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Abstract: 

Background: Machine learning relies on a hybrid of analytics, including regression analyses. There 

have been no attempts to deploy a sinusoidal transformation of data to enhance linear regression 

models.  

Objectives: We aim to optimize linear models by implementing sinusoidal transformation to minimize 

the sum of squared error.  

Methods: We implemented non-Bayesian statistics using SPSS and MatLab. We used Excel to 

generate 30 trials of linear regression models, and each has 1,000 observations. We utilized SPSS linear 

regression, Wilcoxon signed-rank test, and Cronbach’s alpha statistics to evaluate the performance of 

the optimization model.  

Results: The sinusoidal transformation succeeded by significantly reducing the sum of squared errors 

(P-value<0.001). Inter-item reliability testing confirmed the robust internal consistency of the model 

(Cronbach’s alpha=0.999).  

Conclusion: Our optimization model is valuable for high-impact research based on linear regression. 

It can reduce the computational processing demands for powerful real-time and predictive analytics of 

big data. 

Keywords: Artificial Intelligence; Data Transformation; Machine Learning; Predictive Analytics; 

Regression.  

Introduction: 

Although data science and statistical modeling have 

been evolving for centuries, most data analytic 

models are not entirely accurate [1]. The British 

statistician, George EP Box, coined the epigram “All 

models are wrong, but some are useful” [1, 2]. The 

famous aphorism of statistics appeared in a paper 

published by George Box [1, 3]. Linear models 

describe a continuous response variable as a function 

of predictor variables that can predict the behavior of 

complex systems [4, 5]. Data scientists implement 

linear regression to model the causality relationships 

within data between explanatory and outcome 

variables [6]. However, these methods are not 

sufficiently “bulletproof” in terms of statistical 

precision [7, 8]. Sir Ronald Fisher, a British data 

scientist and geneticist, introduced the modern 

regression model in 1922 [9-11]. Ronald Fisher 

followed the footsteps of contemporary statisticians, 

including Karl Pearson, a 19th-century English 

mathematician [12]. Pearson introduced many 

statistical tests, including Pearson’s correlation, 

which relates to Fisher’s linear regression models 

[13]. The simple linear regression examines the 

relationship between one predictor variable and one 

outcome variable. In contrast, the multiple regression 

tests a multitude of explanatory variables for a higher 

predictive power [14-16].  
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Machine learning, an application of artificial 

intelligence, relies on several methods, including 

regression models, neural networks, and 

classification trees [17]. The optimization of those 

analytics can positively influence machine learning 

technologies [18-20]. As mentioned earlier, linear 

regression exploits the least-squares method to 

extrapolate a line that best fits the causality 

association [21, 22]. Perfecting the least-squares is 

critical for a rigorous statistical inference and 

predictive modeling [23-27]. There are several data 

transformation techniques that scientists are using to 

boost a spectrum of statistical tests, particularly for 

non-Bayesian parametric tests, including the Fourier 

transformation, the Log Base-10 (Log10) 

transformation, the natural logarithm (Ln) 

transformation and inverse transformation as well as 

the square root and cubic root transformers [28, 29]. 

The sinusoidal optimization of data can capitalize on 

unprecedented powerful and economic computational 

processing for real-time analyses and predictive 

models [27]. Researchers and data analysts can 

integrate sinusoidally-optimized linear models in 

combination with Hill’s criteria to infer robust data 

that possess the least prediction error and the highest 

statistical power while sparing the human resources 

and the computational infrastructure to a minimum 

[30, 31]. Our primary objective is to optimize linear 

models, principally for analytics that are dependent 

on correlation and regression statistics, by 

implementing a trigonometry-based sinusoidal 
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transform function that significantly reduces the error 

of residuals by minimizing the sum of squared errors 

(SSE). Hence, achieving more powerful and 

externally valid linear models that apply for the 

predictive models in machine learning that are 

necessary for high-impact research based on big data. 

These optimized models will not only be most 

accurate in terms of statistical inference but also will 

be economical in terms of the computational 

processing demands for analyses of big data. 

 

 

Methods: 

Mathematical Simulations: We made multiple 

simulations based on a random number generator that 

follows a normal distribution [mean= 0, standard 

deviation= 1]. We created thirty trials (models) of 

linear regression [k= 30]. Each has a sample size of 

one thousand observations [n= 1000] for two 

variables as a predictor and an outcome, X and Y, 

respectively, thereby summing to a grand sample size 

of 30000 [n total= 30000] for a robust simulation and 

hypothesis testing. We transformed the two variables 

using the “sin” function in Excel 2016, thereby 

changing each variable to the range of -1 to 1. Within 

each linear model, we calculated correlation and 

regression statistics, including the sum of squares 

(SS), mean of squares (MS), F statistic [ANOVA], P-

value [regression]. We calculated the sum of squared 

errors using the formula SSE=∑ (y−ŷ)2 to fulfill the 

regression equation ŷ=b0+b1X. We conducted the 

calculations twice, before [pre-optimization] and 

after deploying the sinusoidal transformation [post-

optimization]. We statistically tested the performance 

of the sinusoidal optimization model using the 

Wilcoxon signed-rank test for non-parametric within-

subjects statistical inference by comparing the pre-

optimization versus post-optimization statistics. 

Ultimately, we further examined the optimization 

efficacy of our model by implementing Cronbach’s 

alpha as a measure of the internal consistency of the 

summative optimization model. Statistical analysis, 

level of evidence and ethics: We implemented the 

Statistical Package for the Social Sciences [IBM-

SPSS version 24] and Excel [Microsoft Office 2016] 

with integrated Data Analysis ToolPak. We tabulated 

some of the raw data with Word [Microsoft Office 

2016] and exported it afterward to Excel. We made 

descriptive statistics using Excel and GNU-Octave 

version 5.1.0 [GNU’s Not Unix Project]. We 

implemented MatLab high-level programming 

language (HLL) version R2019a [MathWorks] for 

two-dimensional array transposition before importing 

the data via SPSS for Cronbach’s alpha calculations. 

We carried out an elaborate set of parametric as well 

as non-parametric models of non-Bayesian models of 

statistics, including linear regression, Fisher’ 

ANOVA, Wilcoxon signed-rank test for within-

subjects study design, and Cronbach’s alpha analytics 

for assessing the reliability of our proposed statistical 

model based on the sinusoidal transformation of data. 

Our study is of level-1c, which belongs to the top tier 

[Level-1, Grade-A], in compliance with the 

categorization scheme by the Oxford Centre for 

Evidence-Based Medicine [32, 33]. The authors made 

a mathematical model superimposed onto simulated 

statistical calculations. Hence, there were neither 

patients nor animal models that mandate ethical 

permission.The systematic review of the literature: 

During the second half of September 2019, we 

conducted a pragmatic review of the databases of 

peer-reviewed literature, including the Cochrane 

Library [the Cochrane Database of Systematic 

Reviews | the Cochrane Collaboration], PubMed [the 

United States National Library of Medicine], and 

Embase [Elsevier]. We implemented an exhaustive 

set of keywords based on medical subject headings 

(MeSH) in addition to generic terms while using 

Boolean expression operators and truncations. 

Keywords represented five main themes, including 1) 

machine learning and artificial intelligence, 2) real-

time and predictive analytics, 3) real-time analytics 

and epidemiology, 4) data transform functions, and 5) 

an amalgamation of the previous four themes. We 

aimed to explore the existing literature for prior 

attempts of using sinusoidal data transformation for 

enhancing and optimizing linear models. 

 

 Results: 

For the optimization model, we generated a 

sinusoidal transform for 30 trials, i.e., simulations of 

linear regression analyses (Table 1). The model was 

triumphant in attaining a significant reduction of the 

sum of squared errors (SSE) for each trial following 

the application of the sinusoidal transform [absolute 

Z-score= 4.782, P-value<0.001, Wilcoxon signed-

rank test] (Table 2). We utilized a non-parametric 

alternative of the Student’s t-test for pair-wise within-

subjects study design due to the violation of all of the 

t-test assumptions, including the absence of statistical 

outliers, homoscedasticity and the normality of 

distribution [Shapiro-Wilk test] (Table 2). On the 

other hand, there was no significant change in the 

coefficient of determination (R2 score) for the pre-

optimized versus post-optimized trials, as we created 

each simulation using a random number generator 

function by using the Data Analysis ToolPak plug-in 

in Excel. A randomly selected linear model, the 

seventh trial, manifested with a sum of squared errors 

of 1.03E+11 [pre-optimization] and 499.797 [post-

optimization], confirming a significant SSE reduction 

and a better predictive model fitting (Figures 1 and 2). 

The sinusoidal transform had a centrifugal-like effect 

on the scattered correlates of the tested variables, 

representing some degree of data deformation. Lastly, 

Cronbach’s alpha analysis yielded collateral evidence 

and further confirmed the internal consistency of the 

optimization model (Cronbach’s alpha= 0.999) 

(Table 3). Deleting any trial from the optimization 

model had no effect on the inter-item reliability with 

an exception for one simulation, the 16th trial, the 
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deletion of which imperceptibly increases the internal 

consistency.  

 

Table (1) Optimization Model Analytics. 

Trial 

Pre-Optimization 

[Randomly-Generated Normal Distribution] 

Post-Optimization 

[Sinusoidal Transform Function] 
P-value  

R2 Score SSE F Score P-value R2 Score SSE F Score P-value  

1 0.007 9.74E+10 6.782 0.009 0.001 506.387 0.745 0.388 

<0.001 

2 0.001 9.99E+10 1.451 0.229 0.002 506.864 2.324 0.128 

3 <0.001 1.01E+11 0.424 0.515 0.050 470.628 2.549 0.111 

4 0.001 9.35E+10 0.559 0.455 0.001 491.498 0.689 0.407 

5 0.001 1.02E+11 1.069 0.301 <0.001 490.904 0.100 0.752 

6 <0.001 1.01E+11 0.281 0.596 <0.001 490.793 0.768 0.381 

7 0.002 1.03E+11 1.753 0.186 0.005 499.797 5.411 0.020 

8 <0.001 9.84E+10 0.222 0.638 <0.001 492.525 0.050 0.823 

9 <0.001 1.03E+11 0.177 0.674 0.001 505.400 0.589 0.443 

10 <0.001 1.00E+11 0.007 0.934 0.001 516.569 0.605 0.437 

11 0.004 9.57E+10 4.211 0.040 <0.001 499.195 0.488 0.485 

12 <0.001 1.08E+11 0.002 0.968 0.002 490.659 2.474 0.116 

13 0.004 9.82E+10 3.809 0.051 <0.001 487.855 <0.001 0.988 

14 0.002 9.96E+10 2.178 0.140 0.002 512.479 2.292 0.130 

15 0.003 1.05E+11 2.773 0.096 0.002 492.662 1.585 0.208 

16 <0.001 1.02E+10 0.076 0.783 <0.001 489.088 0.127 0.722 

17 <0.001 1.04E+11 0.001 0.979 <0.001 510.862 0.401 0.527 

18 <0.001 9.05E+10 0.043 0.835 0.001 513.120 1.073 0.300 

19 0.004 1.03E+11 4.435 0.035 <0.001 500.158 0.079 0.778 

20 0.002 1.04E+11 1.911 0.167 <0.001 494.541 0.044 0.834 

21 0.006 1.03E+11 6.239 0.013 <0.001 493.778 0.490 0.484 

22 <0.001 9.96E+10 0.457 0.499 <0.001 520.466 0.202 0.653 

23 0.002 1.13E+11 2.184 0.140 0.003 474.729 3.035 0.082 

24 <0.001 1.03E+11 0.013 0.911 <0.001 498.553 0.198 0.657 

25 <0.001 9.50E+10 0.281 0.596 <0.001 479.322 0.195 0.659 

26 0.003 1.05E+11 2.587 0.108 0.003 511.846 3.362 0.067 

27 <0.001 1.04E+11 0.181 0.671 <0.001 498.580 0.003 0.955 

28 <0.001 9.80E+10 0.461 0.498 <0.001 497.725 0.276 0.599 

29 <0.001 9.82E+10 0.412 0.521 <0.001 504.515 0.193 0.660 

30 0.001 9.68E+10 0.973 0.324 <0.001 500.986 0.121 0.727 

† Wilcoxon signed-rank test statistics are in connection with calculations of the sum of squared errors (SSE).  
†† Linear model-of-interest is in bold font [Random Selection, Trial 7]. 

Table (2) Optimization Model Statistics: Normality tests and Wilcoxon signed-rank test.  

Tests of Normality 

 

Kolmogorov-

Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Pre-Optimization SSE .335 30 .000 .410 30 .000 

Post-Optimization 

SSE 

.097 30 .200* .975 30 .694 

*: This is a lower bound of the true significance. 
a: Lilliefors Significance Correction. 

Wilcoxon signed-rank test 

Ranks 

 N Mean Rank Sum of Ranks 

Post-Optimization SSE versus  
Pre-Optimization SSE 

Negative Ranks 30a 15.50 465.00 

Positive Ranks 0b .00 .00 

Ties 0c   

Total 30   
a: Post-Optimization SSE < Pre-Optimization SSE 
b:Post-Optimization SSE > Pre-Optimization SSE 
c: Post-Optimization SSE = Pre-Optimization SSE 

Test Statistics a 

 

Post-Optimization SSE versus Pre-

Optimization SSE 

Z -4.782b 

Asymp. Sig. (2-tailed) <0.001 
a: Wilcoxon Signed Ranks Test. 
b: Based on positive ranks. 
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Table 3: Internal Consistency Analysis: Cronbach’s Alpha. 

  

 

Figure (1) The “Centrifugal” Effect of the Sinusoidal Transformation: Pre and Post-Optimization [Trial 7]. 
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Item-Total Statistics 

 Cronbach's Alpha if Item Deleted 

Trial 1 .999 

Trial 2 .999 

Trial 3 .999 

Trial 4 .999 

Trial 5 .999 

Trial 6 .999 

Trial 7 .999 

Trial 8 .999 

Trial 9 .999 

Trial 10 .999 

Trial 11 .999 

Trial 12 .999 

Trial 13 .999 

Trial 14 .999 

Trial 15 .999 

Trial 16 1.000 

Trial 17 .999 

Trial 18 .999 

Trial 19 .999 

Trial 20 .999 

Trial 21 .999 

Trial 22 .999 

Trial 23 .999 

Trial 24 .999 

Trial 25 .999 

Trial 26 .999 

Trial 27 .999 

Trial 28 .999 

Trial 29 .999 

Trial 30 .999 

Reliability Statistics 

Cronbach's Alpha Cronbach's Alpha Based on Standardized Items No. of Items 

.999 1.000 30 
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Figure (2) Frequency Distribution of the Linear Model’s Residuals [Trial 7]. 

Discussion: 

We reviewed the literature on the 20th of September 2019 

(Figure 3). Based on the combination of thematic keywords 

search, there were 55,288 publications. Those indexed in 

the Cochrane Library were 117 (0.21%), in the PubMed, 

there were 40 publications (0.07%), while those indexed in 

the Embase were 55,131 publications (99.71%). Following 

a full-text retrieval of papers of interest, only fifteen 

publications (0.03%) indexed in the national library of 

medicine were found relevant to the primary objective of 

the current study. However, none of these studies 

implemented a sinusoidal data transform for boosting linear 

regression models. Since the last decade, there have been  

several attempts in the existing peer-reviewed literature to 

implement linear models as well as other machine-learning 

methods in combination with data transform function, 

including logistic regression, regression trees and Fourier 

transform, logistic regression with Log10 transformation, 

logistic regression with Ln transformation, multiple linear 

regression with log10 transformation, cycling regression 

model with Fourier transform, proportional hazards Cox 

regression model, time-series analytics regression with 

Fourier transform, logistic regression with square root and 

log10 transformation and proportional hazards model in 

combination with logistic regression [34-36]. Machine 

learning relies upon the analyses of big data using a plethora 

of well-established techniques of mathematical and data 

science models, including artificial neural networks, 

regression analysis, and classification trees [17]. Artificial 

intelligence techniques attempt to reach the lowest possible 

error of mathematically interpreted predictions for causality 

associations [19]. Machine learning is mandatory for 

unwitnessed benefits when it comes to applications related 

to spatio-temporal description and prediction of phenomena 

of interest, including epidemiological and digital 

epidemiological investigations [17, 19]. The infrastructure 

of big data upon which machine learning algorithms operate 

is the same as those for classical epidemiology and digital 

epidemiological research [37]. Researchers can retrieve 

data using survey tools, internet snapshots, longitudinal 

studies, cross-sectional studies, in addition to analyses of 

web-based social networks and electronic commerce 

website analytics of the surface web as well as the deep 

web, including the infamous Darknet hypermarket [37-40]. 

The main limitation of our study is the implementation of a 

limited number of simulations, and the fact that we based 

these simulations on random number generators rather than 

factual data. Besides, the sinusoidal transform function may 

introduce some degree of deformation of data. 

Nevertheless, our sinusoidal transformation model was 

successful. The model applies to anticipated high-impact 

research that requires linear model analyses, including 

anatomical sciences, dermatology as well as medical 

research and practice, as in the case of psychoactive and 

novel psychoactive substances research [41-45]. Optimized 

regression analytics is precious when it comes to 

applications of big data analytics and bioinformatics, 

comprehensive genomic analyses, and analytics based on 

extracting information from open-source deposits of big 

data, for instance, Google Trends and Google Analytics 

databases. Optimum linear models not only will reinforce 

the hypothesis testing for inferences that are more powerful 

but will also lessen the computational processing power and 

the human resources allocated for demanding real-time and 

predictive analyses. When integrated with the anticipated 

quantum computing, the benefits will be monumental 

concerning the precision of analytics and the efficacy of 

computational processing. 
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Figure (3) Keywords-Based Systematic Review of the Databases of Literature. 

 

Conclusion: 

The sinusoidal optimization of linear models serves 

three primary purposes: 1) Reducing the total sum of 

squared errors (SSE), which will provide a better line 

of best fit, i.e., a "trend" line. 2) The sinusoidal 

transformation will scale down any variable to the 

range of -1 to 1, thereby significantly reducing the 

computational processing demands for mathematical 

calculations for big data with an extensive list of 

variables as well as an extended number of 

observations within a variable, that is tangible in 

multiple regression analyses. 3) Real-time processing 

of correlations and regression among exhaustive 

multidimensional arrays of data will be more 

demanding in terms of the requirement for 

computational processing power that can burden 

supercomputers. The optimization will transform all 

variables to be into a narrower range, with limited 

decimal places, which is “economical” for 

mathematical and computational processing.  
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 تحسين النماذج الخطية عن طريق التحويل الجيبي لتعلم الآلة المعزز في الطب 

 

 * الدكتور أحمد محمد الامام  

  

 لخلاصة:ا

والتراجع الخطي. لا توجد هناك  هناك محاولات مسبقة  , التحليلات ، بما في ذلك تحليلات الانحداريعتمد التعلم الآلي على مزيج من  خلفية البحث:

 .لأستخدام المحولات الجيبية للبيانات لتعزيز نماذج الانحدار الخطي

ت للبيانات لتعزيز نماذج الانحدار نحن نهدف إلى تحسين النماذج الخطية من خلال تطبيق التحويل الجيبي لتقليل العدد الإجمالي للمربعا الأهداف:

  .الخطي

لإنشاء ثلاثين تجربة لنماذج الانحدار الخطي ، ولكل  Excel تم استخدام MatLab و SPSS قمنا بتطبيق إحصاءات غيربايزي باستخدام المنهجية:

ن ، وإحصائيات كرونباخ ألفا لتقييم أداء نموذج من أجل الانحدار الخطي ، واختبار ويلكوكسو SPSS منها ألف ملاحظة )عينة(. تم استخدام برنامج

 التحسين )التحويل الجيبي(.

بشكل أحصائي ملحوظ. أكد اختبار كرونباخ ألفا الثبات  P<0.001 و بقيمة كان التحويل الجيبي ناجحًا عن طريق تقليل إجمالي المربعات النتائج:

 ( 0.999الداخلي للنموذج المستخدم )معامل كرونباخ ألفا = 

ات يعد نموذج التحويل الجيبي ذو أهمية في الأبحاث عالية التأثير التي تعتمد على الانحدار و التراجع الخطي. حيث يمكن أن تقلل من متطلب  الإستتنتاج:

 .المعالجة الحسابية لتحليلات قوية في الوقت الحقيقي والتنبؤات الأحصائية

 ويل البيانات؛ تعلم الآلة؛ التحليلات التنبؤية؛ تحليل الانحدار.الذكاء الاصطناعي؛ تح الكلمات المفتاحية:


