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The earthquake catalog notes that there have been earthquakes with Mw > 7 that hit the 

Flores area, three of which occurred in the Flores Sea in 1992, 2015, and 2021. 

Revealed that the seismic activity of Eastern Indonesia is thought to be influenced by 

the isolated thrust fault segment of the island of Flores and the island of Wetar. The 

study of the rising fault segment on Flores Island and Wetar Island helps in further 

understanding the fault behavior, earthquake pattern, and seismic risk in the Flores Sea 

region. In earthquakes with giant magneto, an aftershock can occur due to the 

interaction of ground movements. This research analyzes and compares the data from 

the evaluation of the classification algorithm and the regression algorithm. The initial 

stages of this research include requesting IRIS DMC Web Service data. The data is then 

subjected to a cleaning process to obtain the expected feature extraction. The next stage 

is to perform the clustering process. This stage is carried out to label dependent data by 

adding new features as data clusters. The following procedure divides the validation 

value, which consists of training and test data. The estimation results show that the 

classification algorithm's evaluation value is better than that of the regression 

algorithm. The evaluation value of several algorithms indicates this, with an accuracy 

rate between 80% and 100%. 
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I. Introduction  

Flores Island, Indonesia, is a seismically active area 

[1]. Pranantyo et al. [2] revealed that the seismic activity 

of Eastern Indonesia is thought to be influenced by the 

isolated thrust fault segment of the island of Flores and the 

island of Wetar. The study of the rising fault segment on 

Flores Island and Wetar Island helps in further 

understanding the fault behavior, earthquake pattern, and 

seismic risk in the Flores Sea region. The data is collected 

through seismic modeling, which is able to make 

predictions about the potential for future earthquakes. With 

a better understanding of isolated rising fault segments on 

Flores Island and Wetar Island, disaster mitigation efforts 

can improve, especially with a more effective early 

warning system. This is an important step to protect the 

public and reduce the negative impact caused by the 

earthquake in the region.The earthquake catalog records 

earthquakes of > Mw 7 that have hit the Flores area, three 

of which occurred in the Flores Sea in 1992, 2015, and 

2021. In earthquakes with a giant magneto, an aftershock 

can occur due to the interaction of ground movements [3]. 

It is caused by an increase in the deformation mechanism 

(increase in stress) for a fracture area which is quantified 

as a change in Coulomb Stress Failure (CFS) [4]. 

Changing earthquake stress will encourage or inhibit 

seismic activity in the area. This can be proven by 

calculating the Coulomb stress, which helps predict the 

location of its increase in the future. Based on this, the 

aftershock phenomenon will often occur in areas with 

positive changes in Coulomb stress rather than negative 

Coulomb stress [5]. 
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Because the Flores Sea frequently sees intense 

seismic activity, it is crucial to research the aftershocks in 

this region. Aftershocks are earthquakes that happen 

immediately after the first shock and frequently have a 

smaller magnitude [6]. But aftershocks can wreak more 

harm and even present a risk to places already impacted by 

the preceding mainshock. By comprehending aftershock 

patterns in the Flores Sea, scientists and seismologists can 

more accurately evaluate risk [7]. They can identify areas 

that could be impacted, forecast the likelihood of 

aftershocks, and give the immediate area early notice. The 

Flores Sea aftershocks must be better understood in order 

to create a more reliable early warning system. One way 

that this technology can warn people before aftershocks 

happen is by using an artificial intelligence system. 

Machine Learning (ML) algorithms are machines 

that can learn like humans. ML studies the system's 

behavior based on dataset information without requiring 

prior knowledge [8]. Several ML algorithms that have 

been studied in earthquake prediction and Aftershock are 

grouped into regression and classification algorithms. 

Various ML architectures are presented in (Figure 1). 

Wieland et al. [9] explained that the success of ML is 

shown by its success in identifying earthquake damage. It 

is clarified by the use of SVM in the Japanese earthquake 

data in March 2011. In addition, Syifa et al. [10] once 

compared predictive data based on the accuracy value 

between SVM and ANN. 

So far, there has not been much research on the 

aftershock hazard in the Flores Sea using predictive 

models. So, it needs to be used as an evaluation material 

because three large earthquakes have historically hit the 

Flores Sea. Furthermore, it is essential to study the 

Aftershock study because it can provide new information 

about seismogenic processes, including the location of 

newly active faults. 

Several studies have succeeded in comparing several 

classification and regression algorithms. The evaluation 

process is carried out by comparing several parameters, 

such as the estimated value. So, this research is considered 

necessary in the future as a time alarm and forecast in 

analyzing Aftershock predictions. Based on the description 

above, the purpose of this study is to determine the 

estimated value of the aftershock rupture data for the 

Flores Sea earthquake based on AI. The best estimation 

results will provide a correction value to be used as 

comparison data for further investigations regarding the 

prediction of aftershocks. The benefits of this research are 

as a hope in the geohazards field and predict earthquakes 

with a reasonable accuracy level. 

 

Figure 1. ML architecture (a) SVM algorithm classification process, (b) SVR algorithm work procedure, (c) K-NN algorithm decision 

making process, (d) K-means algorithm principle work, (e) RF algorithm classification process, (f) Dendrogram hierarchical clustering 

algorithm, (g) The decision-making process of the DT algorithm [11].

II. Theory 

This Relevant applications of classification and 

regression algorithms exist in the analysis of earthquake 

data [12]. In this context, classification algorithms can be 

used to classify earthquakes into various categories, such 

as shallow, medium, or deep earthquakes, based on the 

profundity of their epicentre [13]. In the meantime, the 

regression algorithm can be used to simulate the 

relationship between certain features, such as earthquake 

magnitude, depth, or epicentre distance, and certain 

parameters, such as building damage or vibration intensity 

[14], [15]. In theory, classification and regression 

algorithms use a variety of mathematical techniques to 

classify and analyse earthquake data [16].  

Implementing the classification algorithm on 

earthquake data requires data preparation, the selection of 

pertinent features, and the configuration of a classification 

algorithm model, such as SVM or Decision Tree [17], [18]. 

It is necessary to collect and organise quake data from 

multiple sources with care in order to meet the 

requirements of the analysis. Important characteristics, 

such as magnitude, depth, epicentre location, and duration, 

should be chosen as model training attributes [19]. To 

obtain optimal model performance, it is also necessary to 

consider the hyperparameter settings, such as C in SVM or 

maximum depth in the Decision Tree [20], [21]. 

Implementing a regression algorithm on earthquake data, 

on the other hand, entails similar data preparation and 
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feature selection steps [22]. To predict continuous values, 

such as building damage or vibration intensity, a regression 

algorithm, such as Linear Regression or SVR, may be 

implemented [23], [24]. 

The application of a classification algorithm to 

earthquake data can yield valuable information regarding 

the characteristics of a specific earthquake [25], [26]. By 

classifying earthquakes based on depth, for instance, 

seismologists can comprehend the patterns and behaviour 

of earthquakes at specific depths and identify potential 

dangers in certain regions [27], [28]. In addition, the 

classification algorithm can aid in earthquake risk analysis 

by classifying areas according to their potential hazard 

level, allowing for more precise mitigation measures [29]. 

Applying the regression algorithm to earthquake data 

enables the prediction of continuous earthquake-related 

values [30]. Using regression, we can, for instance, predict 

building damage or tremor intensity based on certain 

earthquake characteristics, such as magnitude and 

epicentre distance [31]. This information can be used to 

assess the potential damage and impact of an earthquake 

in a particular location, allowing for earlier 

implementation of mitigation measures and disaster 

response plans to reduce earthquake-related risks and 

losses. 

The application of classification and regression 

algorithms to earthquake data contributes to a greater 

comprehension of earthquake patterns, the characteristics 

of certain earthquakes, and the potential for disaster [32], 

[33]. The classification algorithm aids in classifying 

earthquakes based on certain attributes, allowing for the 

identification of risks and potential dangers in certain 

regions [34], [35]. On the other hand, the regression 

algorithm enables us to model and predict earthquake 

impacts, such as building damage and the intensity of 

vibrations, so that disaster mitigation and response actions 

can be more precisely directed [36]. However, the 

implementation of this algorithm encounters obstacles in 

the preparation of accurate and representative data, the 

selection of pertinent features, and the setting of the 

appropriate hyperparameters [37]. In addition, earthquake 

data can be highly dynamic and intricate, necessitating a 

vigilant and ongoing analytic approach to produce 

accurate and useful results [38]. 

 

III. Method 

This study uses real-time data on the aftershock 

rupture of the Flores Sea, East Nusa Tenggara, which was 

recorded from December 14, 2021, to March 20, 2022, 

obtained from IRIS DMC Web Service 

(https://service.iris.edu). The parameters used in this study 

consist of latitude, longitude, depth, and magnitude data, 

totaling 1403 data. 

This research analyzes to compare the data from the 

evaluation of the classification algorithm and the 

regression algorithm. The initial stages of this research 

include requesting IRIS DMC Web Service data. The data 

is then subjected to a cleaning process to obtain the 

expected feature extraction It is necessary to clean up data 

in order to get rid of errors. This entails eliminating 

unimportant signals or noise, such as interference from 

people or equipment. Clean seismic data can be processed 

using techniques for filtering, blending, and outlier 

elimination. Following the identification and separation of 

the crucial phases, feature extraction is done to explain the 

pertinent seismic properties. Parameters like amplitude 

data, frequency data, duration, or wave speed are examples 

of possible features. To find and extract these features from 

seismic data, signal processing methods and statistical 

analysis might be applied the procedure of normalization 

is then carried out. Data normalization may be used in 

specific circumstances to guarantee consistency and 

accurate comparison of extracted features. By altering the 

scale or range of feature values, normalization can be done 

to make them uniform and simple to compare. 

Dimensionality reduction is frequently required in big 

seismic datasets to ease complexity and accelerate 

analysis. Using methods like Principle Component 

Analysis (PCA) or factor analysis, one can reduce the 

dataset's dimensionality while still preserving important 

data. A robust foundation for additional research, such as 

seismic modeling, subsurface structure mapping, or 

earthquake prediction, is provided by appropriate data 

cleaning and feature extraction procedures. Seismic 

researchers and scientists can examine seismic patterns, 

trends, and characteristics using well-extracted features. 

The clustering process must be done as follows: In 

this stage, new features are added to the data as data 

clusters to label the dependent data. Latitude, longitude, 

depth, and magnitude data are the features that have been 

chosen for this section. The elbow approach, also known 

as WCSS analysis, will be used to find the best elbow 

graph by utilizing the sklearn cluster import KMeans 

library function. The outcome is then merged with the 

concat command in the data frame to create a new label. 

The validation value, which comprises training data and 

test data, is divided by the subsequent process. This 

method compares 70% training data and 30% test data 

using a fitting model with training data and targets. The 

results of the examination of the comparative analysis of 

the accuracy value of the classification and regression 

algorithms are evaluated in the final stage. Details are 

presented in Figure 2. 

 

IV. Results and Discussion 

Historically, earthquake predictions have been made 

since the 19th century. Geller [39] reviewed earthquake 

predictions that were divided into different timescales and 

could explain precursors, which were recognized in the 

IASPEI guidelines. In the same year, Uyeda [40] revealed 

that the earth is a seismo-electromagnetic signal and 

developed the Van method for short-term earthquake 

prediction. By strengthening his report that electrical 

signals are not enough to be said as earthquake precursors. 

One of the researchers who disputed this was Sevgi [41], 
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who revealed that the seismo-electromagnetic signal still 

contains much noise data. 

Another thing to note is the local characteristics of 

permittivity, permeability, and background noise. 

However, the discussion only shows the earth's electrical 

signal and has not demonstrated an earthquake prediction 

model based on historical data. Huang et al. [42] added that 

earthquake precursors consist of several parameters, such 

as seismic, geo-electromagnetic, geodesic, gravity, and 

ground fluid. Several other parameters are input 

parameters, such as satellite imagery and animal behavior. 

Researchers have developed Aftershock predictions using 

artificial intelligence [43]–[45]. Karimzadeh et al. [46], 

has reviewed Aftershock on distribution slip, Coulomb 

stress change at source fault, and active fault orientation to 

predict Aftershock pattern. This study provides promising 

results for predicting spatial aftershocks but has not 

answered the predictions for the time and depth of 

aftershocks. 

 

Main Shock Review 
The Mw 7.3 earthquake that occurred in the Flores 

Sea on December 14, 2021, was recorded using the 

Australian Array (AU) station with 14 seismic stations 

(Figure 3). The data was obtained based on a bandpass 

filter of 0.1 Hz to 1.0 Hz with the cross-correlation method 

to 18 seismic stations. The rupture characteristics are 

described in (Figure 4) after filtering the waveform in the 

pass band range between 0.1 Hz to 0.5 Hz and 0.3 Hz to 

1.0 Hz. It results in a P-waveform (Figure 5) with a 

coherent and in-phase signal. 

 

  
Figure 2. Research flow chart Figure 3. Sesismogram based on distance from earthquake  

(1 degree = ~111 km) 

 

 

  
(a) BHZ 0.1 – 0.5 Hz (b) BHZ 0.3 – 1.0 Hz 

Figure 4. Alignment process using cross correlation method 
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(a) BHZ 0.1 – 0.5 Hz (b) BHZ 0.3 – 1.0 Hz 

Figure 5. P-coda stack with long distance (dist =30-95*) 

 

Review Aftershock 
Figure 6(a) is the dynamics of rupture data for the 

Flores Sea earthquake on December 14, 2021, shown with 

a blue circle pattern. While Figure 6(b) is the aftershock 

data marked with a green circle pattern. The results of the 

figure show the distribution pattern after the main 

earthquake expanded unilaterally to the west and partly to 

the east. Aftershocks are more common in areas with a 

depth of 5.0 km to 17.5 km below sea level (Figure 6(c)). 

It shows that the pattern follows the area around the main 

earthquake. 

Handayani [47] has reviewed the source of the Flores 

island earthquake. From the results of this study, it is 

known that normal faults dominate the Flores Sea. It is 

clarified by Maneno et al. [48] that the earthquake 

hypocenter in the northern part of Flores was dominated 

by deep earthquakes associated with the Flores Thrust 

Zone. The southern part is more overlooked by shallow to 

moderate earthquakes. So far, research on the Flores 

earthquake has only been limited to earthquake mapping 

and relocation. Kurnio et al. [49] only describe a review of 

underwater landslides with the result that the trigger for the 

1992 earthquake in the Flores Sea was an underwater 

landslide. The same thing was also explained by Pranantyo 

et al. [50] regarding seismic and non-seismic hazards in 

Indonesia, especially in eastern Indonesia. Then 

Handayani [47] clarified the seismic hazard, especially in 

the Flores Sea area, which had experienced seven 

significant earthquakes. Supendi et al. [51] explained that 

the Aftershock study provides new information on 

seismogenic processes and seismic hazards in Indonesia, 

including the location of newly active faults. Therefore, 

several parameters need to be considered when making 

Aftershock predictions because these will affect the 

performance accuracy. 

 

 
(a) 

 

 
(b) 
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(c) 

Figure 6. (a) Event Mw 7.3 data, (b) Aftershock data, (c) 

Aftershock distribution data between Magnitude and Depth 

Classification Algorithm 
The classification process is carried out based on the 

Aftershock rupture data, which was previously carried out 

before the data cleaning process was carried out to avoid 

missing data. 

This process involves several stages, such as feature 

extraction to label new data as dependent data with the 

cluster name. feature, while the dependent variable is 

cluster data.This process is carried out as an initial step in 

determining the validation value using the cross-validation 

method, which will divide the data into training and test 

data [52]. Using the WCSS tool with the Elbow method, 

we get a cluster division of 3 clusters (Figure 7), followed 

by a classification algorithm. 

 

Figure 7. Elbow method  

The Elbow approach aims to select a small k number 

while maintaining a low withinss value [53]. The Elbow 

method of cluster analysis is used in this study to 

determine the ideal number of clusters, taking into account 

the comparative value (from the SSE calculation for each 

cluster value) between the number of clusters that will 

form an elbow at a point, such that the SSE value will 

decrease as the number of clusters k increases [54]. The 

SSE formula looks like in Equation (1). 

 

2

1 21 1

k

kk x Sk
SSE x C

= 
= −   (1) 

 

Since there are 3 clusters based on equation (1) 

above, use equation (2) to calculate the distance between 

the two objects that are closest to one another. 

 

( ) ( )
2 2

, 1

n

x y i
d x y xi yi

=
= − = −  (2) 

 

Table 1 includes the results of computations made using 

the Elbow technique. 

Table 1. The Elbow method is used in calculating the first five 

data 

Latitude Longitude Depth Magnitude Cluster 

-8,55 121,9184 10 3,34 3 

-7,53 121,5823 10 3,11 3 

-7,36 121,2343 15 2,58 3 

-8,02 122,406 10 3,41 3 

-7,51 121,6354 10 2,64 3 

-7,53 122,1766 19,3 3,33 1 

 

Banggut et al. [4] revealed that the classification method 

would place objects into categories. Therefore, it will 

depend on each classification attribute in the new data 

[55], [56]. There are 982 data of training data after the 

Train-Validation Split, while a lot of test data after the 

Train-Validation Split 421 data. The training data consists 

of two variables: the independent variable using the 

magnitude. The complete comparison of the accuracy of 

the classification algorithm is presented in Table 2. 

Table 2. Comparison of classification algorithm accuracy 

values 

Algorithm Accuracy 

Logistic Regression 0.99 

Support Vektor Machine (SVM) 0.98 

Hyperparameter SVM  

1. SVM Linear 0.99 

2. SVM Polynomial  0.99 

3. SVM RBF 0.98 

Decision Tree 1.00 

Hyperparameter Decision Tree 0.80 

Naïve Bayes 0.46 

K-Nearest Neighbors 0.99 

 

Regression Algorithm 
The regression process is carried out to determine the 

relationship between categories or labels. In this process, 

the algorithms that compare the evaluation values are the 

Decision Tree Regressor and the Random Forest 

Regressor. The results show that both do not meet the 

accuracy value because the error value is very large. It is 

also reinforced by using the Convolution Matrix method 

(Figure 8), which shows a minimal value of the 

relationship between attributes. Marhain et al. [47], [57] 

have investigated the application of AI for earthquake 

prediction in Terengganu using ML. In the report, several 

algorithms are compared, such as SVM, Random Forest 

(Figure 9), Decision Tree (Figure 10), and Logistic 

Regression. The limitation of this research is that the data 

information from each station is different. So the research 
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only focuses on one station to compare the accuracy and 

probability values and then analyze the results. In the same 

year, Essam et al. [58] conducted a study in the same 

location by comparing the Artificial Neural Network 

(ANN) and Random Forest algorithms. 

This study succeeded in predicting ground motion 

parameters, namely earthquake acceleration, earthquake 

speed, and earthquake depth, based on four performance 

criteria that were successfully evaluated. These results 

indicate that the ANN algorithm has accuracy compared to 

Random Forest. Although the proposed model has an 

accuracy value, it has not answered the location point for 

the earthquake. Other researchers who use SVM are [55], 

[57], [59], [60]. In addition to SVM, earthquake prediction 

algorithms are often used, namely Random Forest [61], 

and Neural Network algorithm [62]–[64]. 
 

Figure 8. Convolution matrix using spearman method 

 

Figure 9. Random Forest Regressor 
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Figure 10. Decision Tree Regressor 

Deeper insight into fault behavior and possible 

seismic danger can be gained by analyzing patterns and 

trends in aftershock data. Based on already available 

features, classification techniques can be used to 

categorize aftershocks. In this instance, by examining the 

resulting categorization decisions, it is possible to examine 

the observed patterns and trends in the aftershock data. 

You can check to see, for instance, whether there is a 

spatial pattern suggesting that stronger aftershocks are 

more likely to happen close to the mainshock or whether 

there is a temporal pattern suggesting that the frequency of 

aftershocks increases after a mainshock of a certain 

magnitude. It follows that this classification analysis can 

help with comprehension of aftershock characteristics and 

associated potential dangers. This can be used to improve 

comprehension of the spatial and temporal distribution of 

aftershocks and to offer guidance in the design of plans for 

mitigating earthquake risk. 

In order to examine trends and numerical patterns in 

aftershock data, regression algorithms might be applied. In 

this instance, the generated regression coefficients can be 

used to assess the pattern and observed trends in the 

aftershock data. A tendency toward increased aftershock 

frequency as time passes after the primary earthquake, for 

instance, may be indicated by a significant and positive 

regression coefficient for the time variable. This regression 

analysis's implication is that it can aid in more precisely 

simulating aftershock behavior. Regression analysis data 

on numerical trends and patterns can be used to anticipate 

and better understand fault behavior and potential seismic 

danger. 

 

V. Conclusion 

New scenarios in the field of earthquake prediction 

need to be seriously reviewed. It is crucial in risk 

assessment as prevention and early warning in the future. 

However, this will be difficult to do because data 

availability is influenced by several factors, such as noise 

data affecting earthquake detectors. So to do this, it is 

necessary to have an initial analysis that is useful in 

filtering noise data so that the sensor only captures 

earthquake data sources, not other data. The method is 

through an alignment process with cross-correlation, 

which can produce P-waves in a coherent and in-phase 

signal form. It is very useful when the detector is converted 

into a normalized value structure to determine the 

estimated value. The estimation results show that the 

classification algorithm's evaluation value is better than 

the regression algorithm. Several algorithms' evaluation 

value indicates an accuracy rate between 80% and 100%. 

Research utilizing SVM, HP-SVM, and PSO-SVM 

to predict earthquakes is a challenge that must be resolved 

by overcoming several limitations on prediction accuracy. 

Data constraints, which pose a significant barrier to model 

creation, are the primary issue. However, data 

augmentation and synthetic data integration techniques 

can overcome this limitation. In addition, careful feature 

analysis is required to identify the most pertinent features 

and eliminate the possibility of features with minimal 

correlation. When using optimization techniques such as 

PSO to improve SVM performance, paying special 

attention to how non-stationary earthquake characteristics 

can be incorporated into the model is crucial. As a result of 

these issues, the study's recommendations include the use 

of multiple models, particularly the combination of SVM 

with various optimization techniques. In addition, methods 

for addressing the issue of rare earthquakes and feature 

imbalances must be further developed to improve the 

accuracy of forecasts and ensure their dependability in 

real-world situations; thus, a comprehensive evaluation of 

various scenarios against earthquake spatial data sets is 

necessary. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&


Indonesian Review of Physics (IRIP) 
Vol.6, No.1, June 2023, pp. 45 - 55 

53 

 

A. Jufriansah, et al. Estimation of Flores Sea Aftershock Rupture Data … p-ISSN: 2621-3761  

e-ISSN: 2621-2889 

 

VI. Acknowledgment 

The researcher would like to thank the Indonesian 

Ministry of Education, Culture, Research and Technology 

for providing research funds through the 2022 Beginner 

Lecturer Research Grant Scheme (PDP) under Grant No. 

1098/LL15/KM/2022.  

 

References 
[1] A. Jufriansah, A. Khusnani, Y. Pramudya, and M. 

Afriyanto, “Comparison of Aftershock Behavior of the 

Flores Sea 12 December 1992 and 14 December 2021,” J. 

Phys. Theor. Appl., vol. 7, no. 1, pp. 65–74, 2023. 

[2] I. R. Pranantyo, P. Cummins, J. Griffin, G. Davies, and H. 

Latief, “Modelling of Historical Tsunami in Eastern 

Indonesia: 1674 Ambon and 1992 Flores Case Studies,” 

in International Symposium on Earth Hazard and 

Disaster Mitigation (ISEDM) 2016: The 6th Annual 

Symposium on Earthquake and Related Geohazard 

Research for Disaster Risk Reduction, 2017, p. 090005, 

doi: 10.1063/1.4987104. 

[3] A. Anggraini and E. Mardhatillah, “Perubahan Stress 

Statis Gempa Utama dan Asosiasi Distribusi Gempa 

Susulan: Studi Kasus Gempa Palu Mw 7,5 28 September 

2018,” J. Fis. Indones., vol. 24, no. 1, p. 38, Jun. 2020, 

doi: 10.22146/jfi.v24i1.53533. 

[4] B. J. Santosa, “Estimation of the Source Parameters of the 

Flores Earthquake and Their Correlation to Aftershocks,” 

IPTEK J. Eng., vol. 5, no. 1, pp. 14–17, May 2019, doi: 

10.12962/joe.v5i1.5021. 

[5] E. Mardhatillah, A. Anggraini, and M. Nukman, 

“Tinjauan Perubahan Stress Coulomb Ko-Seismik Pada 

Sekuens Gempa Palu M 7,5 28 September 2018,” J. Fis. 

Indones., vol. 24, no. 3, p. 175, Dec. 2020, doi: 

10.22146/jfi.v24i3.58237. 

[6] S. Baranov, C. Narteau, and P. Shebalin, “Modeling and 

Prediction of Aftershock Activity,” Surv. Geophys., vol. 

43, pp. 437–481, Apr. 2022, doi: 10.1007/s10712-022-

09698-0. 

[7] R. P. Felix, J. A. Hubbard, K. E. Bradley, K. H. Lythgoe, 

L. Li, and A. D. Switzer, “Tsunami Hazard in Lombok 

and Bali, Indonesia, Due to the Flores Back-arc Thrust,” 

Nat. Hazards Earth Syst. Sci., vol. 22, no. 5, pp. 1665–

1682, May 2022, doi: 10.5194/nhess-22-1665-2022. 

[8] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. 

Marques, “Recent Advances and Applications of Machine 

Learning in Solid-State Materials Science,” npj Comput. 

Mater., vol. 5, no. 1, p. 83, Aug. 2019, doi: 

10.1038/s41524-019-0221-0. 

[9] M. Wieland, W. Liu, and F. Yamazaki, “Learning Change 

from Synthetic Aperture Radar Images: Performance 

Evaluation of a Support Vector Machine to Detect 

Earthquake and Tsunami-Induced Changes,” Remote 

Sens., vol. 8, no. 10, p. 792, Sep. 2016, doi: 

10.3390/rs8100792. 

[10] M. Syifa, P. Kadavi, and C.-W. Lee, “An Artificial 

Intelligence Application for Post-Earthquake Damage 

Mapping in Palu, Central Sulawesi, Indonesia,” Sensors, 

vol. 19, no. 3, p. 542, Jan. 2019, doi: 10.3390/s19030542. 

[11] M. H. Al Banna et al., “Application of Artificial 

Intelligence in Predicting Earthquakes: State-of-the-Art 

and Future Challenges,” IEEE Access, vol. 8, pp. 192880–

192923, 2020, doi: 10.1109/ACCESS.2020.3029859. 

[12] Q. Kong, D. T. Trugman, Z. E. Ross, M. J. Bianco, B. J. 

Meade, and P. Gerstoft, “Machine Learning in 

Seismology: Turning Data into Insights,” Seismol. Res. 

Lett., vol. 90, no. 1, pp. 3–14, Jan. 2019, doi: 

10.1785/0220180259. 

[13] F. Aden‐Antoniów, W. B. Frank, and L. Seydoux, “An 

Adaptable Random Forest Model for the Declustering of 

Earthquake Catalogs,” J. Geophys. Res. Solid Earth, vol. 

127, no. 2, p. e2021JB023254, Feb. 2022, doi: 

10.1029/2021JB023254. 

[14] Y. Zhang and K.-V. Yuen, “Review of Artificial 

Intelligence-based Bridge Damage Detection,” Adv. 

Mech. Eng., vol. 14, no. 9, pp. 1–21, Sep. 2022, doi: 

10.1177/16878132221122770. 

[15] S. Liu, Y. Jiang, M. Li, J. Xin, and L. Peng, “Long Period 

Ground Motion Simulation and Its Application to the 

Seismic Design of High-Rise Buildings,” Soil Dyn. 

Earthq. Eng., vol. 143, p. 106619, Apr. 2021, doi: 

10.1016/j.soildyn.2021.106619. 

[16] Y. Xie, M. Ebad Sichani, J. E. Padgett, and R. 

DesRoches, “The Promise of Implementing Machine 

Learning in Earthquake Engineering: A State-of-the-art 

Review,” Earthq. Spectra, vol. 36, no. 4, pp. 1769–1801, 

Nov. 2020, doi: 10.1177/8755293020919419. 

[17] T. S. Bressan, M. Kehl de Souza, T. J. Girelli, and F. C. 

Junior, “Evaluation of Machine Learning Methods for 

Lithology Classification Using Geophysical Data,” 

Comput. Geosci., vol. 139, p. 104475, Jun. 2020, doi: 

10.1016/j.cageo.2020.104475. 

[18] Y. Ao, H. Li, L. Zhu, S. Ali, and Z. Yang, “Identifying 

Channel Sand-Body from Multiple Seismic Attributes 

with an Improved Random Forest Algorithm,” J. Pet. Sci. 

Eng., vol. 173, pp. 781–792, Feb. 2019, doi: 

10.1016/j.petrol.2018.10.048. 

[19] R. Jena and B. Pradhan, “Integrated ANN-cross-

validation and AHP-TOPSIS Model to Improve 

Earthquake Risk Assessment,” Int. J. Disaster Risk 

Reduct., vol. 50, p. 101723, Nov. 2020, doi: 

10.1016/j.ijdrr.2020.101723. 

[20] Y. Xia, C. Liu, Y. Li, and N. Liu, “A Boosted Decision 

Tree Approach Using Bayesian Hyper-Parameter 

Optimization for Credit Scoring,” Expert Syst. Appl., vol. 

78, pp. 225–241, Jul. 2017, doi: 

10.1016/j.eswa.2017.02.017. 

[21] L. Yang and A. Shami, “On Hyperparameter Optimization 

of Machine Learning Algorithms: Theory and Practice,” 

Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: 

10.1016/j.neucom.2020.07.061. 

[22] M. A. Sebtosheikh and A. Salehi, “Lithology Prediction 

by Support Vector Classifiers Using Inverted Seismic 

Attributes Data and Petrophysical Logs as A New 

Approach and Investigation of Training Data Set Size 

Effect on Its Performance in A Heterogeneous Carbonate 

Reservoir,” J. Pet. Sci. Eng., vol. 134, pp. 143–149, Oct. 

2015, doi: 10.1016/j.petrol.2015.08.001. 

[23] I. Laory, T. N. Trinh, I. F. C. Smith, and J. M. W. 

Brownjohn, “Methodologies for Predicting Natural 

Frequency Variation af A Suspension Bridge,” Eng. 

Struct., vol. 80, pp. 211–221, Dec. 2014, doi: 

10.1016/j.engstruct.2014.09.001. 

[24] D. Tao, Q. Ma, S. Li, Z. Xie, D. Lin, and S. Li, “Support 

Vector Regression for the Relationships between Ground 

Motion Parameters and Macroseismic Intensity in the 

Sichuan–Yunnan Region,” Appl. Sci., vol. 10, no. 9, p. 

3086, Apr. 2020, doi: 10.3390/app10093086. 

[25] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake 

Shakes Twitter Users,” in Proceedings of the 19th 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&
https://doi.org/10.1063/1.4987104
https://doi.org/10.22146/jfi.v24i1.53533
https://doi.org/10.12962/joe.v5i1.5021
https://doi.org/10.22146/jfi.v24i3.58237
https://doi.org/10.1007/s10712-022-09698-0
https://doi.org/10.1007/s10712-022-09698-0
https://doi.org/10.5194/nhess-22-1665-2022
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.3390/rs8100792
https://doi.org/10.3390/s19030542
https://doi.org/10.1109/ACCESS.2020.3029859
https://doi.org/10.1785/0220180259
https://doi.org/10.1029/2021JB023254
https://doi.org/10.1177/16878132221122770
https://doi.org/10.1016/j.soildyn.2021.106619
https://doi.org/10.1177/8755293020919419
https://doi.org/10.1016/j.cageo.2020.104475
https://doi.org/10.1016/j.petrol.2018.10.048
https://doi.org/10.1016/j.ijdrr.2020.101723
https://doi.org/10.1016/j.eswa.2017.02.017
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.petrol.2015.08.001
https://doi.org/10.1016/j.engstruct.2014.09.001
https://doi.org/10.3390/app10093086


Indonesian Review of Physics (IRIP) 
Vol.6, No.1, June 2023, pp. 45 - 55 

54 

 

A. Jufriansah, et al. Estimation of Flores Sea Aftershock Rupture Data … p-ISSN: 2621-3761  

e-ISSN: 2621-2889 

 

international conference on World wide web, Apr. 2010, 

pp. 851–860, doi: 10.1145/1772690.1772777. 

[26] S. Stramondo, C. Bignami, M. Chini, N. Pierdicca, and A. 

Tertulliani, “Satellite Radar and Optical Remote Sensing 

for Earthquake Damage Detection: Results from Different 

Case Studies,” Int. J. Remote Sens., vol. 27, no. 20, pp. 

4433–4447, Oct. 2006, doi: 

10.1080/01431160600675895. 

[27] D. Pasten, G. Saravia, E. E. Vogel, and A. Posadas, 

“Information Theory and Earthquakes: Depth Propagation 

Seismicity In Northern Chile,” Chaos, Solitons & 

Fractals, vol. 165, p. 112874, Dec. 2022, doi: 

10.1016/j.chaos.2022.112874. 

[28] P. Zhou, H. Yang, B. Wang, and J. Zhuang, 

“Seismological Investigations of Induced Earthquakes 

Near the Hutubi Underground Gas Storage Facility,” J. 

Geophys. Res. Solid Earth, vol. 124, no. 8, pp. 8753–

8770, Aug. 2019, doi: 10.1029/2019JB017360. 

[29] P. Yariyan, H. Zabihi, I. D. Wolf, M. Karami, and S. 

Amiriyan, “Earthquake Risk Assessment Using an 

Integrated Fuzzy Analytic Hierarchy Process with 

Artificial Neural Networks based on GIS: A case Study of 

Sanandaj in Iran,” Int. J. Disaster Risk Reduct., vol. 50, p. 

101705, Nov. 2020, doi: 10.1016/j.ijdrr.2020.101705. 

[30] J. Roiz-Pagador, A. Chacon-Maldonado, R. Ruiz, and G. 

Asencio-Cortes, “Earthquake Prediction in California 

Using Feature Selection Techniques,” in 16th 

International Conference on Soft Computing Models in 

Industrial and Environmental Applications (SOCO 2021), 

2022, pp. 728–738, doi: 10.1007/978-3-030-87869-6_69. 

[31] T.-Y. Hsu et al., “Rapid On-Site Peak Ground 

Acceleration Estimation Based on Support Vector 

Regression and P-Wave Features in Taiwan,” Soil Dyn. 

Earthq. Eng., vol. 49, pp. 210–217, Jun. 2013, doi: 

10.1016/j.soildyn.2013.03.001. 

[32] T. Zhao, V. Jayaram, A. Roy, and K. J. Marfurt, “A 

Comparison of Classification Techniques for Seismic 

Facies Recognition,” Interpretation, vol. 3, no. 4, pp. 

SAE29–SAE58, Nov. 2015, doi: 10.1190/INT-2015-

0044.1. 

[33] F. Soleimani, “Analytical Seismic Performance and 

Sensitivity Evaluation of Bridges Based on Random 

Decision Forest Framework,” Structures, vol. 32, pp. 

329–341, Aug. 2021, doi: 10.1016/j.istruc.2021.02.049. 

[34] X. Fan et al., “Earthquake‐Induced Chains of Geologic 

Hazards: Patterns, Mechanisms, and Impacts,” Rev. 

Geophys., vol. 57, no. 2, pp. 421–503, Jun. 2019, doi: 

10.1029/2018RG000626. 

[35] S. Mangalathu, H. Sun, C. C. Nweke, Z. Yi, and H. V. 

Burton, “Classifying Earthquake Damage to Buildings 

Using Machine Learning,” Earthq. Spectra, vol. 36, no. 1, 

pp. 183–208, Feb. 2020, doi: 

10.1177/8755293019878137. 

[36] T. Kim, J. Song, and O.-S. Kwon, “Probabilistic 

Evaluation of Seismic Responses Using Deep Learning 

Method,” Struct. Saf., vol. 84, p. 101913, May 2020, doi: 

10.1016/j.strusafe.2019.101913. 

[37] S. Bouktif, A. Fiaz, A. Ouni, and M. Serhani, “Optimal 

Deep Learning LSTM Model for Electric Load 

Forecasting using Feature Selection and Genetic 

Algorithm: Comparison with Machine Learning 

Approaches †,” Energies, vol. 11, no. 7, p. 1636, Jun. 

2018, doi: 10.3390/en11071636. 

[38] S. Rajkumari, K. Thakkar, and H. Goyal, “Fragility 

Analysis of Structures Subjected to Seismic Excitation: A 

State-of-the-art Review,” Structures, vol. 40, pp. 303–

316, Jun. 2022, doi: 10.1016/j.istruc.2022.04.023. 

[39] R. J. Geller, “Earthquake Prediction: A Critical Review,” 

Geophys. J. Int., vol. 131, no. 3, pp. 425–450, Dec. 1997, 

doi: 10.1111/j.1365-246X.1997.tb06588.x. 

[40] S. Uyeda, “The VAN Method of Short-Term Earthquake 

Prediction,” INCEDE Newslett, vol. 5, no. 4, pp. 2–4, 

1997, [Online]. Available: https://www.sems-

tokaiuniv.jp/old/eprc/res/incede/incede2.html. 

[41] L. Sevgi, “A Critical Review on Electromagnetic 

Precursors and Earthquake Prediction,” Turkish J. Electr. 

Eng. Comput. Sci., vol. 15, no. 1, pp. 1–15, 2007, 

[Online]. Available: 

https://journals.tubitak.gov.tr/elektrik/vol15/iss1/1. 

[42] F. Huang et al., “Studies on Earthquake Precursors in 

China: A Review for Recent 50 Years,” Geod. Geodyn., 

vol. 8, no. 1, pp. 1–12, Jan. 2017, doi: 

10.1016/j.geog.2016.12.002. 

[43] A. Mignan and M. Broccardo, “Neural Network 

Applications in Earthquake Prediction (1994–2019): 

Meta-Analytic and Statistical Insights on Their 

Limitations,” Seismol. Res. Lett., vol. 91, no. 4, pp. 2330–

2342, Jul. 2020, doi: 10.1785/0220200021. 

[44] A. Mignan and M. Broccardo, “One Neuron Versus Deep 

Learning in Aftershock Prediction,” Nature, vol. 574, no. 

7776, pp. E1–E3, Oct. 2019, doi: 10.1038/s41586-019-

1582-8. 

[45] A. Mignan and M. Broccardo, “A Deeper Look into 

‘Deep Learning of Aftershock Patterns Following Large 

Earthquakes’: Illustrating First Principles in Neural 

Network Physical Interpretability,” in Advances in 

Computational Intelligence. IWANN 2019, 2019, pp. 3–

14, doi: 10.1007/978-3-030-20521-8_1. 

[46] S. Karimzadeh, M. Matsuoka, J. Kuang, and L. Ge, 

“Spatial Prediction of Aftershocks Triggered by a Major 

Earthquake: A Binary Machine Learning Perspective,” 

ISPRS Int. J. Geo-Information, vol. 8, no. 10, p. 462, Oct. 

2019, doi: 10.3390/ijgi8100462. 

[47] L. Handayani, “Seismic Hazard Analysis of Maumere, 

Flores: a Review of the Earthquake Sources,” 2020, doi: 

10.4108/eai.12-10-2019.2296247. 

[48] R. Maneno, B. J. Sentosa, and G. Rachman, “Relocation 

of Earthquake Hypocenter in the Flores Region Using 

Hypo71,” IPTEK J. Eng., vol. 5, no. 2, pp. 33–37, May 

2019, doi: 10.12962/j23378557.v5i2.a5024. 

[49] H. Kurnio, T. Naibaho, and C. Purwanto, “Review of 

Submarine Landslides in the Eastern Indonesia Region,” 

Bull. Mar. Geol., vol. 34, no. 2, pp. 63–76, Dec. 2019, 

doi: 10.32693/bomg.34.2.2019.618. 

[50] I. R. Pranantyo, M. Heidarzadeh, and P. R. Cummins, 

“Complex Tsunami Hazards in Eastern Indonesia from 

Seismic and Non-Seismic Sources: Deterministic 

Modelling Based on Historical and Modern Data,” 

Geosci. Lett., vol. 8, no. 1, p. 20, Dec. 2021, doi: 

10.1186/s40562-021-00190-y. 

[51] P. Supendi et al., “Relocated Aftershocks and Background 

Seismicity in Eastern Indonesia Shed Light on the 2018 

Lombok and Palu Earthquake Sequences,” Geophys. J. 

Int., vol. 221, no. 3, pp. 1845–1855, Jun. 2020, doi: 

10.1093/gji/ggaa118. 

[52] A. Jufriansah, Y. Pramudya, A. Khusnani, and S. Saputra, 

“Analysis of Earthquake Activity in Indonesia by 

Clustering Method,” J. Phys. Theor. Appl., vol. 5, no. 2, p. 

92, Sep. 2021, doi: 10.20961/jphystheor-appl.v5i2.59133. 

[53] A. Chantaramanee, K. Nakagawa, K. Yoshimi, A. 

Nakane, K. Yamaguchi, and H. Tohara, “Comparison of 

Tongue Characteristics Classified According to 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&
https://doi.org/10.1145/1772690.1772777
https://doi.org/10.1080/01431160600675895
https://doi.org/10.1016/j.chaos.2022.112874
https://doi.org/10.1029/2019JB017360
https://doi.org/10.1016/j.ijdrr.2020.101705
https://doi.org/10.1007/978-3-030-87869-6_69
https://doi.org/10.1016/j.soildyn.2013.03.001
https://doi.org/10.1190/INT-2015-0044.1
https://doi.org/10.1190/INT-2015-0044.1
https://doi.org/10.1016/j.istruc.2021.02.049
https://doi.org/10.1029/2018RG000626
https://doi.org/10.1177/8755293019878137
https://doi.org/10.1016/j.strusafe.2019.101913
https://doi.org/10.3390/en11071636
https://doi.org/10.1016/j.istruc.2022.04.023
https://doi.org/10.1111/j.1365-246X.1997.tb06588.x
https://www.sems-tokaiuniv.jp/old/eprc/res/incede/incede2.html
https://www.sems-tokaiuniv.jp/old/eprc/res/incede/incede2.html
https://journals.tubitak.gov.tr/elektrik/vol15/iss1/1
https://doi.org/10.1016/j.geog.2016.12.002
https://doi.org/10.1785/0220200021
https://doi.org/10.1038/s41586-019-1582-8
https://doi.org/10.1038/s41586-019-1582-8
https://doi.org/10.1007/978-3-030-20521-8_1
https://doi.org/10.3390/ijgi8100462
https://doi.org/10.4108/eai.12-10-2019.2296247
https://doi.org/10.12962/j23378557.v5i2.a5024
https://doi.org/10.32693/bomg.34.2.2019.618
https://doi.org/10.1186/s40562-021-00190-y
https://doi.org/10.1093/gji/ggaa118
https://doi.org/10.20961/jphystheor-appl.v5i2.59133


Indonesian Review of Physics (IRIP) 
Vol.6, No.1, June 2023, pp. 45 - 55 

55 

 

A. Jufriansah, et al. Estimation of Flores Sea Aftershock Rupture Data … p-ISSN: 2621-3761  

e-ISSN: 2621-2889 

 

Ultrasonographic Features Using a K-Means Clustering 

Algorithm,” Diagnostics, vol. 12, no. 2, p. 264, Jan. 2022, 

doi: 10.3390/diagnostics12020264. 

[54] C. Yuan and H. Yang, “Research on K-Value Selection 

Method of K-Means Clustering Algorithm,” J, vol. 2, no. 

2, pp. 226–235, Jun. 2019, doi: 10.3390/j2020016. 

[55] C. Jiang, X. Wei, X. Cui, and D. You, “Application of 

Support Vector Machine to Synthetic Earthquake 

Prediction,” Earthq. Sci., vol. 22, no. 3, pp. 315–320, Jun. 

2009, doi: 10.1007/s11589-009-0315-8. 

[56] W. Astuti, R. Akmeliawati, W. Sediono, and M. J. E. 

Salami, “Hybrid Technique Using Singular Value 

Decomposition (SVD) and Support Vector Machine 

(SVM) Approach for Earthquake Prediction,” IEEE J. Sel. 

Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 5, pp. 

1719–1728, May 2014, doi: 

10.1109/JSTARS.2014.2321972. 

[57] S. Marhain, A. N. Ahmed, M. A. Murti, P. Kumar, and A. 

El-Shafie, “Investigating the Application of Artificial 

Intelligence for Earthquake Prediction In Terengganu,” 

Nat. Hazards, vol. 108, no. 1, pp. 977–999, Aug. 2021, 

doi: 10.1007/s11069-021-04716-7. 

[58] Y. Essam, P. Kumar, A. N. Ahmed, M. A. Murti, and A. 

El-Shafie, “Exploring the Reliability of Different 

Artificial Intelligence Techniques In Predicting 

Earthquake for Malaysia,” Soil Dyn. Earthq. Eng., vol. 

147, p. 106826, Aug. 2021, doi: 

10.1016/j.soildyn.2021.106826. 

[59] Z. Huang, C. Yang, X. Zhou, and S. Yang, “Energy 

Consumption Forecasting for the Nonferrous Metallurgy 

Industry Using Hybrid Support Vector Regression with an 

Adaptive State Transition Algorithm,” Cognit. Comput., 

vol. 12, no. 2, pp. 357–368, Mar. 2020, doi: 

10.1007/s12559-019-09644-0. 

[60] I. Aljarah, A. M. Al-Zoubi, H. Faris, M. A. Hassonah, S. 

Mirjalili, and H. Saadeh, “Simultaneous Feature Selection 

and Support Vector Machine Optimization Using the 

Grasshopper Optimization Algorithm,” Cognit. Comput., 

vol. 10, no. 3, pp. 478–495, Jun. 2018, doi: 

10.1007/s12559-017-9542-9. 

[61] A. Lulli, L. Oneto, and D. Anguita, “Mining Big Data 

with Random Forests,” Cognit. Comput., vol. 11, no. 2, 

pp. 294–316, Apr. 2019, doi: 10.1007/s12559-018-9615-

4. 

[62] M. N. Shodiq, D. H. Kusuma, M. G. Rifqi, A. R. 

Barakbah, and T. Harsono, “Neural Network for 

Earthquake Prediction Based on Automatic Clustering in 

Indonesia,” JOIV  Int. J. Informatics Vis., vol. 2, no. 1, p. 

37, Feb. 2018, doi: 10.30630/joiv.2.1.106. 

[63] M. N. Shodiq, D. H. Kusuma, M. G. Rifqi, A. R. 

Barakbah, and T. Harsono, “Spatial Analisys of 

Magnitude Distribution for Earthquake Prediction Using 

Neural Network Based on Automatic Clustering In 

Indonesia,” in 2017 International Electronics Symposium 

on Knowledge Creation and Intelligent Computing (IES-

KCIC), Sep. 2017, pp. 246–251, doi: 

10.1109/KCIC.2017.8228594. 

[64] A. S. N. Alarifi, N. S. N. Alarifi, and S. Al-Humidan, 

“Earthquakes Magnitude Predication Using Artificial 

Neural Network in Northern Red Sea Area,” J. King Saud 

Univ. - Sci., vol. 24, no. 4, pp. 301–313, Oct. 2012, doi: 

10.1016/j.jksus.2011.05.002. 

 

 

 

Declarations 
Author contribution : Adi Jufriansah is responsible for the entire research project. He also leads 

scriptwriting and collaborations with other writers. Azmi Khusnani and Yudhiakto 

Pramudya participated in data collection and analysis. Mulya Afriyanto participated 

as a data supplier. All authors approved the final manuscript. 

Funding statement : This research is funded by the government of Indonesian Ministry of Education, 

Culture, Research and Technology with the contract no. 1098/LL15/KM/2022) 

Conflict of interest : All authors declare that they have no competing interests. 

Additional information : No additional information is available for this paper. 

 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526275227&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1526650381&1&&
https://doi.org/10.3390/diagnostics12020264
https://doi.org/10.3390/j2020016
https://doi.org/10.1007/s11589-009-0315-8
https://doi.org/10.1109/JSTARS.2014.2321972
https://doi.org/10.1007/s11069-021-04716-7
https://doi.org/10.1016/j.soildyn.2021.106826
https://doi.org/10.1007/s12559-019-09644-0
https://doi.org/10.1007/s12559-017-9542-9
https://doi.org/10.1007/s12559-018-9615-4
https://doi.org/10.1007/s12559-018-9615-4
https://doi.org/10.30630/joiv.2.1.106
https://doi.org/10.1109/KCIC.2017.8228594
https://doi.org/10.1016/j.jksus.2011.05.002

