

1(2)(2021) 318-329 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

DESIGN OF SHELL AND TUBE TYPE HEAT EXCHANGER FOR NANOFIBRIL CELLULOSE PRODUCTION PROCESS

Hanif Nur Purnamasari¹, Teguh Kurniawan², Asep Bayu Dani Nandiyanto^{1*}

¹ Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Bandung, Indonesia

² Departemen Teknik Kimia, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia

Email: *nandiyanto@upi.edu

Abstract. Heat exchanger plays an important role in industry. In industrial applications, the type of heat exchanger that is often found is the shell and tube type heat exchanger. The aim of this paper is to of tube and shell type heat exchanger for nanofibril cellulose production applications. The method used is to design several assumptions and calculate parameters related to determining the performance of the heat exchanger. The parameters are calculated manually using the Microsoft Excel application. In this design, the TEMA standard is used as a reference. The result of this paper is the heat exchanger has 53 pcs of tubes with the effectiveness up to 89.21%. This indicates that the overall performance of the heat exchanger in cellulose nanofibril production applications can be further improved by selecting the right fluid, fluid flow rate, and other physical properties, as well as the number of tubes that will be required.

Keywords: Effectiveness, Heat Exchanger, Performance, Shell and Tube

1. Introduction

A heat exchanger can be defined as a device that functions to transfer heat between two fluids that are at different temperatures. These two liquids are separated by a wall to prevent mixing with each other [1]. Heat exchangers are often used in engineering applications such as power generation, petroleum refining, chemical engineering processes, air conditioning, food industry and others [2]. There are various types of heat exchangers, one of which is a shell and tube heat exchanger which is commonly used as a gas or liquid medium in a large temperature and pressure range [3]. The diagram of typical shell and tube heat exchanger is shown in Figure 1. Shell and tube heat exchangers are made of tube bundles and may consist of several tubes which are the medium for fluid flow and heat transfer [4,5].

1(2)(2021) 318-329 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

Figure 1. Diagram of a typical shell and tube heat exchanger [6]

In a previous review, Feng et al. [7] designed a shell and tube heat exchanger with the hot water as source of heat for organic fluid evaporation process. The results showed that the complex function has a minimum point with an optimal external diameter of the heat transfer tube. This shows that the complex function has a certain heat transfer performance and greatly improves the fluid flow performance. In Said et al. [8] investigating the efficiency of heat exchangers using stable Cu/water nanofluids. Based on his research results, the convective heat transfer coefficient obtained with nanofluid is slightly higher than that of base fluid for the same fluid inlet temperature and mass flow rate.

This study purpose to focus on the design of shell and tube type heat exchanger for nanofibril cellulose production applications because the design of heat exchangers to produce this nanocrystal is still rare. Based on literature [9], the preparation of cellulose nanofibrils for use in the synthesis of polyvinyl alcohol/cellulose nanofibril hybrid airgel microspheres requires a temperature of 60°C. To determine the performance of the heat exchanger that has been designed, it is necessary to calculate the heat transfer surface area (A) that depend on other parameters, namely thermal load (Q), overall heat transfer coefficient (U) and logarithmic mean temperature difference (ΔTlm).

2. Method

The shell and tube type heat exchanger are designed by specifying the proper dimensions for the heat exchange apparatus. Standard of Tubular Exchanger Manufacturers Association (TEMA) is used in the process of collecting data regarding the specifics and dimensions of the apparatus. After that, the thermal analysis takes the form of an overall calculation heat transfer coefficient (U), LMTD method, heat transfer (Q), and pressure drop is also calculated manually using basic Microsoft Office applications that calculated based on Table 1. Then the calculation results are considered to determine the performance and efficiency of the heat exchanger.

Section	Parameter	Equation	No. Eq
Basic parameters	The energy transferred (Q)	$Q_{in} = Q_{out}$ $m_h \times Cp_h \times \Delta T_h = m_c \times Cp_c \times \Delta T_c$	(1)
		Where,	
		Q : the energy transferred (Wt)	
		m : the mass flow rate of the fluid (Kg/s)	
		Cp : the specific heat	
		ΔT : the fluid temperature difference (°C).	
	Logarithmic mean temperature differenced (LMTD)	$\Delta T_{lm} = \frac{(T_1 - t_2) - (T_2 - t_1)}{ln\frac{(T_1 - t_2)}{(T_2 - t_1)}}$	(2)
		ΔT_{lm} : log mean temperature difference	
		T_1 : temperature of the hot fluid inlet (°C)	
		T_2 : temperature of the hot fluid outlet (°C)	
		t_1 : temperature of the cold fluid inlet (°C)	
		t_2 : temperature of the cold fluid outlet (°C)	
	Correction factor	$R = \frac{T_1 - T_2}{t_2 - t_1}$	(3)
		$S = \frac{t_2 - t_1}{T_1 - t_1}$	
		$F_t = \frac{\sqrt{R^2 + 1} \ln[\frac{1 - P}{1 - PR}]}{(R - 1) \ln(\frac{2 - P(R + 1 - \sqrt{R^2 + 1})}{2 - P(R + 1 + \sqrt{R^2 + 1})})}$	(4)

Table 1. Parameter calculation of heat exchanger

1(2)(2021) 318-329 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

	Eq
	(5)
ΔT	$_{n} = F_{t} \Delta T_{lm} \tag{6}$

Heat		$A = \frac{Q}{Q}$	(7)
Transfer	Field	$A = \frac{1}{U \times \Delta T_{lm}}$	
Area (A)			

Where,

Q : the energy transferred (W)

U : the overall heat transfer coefficient

 ΔT_{lm} : the logarithmic mean temperature difference.

Number of Tubes (N)

$$N_t = \frac{A}{\pi \times D_o \times l} \tag{8}$$

(9)

Where,

N : the number of tubes

A: the area of the heat transfer area (m²),

 $\pi:3.14$

 D_o : tube diameter (m)

l : tube length (m).

TubeSurface Area
of Total Heat
Transfer in
Tube (a_t) $a_t = N_t \frac{a'_t}{n}$

 a_t : the total heat transfer surface area in the tube (m²)

 Section	Parameter	Equation	No. Eq
		N_t : the number of tubes	
		a'_t : the flow area in the tube (m ²)	
		<i>n</i> : the number of passes.	
	Mass Flow Rate of Water in	$Gt = \frac{m_h}{a_t}$	(10)
	Tube (Gt)	Where,	
		Gt: the mass flow of water in the tube (kg/m ² s)	
		m_h : the mass flow rate of the hot fluid (Kg/s)	
		a_t : the flow area tube (m ²)	
	Reynold number (Re,t)	$Re_t = \frac{di_t \times Gt}{\mu}$	(11)
		Where,	
		Re_t : the Reynolds number in tube	
		di_t : the inner tube diameter (m),	
		Gt: the mass flow of water in the tube (m ²)	
		μ : the dynamic viscosity (Kg/ms).	
	Prandtl Number (Pr,t)	$Pr = (\frac{C_p \times \mu}{K})^{\frac{1}{2}}$	(12)
		Where,	
		<i>Pr</i> : Prandtl number	
		Cp: the specific heat of the fluid in the tube	
		μ : the dynamic viscosity of the fluid in the tube (Kg/ms)	
		K : the thermal conductivity of the tube material (W/m°C).	

Section	Parameter	Equation	No. Eq
	Nusselt number (Nu,t)	$Nu = 0.023 \times Re_t^{0.6} \times Pr^{0.33}$	(13)
	Inside coefficient (h _i)	$hi = \frac{Nu \times K}{d_i, t}$	(14)
		Where,	
		hi : the convection heat transfer coefficient in the tube (W/m ² °C)	
		<i>K</i> : the thermal conductivity of the material (W/m°C)	
		d_i , t : the inner tube diameter (m).	
Shell	Shell flow area (A_s)	$D_b = d_o \left(\frac{N_t}{k_1}\right)^{\frac{1}{n_1}}$	(15)
		$A_s = \frac{d_s \times C \times D_b}{P_t}$	
		Where,	(16)
		d_s : shell diameter (m)	
		C : clearance (P_t - d_o)	
		D_b : a shell bundle	
		P_t : tube pitch (1.25× d_o) (m).	
	Mass Flow Rate of Water in	$Gs = \frac{m_c}{A_s}$	(17)
	Shell (Gs)	m_c : the mass flow rate of the cold fluid (Kg/s)	
		A_s : the shell flow area (m ²).	

_	Section	Parameter	Equation	No. Eq
		Equivalent diameter (d_e)	$d_{e} = \frac{4(\frac{Pt}{2} \times 0.87 Pt - \frac{1}{2}\pi \frac{d_{o,t}}{4})}{\frac{1}{2}\pi d_{o,t}}$	(18)
			Where,	
			P_t : tube pitch (1.25× d_o) (m)	
			п: 3.14	
			$d_{o,t}$: tube outside diameter (m).	
		Reynold number (Re,s)	$Re_s = rac{di_s imes Gs}{\mu}$	(19)
			<i>Re_s</i> : Reynold number	
			di_s : inner shell diameter (m)	
			Gs: the mass flow of water in the shell (Kg/m ² s)	
			μ : the dynamic viscosity (Kg/ms).	
		Prandtl Number (Pr,s)	$Pr = \left(\frac{C_p \times \mu}{K}\right)^{\frac{1}{2}}$	(20)
			<i>Pr</i> _s : Prandtl number	
			<i>Cp</i> : specific heat capacity (kJ/kg°C)	
			μ : dynamic fluid viscosity (Kg/ms)	
			K : thermal conductivity (W/m°C).	
		Nusselt	$Nu_s = 0.023 \times Re_s^{0.6} \times Pr^{0.33}$	(21)
		number (Nu,s)	<i>Re_s</i> : Reynold number	
			Pr : Prandtl number	
		Convection Heat Transfer Coefficient (ho)	$ho = \frac{Nu \times K}{d_e}$	(22)

1(2)(2021) 318-329 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

Section	Parameter	Equation	No. Eq
		<i>ho</i> : convection heat transfer coefficient (W/m ² °C)	
		K : thermal conductivity (W/m°C)	
		d_e : equivalent diameter (m).	
Shell and Tube	Actual Overall Heat Transfer	$U_{act} = \frac{1}{\frac{1}{h_i} + \frac{\Delta r}{k} + \frac{1}{h_o}}$	(23)
	Coefficient (U _{act})	Where,	
		<i>hi</i> : inside heat transfer coefficient (W/m ^{2°} C)	
		ho : outside heat transfer coefficient (W/m ^{2°} C),	
		Δr : wall thickness (m)	
		<i>K</i> : thermal conductivity(W/m°C)	
Heat rate	Hot Fluid Fluid	$C_h = m_h. Cp_h$	(24)
	Rate (c_h)	Where,	
		C_h : hot fluid rate (W/°C)	
		Cp_h : specific heat capacity (J/Kg°C)	
		m_h : mass flow rate of hot fluid (Kg/s).	
	Cold Fluid $Pata(G)$	$C_c = m_c. Cp_c$	(25)
	Rate (C_C)	C_c : cold fluid rate (W/°C),	
		Cp_h : specific heat capacity (J/Kg°C),	
		m_c : mass flow rate of cold fluid (Kg/s).	
			(26)

 $Q_{max} = C_{min} \left(T_{h,i} - T_{c,i} \right) \tag{26}$

 Q_{max} : maximum heat transfer (W)

INJURATECH

Section	Parameter	Equation	No. Eq
		<i>C_{min}</i> : minimum heat capacity rate (W/°C)	
		$T_{h,i}$: temperature of the hot fluid inlet (°C)	
		$T_{c,i}$: temperature of the cold fluid inlet (°C).	
Effectiven	Heat Exchanger	$\varepsilon = rac{Qact}{Qmax} imes 100\%$	(27)
	Effectiveness (ε)	Where,	
		Q_{act} : actual energy transferred (W)	
		Q_{max} : maximum heat transfer (W)	
	Number of Transfer	$NTU = \frac{U \times A}{C_{min}}$	(28)
	Unit (NTU)	Where,	
		<i>U</i> : overall heat transfer coefficient (W/m ^{2°} C)	
		A : heat transfer area (m ²)	
		C_{min} : minimum heat capacity rate (W/°C).	
	Fouling factor (Rf)	$Rf = \frac{U_a - U_{act}}{U_a \times U_{act}}$	(29)
		Where,	
		Rf : fouling factor	
		U_a : overall heat transfer coefficient (W/m ^{2°} C)	
		U_{act} : actual overall heat transfer coefficient (W/m ^{2°} C)	

1(2)(2021) 318-329 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

3. Results and Discussion

In the design of heat exchanger performance, there are several things that need to be assumed. It is assumed that the heat exchanger is made of carbon steel material with tube and shell (one-pass) type. The fluid flow used is a counter-current flow system, and water-water as hot and cold fluids. It is assumed that the hot fluid is on the tube side, and the hot fluid is on the shell side. It is also assumed that there is no heat leakage during the heat exchange process. The overall coefficient (U) for hot and cold fluid water is 800 W/m°C. In Table 2 showed the dimensions heat exchanger according to the TEMA standard.

Table 2. Dimensional specifications of shell and tube type heat exchanger

 based on TEMA standard

Parameters	Specification
Conductivity Material	43
(W/m°C)	
Tube Outer Diameter (m)	0.024
Tube Inner Diameter (m)	0.018
Wall Thickness (m)	0.00087
Tube Length (m)	4.245
Tube arrangements	Triangular
Pitch Tube (m)	0.030
Tube-side passes	1 pass
Tube Characteristic Angle	31
(°)	
Shell Outer Diameter (m)	0.152
Shell Inner Diameter (m)	0.136
Baffle Cut	25%

Overall performance and the effectiveness of heat exchangers depends on density, viscosity, thermal conductivity, and specific heat of the fluids are used [10]. Table 3 shows these parameters and other specification of hot and cold fluid are used for this paper.

Parameters	Tube	side Shell side
Taraneters	(Water)	(Water)
Inlet temperature (T _{h,in} ; °C)	75	-
Outlet temperature (T _{h,out} ; °C)	55	-
Inlet temperature (T _{c,in} ; °C)	-	30
Outlet temperature (T _{c,out} ; °C)	-	70
Density (kg/m^3)	974.68	995.71
Viscosity (Ns/m ²)	0.000378	0.000798
Fluid flow rate (kg/s)	2	1
Thermal conductivity (W/m.K)	0.67	0.53
Heat specific (J/kg.K)	4193	4178
Operating pressure (bar)	1.013	1.013

327

1(2)(2021) 318-329 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

Table 4 shows the calculation results after applying the assumptions in table 2 following the equations listed in Table 1. The values of several parameter such as LMTD, area of heat transfer, number of tubes and heat exchanger effectiveness are 12.43°C, 16.87 m², 53 pcs, and 89.21%, respectively.

No	Parameter	Results
1	Initial Heat Transfer Rate (<i>Q</i>)	167720 W
2	Logarithmic Mean Temperature Difference (LMTD)	12.43°C
2	Assumed Overall Fluid Heat Coefficient of Water	$800 \text{ W/m}^2.\text{K}$
3	(U_a)	
4	R	0.5
5	S	0.89
6	Ft	1.63
7	ΔTm	20.21°C
8	Area of Heat Transfer (A)	16.87 m ²
9	Number of Tube (<i>Nt</i>)	53
10	Total Heat Transfer Surface Area in Tube (a_t)	0.0226 m ²
11	Mass Flow Rate of Water Fluid in Tube (Gt)	88.50 m/s
12	Reynold Number in Tube (<i>Re, t</i>)	4214.08
13	Prandtl Number in Tube (Pr, t)	1.18
11	Convection Heat Transfer Coefficient in the Tube (h_i)	135.34
14		W/m².K
15	Bundle Shell (Db)	1.85 m
16	Total Heat Transfer Surface Area in Shell (a_s)	0.06 m ²
17	Mass Flow Rate of Water Fluid in Shell (Gs)	17.76 m/s
18	Equivalent Diameter (De)	0.96 m
19	Reynold Number in Shell (<i>Re</i> , <i>s</i>)	400.57
20	Prandtl Number in Shell (Pr, s)	3.15
21	Nusselt Number in Shell (Nu, s)	1.08
วา	Convection Heat Transfer Coefficient in Shell (h_o)	0.5934
		W/m².K
23	Overall Heat Transfer Coefficient Actual (U_{act})	0.5932
23		W/m².K
24	HE Effectiveness (ε)	89.21%
25	Number of Transfer Unit (NTU)	3.23
26	Fouling Resistance	1.68 °C.m ² /W

T.1.1. 4 D. C.				
Table 4. Performance	parameters of neat	exchangers d	esignea basea	on calculation

The thermal efficiency is an important indicator of energy performance for heat exchangers [11]. The design of the heat exchanger is said to be successful when the percentage of effectiveness obtained is more than 70%. There are fouling resistance value obtained that do not meet the standard that should be 0.0002° C.m²/W, but other parameters including the effectiveness value show pretty good results.

1(2)(2021) 318-329

Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech

4. Conclusion

The shell and tube type heat exchanger has been successfully designed based on the TEMA standard, indicating that 113 pipes are needed, with the heat transfer rate generated by the apparatus is 167720 W. Heat exchanger designed with one-passes type. The effectiveness of this heat exchanger design reaches 89.21%, so it can be characterized as having good performance.

References

- [1] Dhavle, S. V., Kulkarni, A. J., Shastri, A., & Kale, I. R. (2018). Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. *Neural Computing and Applications*, *30*(1), 111-125.
- [2] Mohanty, D. K. (2016). Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. *International Journal of Thermal Sciences*, *102*, 228-238.
- [3] Bichkar, P., Dandgaval, O., Dalvi, P., Godase, R., & Dey, T. (2018). Study of shell and tube heat exchanger with the effect of types of baffles. *Procedia Manufacturing*, 20, 195-200.
- [4] Wang, Y., Gu, X., Jin, Z., & Wang, K. (2016). Characteristics of heat transfer for tube banks in crossflow and its relation with that in shell-and-tube heat exchangers. *International Journal of Heat and Mass Transfer*, 93, 584-594.
- [5] Abd, A. A., & Naji, S. Z. (2017). Analysis study of shell and tube heat exchanger for clough company with reselect different parameters to improve the design. *Case studies in thermal engineering*, 10, 455-467.
- [6] Hadidi, A., & Nazari, A. (2013). Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. *Applied Thermal Engineering*, 51(1-2), 1263-1272.
- [7] Feng, H., Chen, L., Wu, Z., & Xie, Z. (2019). Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process. *International Journal of Heat and Mass Transfer*, 131, 750-756.
- [8] Said, Z., Rahman, S. M. A., Assad, M. E. H., & Alami, A. H. (2019). Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid. Sustainable Energy technologies and assessments, 31, 306-317.
- [9] Zhai, T., Zheng, Q., Cai, Z., Xia, H., & Gong, S. (2016). Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. *Carbohydrate polymers*, *148*, 300-308.
- [10] Shahrul, I. M., Mahbubul, I. M., Saidur, R., Khaleduzzaman, S. S., Sabri, M. F. M., & Rahman, M. M. (2014). Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. *Numerical Heat Transfer, Part A: Applications*, 65(7), 699-713.
- [11] Fares, M., Mohammad, A. M., & Mohammed, A. S. (2020). Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids. *Case Studies in Thermal Engineering*, 18, 100584.