 

galaxies 
We start by assuming that the mass distribution of 

dark matter in galaxies can be described by the beta density 

model. First, we will use a normalization constant to 

ensure that the total mass in galaxies is constant: 

 

2

total
0

4 ( )M r r dr 


=   (27) 

 

To do this integration, we need to change the 

variables. Suppose 

2

1

c

r
u

r
= +

 
 
 

, so 1
c

r r u= −  and 

1

c
r

dr du
u

=
−

. The equation becomes: 

3

total 0 3 / 21

1
4

c

u
M r du

u


 
 −

=   (28) 

 

Now we will calculate the integral. Let's solve this 

step by integrating the above equation: 

 

3 3 / 2

total 0 3 / 21 1

1
4

c
M r u du du

u




 

 
−

= −
 
 
 
   (29) 

 

The first integral is the integral of 
3 / 2

u
−

 from 1 to 

infinity, and the second integral is the integral of 
3 / 2

1

u


 

from 1 to infinity. The first integral can be calculated as 

follows: 
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3 / 2 1

3 / 2

1

1
3 / 2 1

u
u du








− +


−

=
− +

 
 
 

  
(30) 

 

In this case, we need 3 / 2 1 1 −   for the integral to 

converge. Therefore, we get: 

 
3 / 2 1

3 / 2 1

1 1

3 / 2 1 1 3 / 2

u

u




 

− +

−
=

− + −

 
 
 

 (31) 

So, the first integral becomes: 

3 / 2

3 / 2 11

1

         

1 1

1 3 / 2

1

1 3 / 2
         

u du
u











−

−
= =

−

=
−

  
    


 (32) 

The second integral can be calculated as follows: 

3 / 2 1

3 / 21

1

1

3 / 2

               
1

 
3

  

1

1

/ 2

u
du

u









− +



= =
− +

=
−

 
 
 


 (33) 

 

Finally, substitute the integral result into the equation 

for 
total

M : 

3

total 0

1 1
4

1 3 / 2 3 / 2 1
c

M r 
 

= −
− −

 
 
 

 
(34) 

 

By knowing 
total

M , we can express 
0

  in the beta 

density model equation as follows: 

3

total 0

4

3
c

M r = , So; (35) 

1

total

0 3

3 1 1

4 1 3 / 2 3 / 2 1
c

M

r


  

−

= −
− −

 
 
 

 (36) 

 

Density distribution of dark matter galaxies 

Brownstein model 
We will use the Poisson equation in the spherical 

coordinate system to describe the mass density 

distribution: 

 
2

4 ( )G r   =  
(37) 

 

where Phi is the gravitational potential and G is the 

gravitational constant. We will find the solution of this 

Poisson equation by replacing ( )r  with the Brownstein 

density model. Let's find the form of the solution that 

satisfies spherical symmetry, namely ( )r . 

2 2

2

0

2 2

1

      4
(1 ( / ) )

c

r
r r r

G
r r




 
  =

 

=
+

 
 
 

 (38) 

 

To ease the calculation, we will do some 

substitutions. Suppose 

c

r
x

r
= , so that 

c
r xr= . Also, let us 

define 
2

0

( )
( )

4
c

r
r

G r


 


= . With this substitution, the 

Poisson equation becomes: 

 

2

2 2 2

1 1

(1 )

d d
x

x dx dx x


=

+

 
 
 

 (39) 

 

Let's solve this differential equation using the 

separation of variables method. We assume the solution is 

in the form ( ) ( ) ( )x X x Y x = . By substituting this 

solution form into the equation, we can separate the 

variables and get two separate differential equations: 

 
2

2

2

2

2

2

0 2 0

d X dX
x x X

dx dx

d Y
Y

dy

= + −

= − =

 (40) 

 

The solution of the second differential equation is 

2 2

1 2
( )

y y
Y y C e C e

−
= + , where 

1
C  and 

2
C  are constants. 

The solution of the first differential equation is a Bessel 

differential equation of zero order, given by: 

 

3 0 4 0
( ) ( 2 ) ( 2 )X x C J x C Y x= +  (41) 

 

where 
0

J  and 
0

Y  are zero-order Bessel functions, 

and 
3

C  and 
4

C  are constants. We can use the constraints 

given by the physical state to choose a suitable solution. In 

this case, we will choose a solution that does not diverge 

when 
3

x , so we can ignore the Y(x) component. 

Therefore, the accepted solution is: 

 

3 0
( ) ( 2 )X x C J x=  (42) 

 

Returning to the original variables, we can write the 

solution for ( )r  as follows: 
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2

0

0

3

( )
( )

4

( 2 / )
      

c

c

r
r

G r

J r r
C

r


 


=

=

 (43) 

 

To determine the constant 
3

C , we can use boundary 

conditions or additional requirements given by certain 

physical states. Without more information, it is impossible 

to determine the exact value for 
3

C . Finally, by replacing 

( )r  with ( )r , we get the equation of the Brownstein 

Density Dark Matter Galaxy model: 

0

2 2
( )

(1 ( / ) )
c

r
r r


 =

+
 (44) 

 

This is the density equation derived by the 

Brownstein model to describe the distribution of dark 

matter in galaxies. 

 

Density distribution of Burkert model dark 

matter galaxies 
Given The Burkert function density dark matter 

galaxy model equation: 

0

2
( ) 1

1
c

c

r
r

rr

r


 =  +

+

 
 

   
       

  
   

 (45) 

 

First, we simplify the equation by multiplying both 

factors in square brackets: 

0

2

(1 )

( )

1

c

c

r

r
r

r

r





 +

=

+
 
 
 

 (46) 

 

Using the chain rule, we can calculate the first 

derivative of the equation: 

0 0 2

2 2
2

1
(1 ) 2

( )

1 1

c c c

c
c

r r

r r rd
r

dr r r

r r

 



  +  

= −

+ +
    
         

 (47) 

 

We calculate the second derivative of the initial 

equation by applying the chain rule to the first derivative 

we calculated earlier: 

 
2

2
( ) ( )

d d d
r r

dr dr dr
 =

 
 
 

 (48) 

Calculating the second derivative: 

0 0 2

2 2
2

1
(1 ) 2

( )

1 1

c c c

c
c

r r

r r rd d d
r

dr dr dr r r

r r

 



  +  

= −

+ +

 
 
  

   
       

           

 (49) 

After calculating the first derivative with respect to 

each factor in the numerator and denominator, we get the 

second derivative of the initial equation: 

 

02 22

2 22 2

1
(1 ) 2

0
( )

1 1

c c c

c
c

r r

r r rd
r

dr r r

r r





  +  

= −

+ +
    
         

 (50) 

 

This is the calculation of The Burkert function 

density dark matter galaxy model equation. 

 

Density distribution of Einasto model dark matter 

galaxies 
In this model equation, we introduce the following 

variable changes: 

 
1

2

r
x

r



=
 
 
 

 
(51) 

  

Using this change in variables, the equation can be 

simplified into a simpler form. We need to calculate the 

derivative of x with respect to r. With the chain rule, this 

derivative can be calculated as follows: 
1

1

1

2 2 2

1 1 1 1dx r
x

dr r r r




 

−

−
=   =  

 
 
 

 
(52) 

 

By replacing the variables in the original equation 

using x and our newly calculated 
dx

dr
, we can obtain The 

Einasto Function Density model equation for dark matter 

galaxies: 

 

0

2

1
( ) exp 2 ln

r
r

r


 



−
=  −  

   
    
   

 (53) 

 

Density distribution of Exp-Sphere model dark 

matter galaxies 
We start with the equation for the density of dark 

matter galaxy: 
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0
( ) exp

c

r
r

r
 =  −

 
 
 

 (54) 

  

To derive this equation, We begin with the basic 

exponential equation: 

 
2 3 4

exp( ) 1
2! 3! 4!

x x x
x x= + + + + +  

(55) 

 

Assuming r and rc are positive real numbers, we 

substitute x with 

c

r

r
−
 
 
 

 in the exponential series above: 

2 3

4

1 1
exp 1

2! 3!

1

4!
                  

c c c c

c

r r r r

r r r r

r

r

− = − + −

+ −

     
     
     

 
 
 

 (56) 

 

We aim to find the constant 
0

( )  that makes the 

above equation a suitable density model for the dark matter 

galaxy. For this, we need to normalize the equation. 

Normalization is done by integrating the density over the 

entire space. Since we are modeling a spherically 

symmetric galaxy, we integrate the density in spherical 

coordinates. As a reference, in spherical coordinates, the 

volume element is 
2

4dV r dr= . Let's calculate the 

normalization integral: 

 

2

0
( ) 4 1r r dr 



 =  (57) 

Substituting the given density model equation: 

2

0
0

4 exp 1

c

r
r dr

r




−  =
 
 
 

  (58) 

  

In this integral, we can perform a change of variable 

with 

c

r
u

r
= , so 

1

c

du dr
r

= . The integration limits also 

change to u = 0 when r = 0 and u =  when r =  . With 

this substitution, the integral equation becomes: 

 

2

0
0

4 exp( ) ( ) 1
c c

u r u r du


−   =  (58) 

We simplify this equation by combining constants: 

3 2

0
0

4 exp( ) 1
c

r u u du


− =  (60) 

 

The integral in this equation is the Gamma integral. 

The value of the Gamma integral 
2

0
exp( )u u du



−  is 2! or 

2. Substituting this value into the previous equation: 

 
3

0
4 2 1

c
r  =  (61) 

 

Now, we can solve this equation to find the value of 

the constant 
0

( ) : 

3

0
8 1

c
r =  (62) 

0 3

1

8
c

r



=  (63) 

 

Finally, we can write the normalized equation for the 

density model of the dark matter galaxy: 

3

1
( ) exp

8
c c

r
r

r r



= −

 
 
 

 (64) 
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