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Ensemble Kalman Filter for Hourly Streamflow 
Forecasting in Huaynamota River, Nayarit, México

Filtro de Kalman de Conjuntos para pronóstico de caudales horarios en 
el río Huaynamota, Nayarit, México

Ildefonso Narváez-Ortiz 1, Laura Ibáñez-Castillo 2, Ramon Arteaga-Ramírez 3, and Mario Vázquez-Peña 4

ABSTRACT 
Hydrological phenomena are characterized by the formation of a non-linear dynamic system, and streamflows are not unrelated to 
this premise. Data assimilation offers an alternative for flow forecasting using the Ensemble Kalman Filter, given its relative ease of 
implementation and lower computational effort in comparison with other techniques. The hourly streamflow of the Chapalagana 
station was forecasted based on that of the Platanitos station in northwestern México. The forecasts were made from one to six 
steps forward, combined with set sizes of 5, 10, 20, 30, 50, and 100 members. The Nash-Sutcliffe coefficients of the Discrete 
Kalman filter were 0,99 and 0,85 for steps one and six, respectively, achieving the best fit with a tendency to shift the predicted 
series, similar to the persistent forecast. The Ensemble Kalman Filter (EnKF) obtained 0,99 and 0,05 in steps one and six. However, it 
converges on the observed series with the limitation of considerable overestimation in higher steps. All three algorithms have equal 
statistical adjustment values in step one, and there are progressive differences in further steps, where ARX and DKF remain similar 
and EnKF is differentiated by the overestimation. EnKF enables capturing non-linearity in sudden streamflow changes but generates 
overestimation at the peaks.
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RESUMEN
Los fenómenos hidrológicos se caracterizan por conformar un sistema dinámico no lineal, y los caudales no son ajenos a esta premisa. 
La asimilación de datos ofrece una alternativa para el pronóstico de caudales mediante el Filtro de Kalman de Conjuntos, dada su relativa 
facilidad de implementación y menor esfuerzo computacional en contraste con otras técnicas. Se pronosticó el caudal horario de la 
estación Chapalagana en función del de la estación Platanitos en el noroeste de México. Los pronósticos se realizaron de uno a seis pasos 
hacia adelante, combinados con tamaños de conjunto de 5, 10, 20, 30, 50 y 100 miembros. Los coeficientes de Nash-Sutcliffe para el Filtro 
de Kalman Discreto fueron de 0,99 y 0,85 en los pasos uno y seis respectivamente, logrando el mejor ajuste con tendencia a desplazar 
la serie pronosticada, similar al pronóstico persistente. El Filtro de Kalman de Conjuntos (EnKF) obtuvo 0,99 y 0,05 en los pasos uno y 
seis. No obstante, este converge sobre la serie observada con la limitante de sobrestimación considerable en pasos superiores. Los tres 
algoritmos tienen igual valor de ajuste estadístico en el paso uno, y se dan diferencias progresivas en pasos sucesivos, donde ARX y DKF 
se mantienen similares y EnKF se diferencia por la sobrestimación. EnKF permite captar la no linealidad en los cambios bruscos de caudal, 
pero genera sobrestimación en los picos.

Palabras clave: Filtro de Kalman de Conjuntos, modelos autorregresivos, pronósticos de caudales a corto plazo, asimilación de 
datos
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Introduction

Climate variability has intensified the incidence of extreme 
precipitation events that can generate sudden changes 
in streamflow and lead to floods and landslides (IPCC, 
2012). Having advance information on streamflow behavior 
becomes an indispensable tool for the administration of 
dams and disaster risk management (IPCC, 2012; Singh 
and Zommers, 2014). Different methods have been used 
for streamflow forecasting, such as autoregressive methods, 
neural networks (Box et al., 2016; Shmueli and Lichtendahl, 
2016), and, more recently, data assimilation methods such 
as Kalman filters (Abaza et al., 2015; Alvarado-Hernández et 
al., 2020; González-Leiva et al., 2015; Morales-Velázquez 
et al., 2014). In hydrological studies, the Ensemble Kalman 
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Filter (EnKF) (Evensen, 1994, 2009; Gillijns et al., 2006) 
has been widely used as a method of assimilation (Liu and 
Gupta, 2007; Maxwell et al., 2018; Sun et al., 2016), with 
little evaluation in forecasting flows. EnKF is an extension 
of the Discrete Kalman Filter (DKF) (Kalman, 1960) and a 
computationally less demanding alternative to the Extended 
Kalman Filter (EKF) for treating non-linear dynamic systems 
(Evensen, 1994, 2003). Among the applications of EnKF 
are streamflow forecasting in basins dominated by melting 
snow and ice (Abaza et al., 2015), evapotranspiration (Zou 
et al., 2017), and soil moisture (Brandhorst et al., 2017; 
Meng et al., 2017). Moreover, it has been evaluated while 
integrated with distributed hydrological models such as 
TopNet, Hydrotel, and MGB-IPH (Abaza et al., 2015; Clark 
et al., 2008; Quiroz et al., 2019).

Hydrological phenomena such as streamflow have a 
non-linear behavior (Bai et al., 2016; Xu et al., 2009), 
especially when there are sudden changes in river levels. 
For this reason, the use of non-linear algorithms for 
data assimilation favors the fit of forecasts (Brandhorst 
et al., 2017; Medina-González et al., 2015). In addition, 
systematic errors can be reduced by recursive updating 
based on each new available measurement (Clark et al., 
2008; Maxwell et al., 2018).

According to Valdés et al. (1980) and Winkler et al. (2010), in 
hydrographic basins, different representative measurements 
and a point of interest have a dynamic relationship with 
the predominant physical and biological characteristics of 
the area. Based on this information, the behavior of a given 
phenomenon is modeled to obtain short-term forecasts. The 
Kalman filter enables the incorporation of registers from 
diverse sources, as well as continuous updates (Box et al., 
2016; Welch and Bishop, 2006).

To determine whether the algorithms for identifying 
non-linear dynamic systems allow forecasting short-
term streamflow (6 h), this study evaluates the fit of the 
series predicted by algorithms of the EnKF, the DKF, 
and the first-order autoregressive model with first order 
exogenous variable (ARX(1, I)), in flows measured at the 
Chapalagana station on the Huaynamota River. The Kalman 
Filter algorithms estimate the system dynamic states and 
correspond to the response function of the basin. 

Materials and methods

This study was conducted in a tributary of the Huaynamota 
River, also known as the Chapalagana or Atengo River, 
located in northwestern México between the states of 
Durango, Nayarit, Zacatecas, and Jalisco (INEGI, 2010) 
(Figure 1), between -104°33’34,16” and -103°27’29,84” W 
and between 23°28’50,05” and 21°23’57,62” N, with an 
area of 12 075,7 km2. The altitude varies from 219 to 3 147 
masl. The concentration time is 39,88 h, the mean annual 
precipitation is 707 mm, and the mean annual temperature 
is 17,9 °C (SMN, 2019).

 

Figure 1. Location of the study area
Source: Authors

The Huaynamota River contributes to generating electricity. 
The Solidaridad dam (also known as Aguamilpa), located 
on the Lerma-Santiago River and geographically at 
104°48’10,55” W and 21°50’22,74” N, produces 960 MW 
of electricity and has a maximum capacity of 5 540 million 
m3 of water (CONAGUA, 2008). The Huaynamota River 
discharges into the Santiago River, where the Aguamilpa 
dam is located, approximately 90 km upstream from the 
Pacific Ocean, into which the Santiago River empties on the 
coast of the Mexican state of Nayarit. 

We implemented the EnKF (Evensen, 1994), DKF (Kalman, 
1960), and ARX(1,1) (Bras and Rodríguez-Iturbe, 1985) 
algorithms. Forecasts were made at 1, 2, 3, 4, 5, and 6 h 
(L steps forward) of the flows at the Chapalagana station as 
a function of the flows at the Platanito station, located 100 
km upstream from Chapalagana, as the exogenous variable. 
The hourly streamflow series between 9:00 hours on August 
2 and 0:00 hours on September 28, 2017, were used, for 
a total of 1 360 registers supplied by Federal Electricity 
Comission (CFE). 

EnKF, DKF, and ARX were implemented through R routines 
(R Core Team, 2021), which generate forecasts in six steps 
with DKF and ARX, and with 42 combinations between steps 
by set size in EnKF. Both EnKF and DKF were implemented 
to estimate the state vector corresponding to the response 
function of the basin, or Instantaneous Unitary Hydrograph 
(IUH) (Valdés et al., 1980). Values were estimated which 
correspond to the columns of the IUH. Multiplying these 
values by those of the measured series results in an 
estimation. In the three algorithms, the last observations of 
each series were considered (Valdés et al., 1980). The ARX 
model was recursively implemented based on a fraction of a 
series with 100 registers. 

By means of the sensitivity analysis with 5, 10, 20, 30, 40, 
50, and 100 members that were combined with the six 
steps, and based on the root mean square error (RMSE), 
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the adequate number of members in the EnKF sets was 
determined (Quiroz et al., 2019). White noise that is 
integrated in the EnKF members was generated with the 
mvtnorm package (Multivariant Normal and t Distributions) 
(Genz and Bretz, 2009). In the evaluated Kalman Filter 
algorithms, the Q variance was assumed to be constant 
(Simon, 2001) with a value of zero (Morales-Velázquez et 
al., 2014), and the  was assumed to have a near-zero value 
(0,01) in order to confer flexibility to the convergence of the 
algorithm (Welch and Bishop, 2006). With these values, the 
covariance matrices were created.

The fit reached by each algorithm was evaluated using the 
Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970) and 
the RMSE (Morales-Velázquez et al., 2014), as expressed by 
Equations (1) and (2). The assumed normality of errors was 
verified using graphs (González-Leiva et al., 2015).
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where iy  is the forecasted data, iy  is the observed data, 
ˆiy  is the average of the observed data, ˆiy  is average of the 

forecasted data, and n  is the amount of observations.

Ensemble Kalman Filter
To extend the functionality of the DKF (Kalman, 1960) and 
deal with non-linear dynamic systems, the EKF, among 
others, has been proposed (Jazwinski, 2007; Welch and 
Bishop, 2006), which includes the EnKF (Evensen, 1994, 
2009). The EnKF emerges as an alternative to the EKF, 
which has a high computational demand (Evensen, 1994, 
2009) and is a sub-optimal estimator that, via Monte Carlo 
simulations, estimates the statistical error (Evensen, 1994; 
Gillijns et al., 2006; Rafieeinasab et al., 2014). Errors should 
satisfy the normal distribution assumption and are estimated 
based on sets of q values.

The algorithm is based on two groups of equations: forecast 
and analysis (Figure 2). In this study, the cycle began with the 
forecast equations, using the random values that make up 
the first matrix aik

x , thus obtaining the first forecast via the 
measurement equation. The error matrices of the forecast 
were calculated against the new measurement, which is 
the input for the analysis equations, where the states are 
updated as new measurements are entered.

The h matrix is formed with the last register of two (n) hourly 
flow series of the Chapalagana and Platanitos stations. The 
uk parameter is absent because, in the upstream from the 
Chapalagana station, there are no structures (e.g., dams) that 
have a direct impact on streamflow. The errors i

kv  and i
kv  

correspond to the noise contained by the process and the 

measurement, respectively. They are assumed to be white 
noise, with a mean of zero and variance Q and R (Figure 
2). The noise in the measurements is generated by adding 
q deviations with normal distribution to the measurement 
in k time. 

In the second analysis equation, the component i
k ky v+  

represents the noisy measurements, ky  is the measurement 
in time k, and the superscript i represents the number of 
members, i.e., random values under normal distribution 
that correspond to i 1, 2, , ,q= … … . The adequate number of 
members in a set in hydrological studies is between 50 and 
300 (Gillijns et al., 2006; Quiroz et al., 2019). The predicted 
value kz  is obtained by averaging the vector resulting 
from multiplying the h matrix and the 1

ai
kx −  and applying the 

measurement equation.

Discrete Kalman Filter
The DKF is an optimal recursive estimator of states in linear 
dynamic systems (Kalman, 1960) (Figure 2).

 

Figure 2. EnKF algorithm
Source: Gillijns et al. (2006) 

Figure 3. DKF algorithm
Source: Welch and Bishop (2006)

(1)

(2)
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The state equation has two (n) hourly flow series from the 
Chapalagana and Platanitos stations. The matrices A ( ) 
and B ( ) relate the state at time  to the current state 
at time . Like the EnKF, the control matrix B is not included, 
given that, in the upriver from the Chapalagana station, there 
are no structures that have a direct impact on streamflow. 
Matrix A is assumed constant throughout the process, and 
matrix H is composed of a vector row of  that contains 
the last observation of each entry series. The predicted value 

 is obtained via the measurement equation by multiplying 
the H matrix by the state vector  ( ).

Implicit in the predicted value  is the measurement error 
, and, likewise, the process error  is contained in 

the state equation. In both cases, the normality assumption 
must be satisfied.

The state and measurement equations maintain a cycle that 
is repeated indefinitely. At time , it makes the a priori 
estimation (forecast) of the states, and, at time , they are 
updated (a posteriori estimation). The states are assumed to 
be the response function of the basin, and the a posteriori 
estimation corresponds to the forecast for time . This 
cycle is repeated indefinitely, predicting time  based on 
the H matrix and the state vector updated to time .

First-order autoregressive model
One of the first approximations for the forecast is the 
first-order autoregressive model, which is based on the 
autocorrelation that occurs within the same series of 
data (Box et al., 2016; Bras and Rodríguez-Iturbe, 1985). 
Algebraically, it is described as follows:

where  is the predicted value,  and  are the model 
parameters, and  and  correspond to the entry variable 
and the exogenous variable, respectively. The parameters 
are estimated by the method of least squares, which requires 
a series section of at least 50 registers (Box et al., 2016; 
Shmueli and Lichtendahl, 2016). In the  model, 

 and  represent the autoregressive delays that are used 
in each variable. 

Results and discussion

Forecasts with six-hour steps were made of the flows at the 
Chapalagana station. For the case of EnKF, seven set sizes 
were evaluated in order to estimate the error, which had 
6, 10, 20, 30, 40, 50, and 100 members. Series with 1 360 
registers were used, which included two main events.

As of 50 members per set, the EnKF algorithm showed a 
stable convergence for all steps. Consequently, under the 
conditions of this study, it is acceptable to use at least 50 

members per set to have an adequate fit regarding the 
convergence of the algorithm and the stabilization of the 
error, aiming to minimize computational effort. As previously 
indicated, the results presented below have a base of 50 
members per set. Table 1 presents the statistical indicators 
of fit for the observed series against the predicted one.

Figure 4. RMSE for different set sizes
Source: Authors

Table 1. Summary of statistics for application of EnKF, DKF, and ARX

 
Source: Authors

According to the statistical indicators in Table 1, the NS shows 
similarities between DKF and ARX, with values of 0,99 and 
0,83 in steps one and six, respectively, while EnKF obtained 
0,95 and 0,05 in steps one and six. According to the NS, the 
fit of all the steps is less with EnKF; in step one, it is 0,04 
less, and there is a marked change up to step six, where the 
difference is around 0,78. The mean of the predicted series 
is more stable with DKF, followed by ARX and, finally, EnKF. 
EnKF and ARX show an upward trend in the mean value for 
each step, whereas DKF has a downward trend. 

Despite the low fit values, the EnKF algorithm expressed 
the changes with a non-linear trend and showed better 
convergence on the observed series once it was updated 
with new measurements. DKF and ARX generated forecasts 
in which the displacement of the predicted series was 
accentuated against the observed series, similar to the 
persistent forecast method (Aguado-Rodríguez et al., 2016; 

Algorithm Metric L1 L2 L3 L4 L5 L6 

DKF

RMSE 27,27 44,99 58,84 70,84 81,69 92,09

Nash-Sutcliffe 0,99 0,96 0,94 0,91 0,88 0,85

Mean 199,39 198,22 197,37 196,43 195,44 194,39

SD 241,28 239,47 238,41 237,39 236,42 235,42

EnKF

RMSE 51,77 91,61 122,43 147,15 176,96 233,10

Nash-Sutcliffe 0,95 0,85 0,74 0,62 0,45 0,05

Mean 202,29 206,91 211,78 216,71 222,32 230,85

SD 250,35 268,34 287,56 308,41 330,24 370,35

ARX(1,1)

RMSE 27,84 48,34 65,83 79,89 91,14 99,74

Nash-Sutcliffe 0,99 0,96 0,92 0,89 0,86 0,83

Mean 200,88 202,51 203,83 204,81 205,93 206,42
SD 243,54 245,72 248,35 250,15 251,53 251,21

Note: RMSE: root mean square error; Nash-Sutcliffe: Nash-Sutcliffe index; 
Mean: Average. The mean and standard deviation (SD) of the observed series 
are 198,7 and 239,77, respectively.

1 10 0

na nb
k i k i j k j ki j

y y eα β γ+ − − += =
= + +∑ ∑ (3)
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Kavasseri and Seetharaman, 2009). This behavior is also 
noticeable in the work of Alvarado-Hernández et al. (2020), 
González-Leiva et al. (2015), and Morales-Velázquez et al. 
(2014).

In the flood that began at 810 h, EnKF assumed the abrupt 
change in flow and generated a forecast with a steeper slope 
than DKF and ARX. Also, in the flow descents between 870 
and 900 h, EnKF converged more precisely on the observed 
series (Figure 5).

 
Figure 5. Observed flow and flows predicted with EnKF, DKF, and ARX (flood 
from 4/9/2017, 16:00 h, to 8/9/2017, 20:00 h)
Source: Authors

The DKF fits are similar to those obtained by Alvarado-
Hernández et al. (2020), who used the same series and a 
model that integrates ARX and DKF. This model considers 
the delay between series to be one, whereas, in our study, 
it was updated dynamically throughout the series, favoring 
the fit at peaks and reducing the effect of displacement of 
the predicted series. EnKF, in its six steps, obtained lower 
fits due to overestimation or underestimation at the peaks, 
with the difference that it achieved a better fit in ascents 
and descents of the observed series. The EnKF algorithm 
obtained a better temporal fit at peaks and converged more 
precisely on the observed series when the trend persisted 
in a number of hours higher or equal to the evaluated step. 

The forecast with EnKF showed overestimations relative 
to the observed series. This occurred because we treated 
the measurements as a non-linear phenomenon (Evensen, 
1994, 2009), a situation that, in step one, allows for an 
acceptable fit in the entire series. However, in step six, broad 
overestimations may be found which can affect the quality 
of the forecast. As the forecast step increases, the frequency 
of overestimations increases because the new register that 
serves to update the states also breaks away, and there may 
be changes in the L interval that are not considered in the 
initial forecast. The dynamic incorporation of the delay time 

between series (Meng et al., 2017) allows improving the fit, 
given that updating is performed with the equivalent event 
in the exogenous variable (Figure 6).

Figure 6. Observed flow and flows predicted with EnKF, DKF and ARX (flood from 
23/09/17, 10:00 h, to 28/09/17, 00:00 h)
Source: Authors

The dispersion of the observed series against the predicted 
one was congruent with the NS index, highlighting the 
similarities between DKF and ARX. The difference exhibited 
by EnKF is due to the peaks associated with abrupt changes 
in flow. The EnKF algorithm tended to overestimate 
throughout the series, unlike DFK and ARX, which caused 
a slight tendency to underestimate. Step six with EnKF 
produced large overestimations that are reflected as isolated 
points above the diagonal in Figure 7.

 
Figure 7. Observed vs. predicted flows
Source: Authors
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changes associated with daytime, nighttime, or the months 
of the year. Together, the quantity of registers for updating 
the states can be increased in order to enable the detection 
of changes in trends during the last registered hours. 

To improve the fit of the forecast, it is important to advance 
in research with step sizes of several hours (e.g., groups of 
six hours using the mean or maximum) in such a way that 
each step is equivalent to six hours and the forecast at six 
steps equals 36 hours.
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Figure 8. Histographs of residuals
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The standardized errors of the forecasts have a symmetrical 
distribution around zero (Figure 8) (Cryer and Chan, 2008; 
Martínez et al., 2012; Wang et al., 2017). According to 
Chatfield (2001), a behavior approaching normality is 
accepted. As shown in Figure 8, there is symmetry and 
higher concentration of registers in the central area of the 
Gauss bell curve. The proportion of registers between three 
standard deviations above and below the mean is more than 
97%, and EnKF had the highest values in all steps.

As the steps of the forecast increase, the fit decreases, and 
overestimations and underestimations become more frequent 
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The dynamic updating of delay time relative to the exogenous 
variable allowed improving the fit in the evaluated algorithms. 
The EnKF algorithm achieved a better convergence on the 
observed series but generated overestimations of greater 
magnitude as the step increased, which resulted in a lower 
degree of fit, as demonstrated with the Nash-Sutcliffe 
index. The potential of EnKF lies in its convergence and 
non-linear treatment of abrupt changes in flow. Basically, 
EnKF helps capture the non-linearity in some parts of the 
of the hydrograph and accurately represents the timing or 
times of occurrence of maximum flows, even though they 
are overestimated. 

In future studies, the use of EnKF for streamflow 
forecasting can be a viable alternative when integrated with 
autocorrelation analysis, so that stationality and stationarity 
become part of the model, thus allowing to represent the 

https://doi.org/10.1016/j.advwatres.2015.10.008
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952016000100001
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952016000100001
https://doi.org/10.47163/agrociencia.v54i3.1907
https://doi.org/10.1007/s00704-015-1539-2
https://doi.org/10.1007/s00704-015-1539-2
https://doi.org/10.1016/j.advwatres.2017.10.022
https://doi.org/10.1016/j.advwatres.2017.10.022
https://doi.org/10.1007/978-0-306-47630-3
https://doi.org/10.1007/978-0-306-47630-3


IngenIería e InvestIgacIón vol. 42 no. 3, December - 2022

narváez-ortIz, Ibáñez-castIllo, arteaga-ramírez, anD vázquez-Peña

7 of 8

distributed hydrological model. Advances in Water Resour-
ces, 31(10), 1309-1324. https://doi.org/10.1016/j.advwa-
tres.2008.06.005

CONAGUA (2008). Estadisticas del agua en México. SEMAR-
NAT.

Cryer, J. D., and Chan, K.-S. (2008). Time series analysis 
with applications in R (2nd ed.). Springer. https://doi.
org/10.1007/978-0-387-75959-3

Evensen, G. (1994). Sequential data assimilation with a nonli-
near quasi-geostrophic model using Monte Carlo methods 
to forecast error statistics. Journal of Geophysical Research, 
99(C5), 10143. https://doi.org/10.1029/94jc00572

Evensen, G. (2003). The Ensemble Kalman Filter: Theoretical 
formulation and practical implementation. Ocean Dyna-
mics, 53(4), 343-367. https://doi.org/10.1007/s10236-003-
0036-9

Evensen, G. (2009). Data assimilation: The ensemble Kalman 
filter (2nd ed.). Springer. https://doi.org/10.1007/978-3-
642-03711-5

Field, C. B., Barros, V., Stocker, T. F., and Dahe, Q. (Eds.) 
(2012). Managing the risks of extreme events and disasters to 
advance climate change adaptation. Cambridge University 
Press. https://doi.org/10.1017/CBO9781139177245

Genz, A., and Bretz, F. (2009). Computation of multiva-
riate normal and t probabilities. Springer. https://doi.
org/10.1007/978-3-642-01689-9

Gillijns, S., Mendoza, O. B., Chandrasekar, J., De Moor, B. L. 
R., Bernstein, D. S., and Ridley, A. (2006, June 14-16). What 
is the ensemble Kalman filter and how well does it work? 
[Conference presentation]. 2006 American Control Con-
ference, Minneapolis, MN, USA. https://doi.org/10.1109/
ACC.2006.1657419

González-Leiva, F., Ibáñez-Castillo, L. A., Valdés, J. B., Váz-
quez-Peña, M. A., and Ruiz-García, A. (2015). Pronóstico 
de caudales con Filtro de Kalman Discreto en el río Turbio. 
Tecnologia y Ciencias Del Agua, 6(4), 5-24. http://revistaty-
ca.org.mx/ojs/index.php/tyca/article/view/1176

INEGI (2010). Hidrografía. https://www.inegi.org.mx/temas/hi-
drografia/default.html#Descargas

Jazwinski, A. H. (2007). Stochastic processes and filtering theory. 
Dover Publications.

Kalman, R. E. (1960). A new approach to linear filtering and 
prediction problems. Journal of Basic Engineering, 82(Series 
D), 35-45. https://doi.org/10.1115/1.3662552

Kavasseri, R. G., and Seetharaman, K. (2009). Day-ahead 
wind speed forecasting using f-ARIMA models. Renewable 
Energy, 34(5), 1388-1393. https://doi.org/10.1016/j.rene-
ne.2008.09.006

Liu, Y., and Gupta, H. V. (2007). Uncertainty in hydrologic mo-
deling: Toward an integrated data assimilation framework. 
Water Resources Research, 43(7), W07401. https://doi.or-
g/10.1029/2006WR005756

Martínez, J., Domínguez, E., and Rivera, H. (2012). Uncertainty 
regarding instantaneous discharge obtained from stage-dis-
charge rating curves built with low density discharge mea-
surements. Ingenieria e Investigación, 32(1), 30-35. https://
revistas.unal.edu.co/index.php/ingeinv/article/view/28517

Maxwell, D. H., Jackson, B. M., and McGregor, J. (2018). Cons-
training the ensemble Kalman filter for improved stream-
flow forecasting. Journal of Hydrology, 560, 127-140. ht-
tps://doi.org/10.1016/j.jhydrol.2018.03.015

Medina-González, H., Hernández-Pereira, Y., Santiago-Pilo-
to, A. B., and Lau Quan, A. (2015). Modelación de perfil 
de humedad de suelos empleando un filtro de Kalman de 
Monte Carlo. Revista Ciencias Técnicas Agropecuarias, 24(2), 
31-37. http://scielo.sld.cu/scielo.php?script=sci_arttext&pi-
d=S2071-00542015000200005

Meng, S., Xie, X., and Liang, S. (2017). Assimilation of soil 
moisture and streamflow observations to improve flood 
forecasting with considering runoff routing lags. Journal 
of Hydrology, 550, 568-579. https://doi.org/10.1016/j.jhy-
drol.2017.05.024

Morales-Velázquez, M. I., Aparicio, J., and Valdés, J. B. (2014). 
Pronóstico de avenidas utilizando el filtro de Kalman dis-
creto. Tecnologia y Ciencias Del Agua, 5(2), 85-110. http://
www.scielo.org.mx/scielo.php?script=sci_arttext&pi-
d=S2007-24222014000200006

Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting 
through conceptual models part I — A discussion of prin-
ciples. Journal of Hydrology, 10(3), 282-290. https://doi.
org/10.1016/0022-1694(70)90255-6

Quiroz, K., Collischonn, W., and de Paiva, R. C. D. (2019). Data 
assimilation using the ensemble Kalman filter in a distribu-
ted hydrological model on the Tocantins River, Brasil. RBRH, 
24, e14. https://doi.org/10.1590/2318-0331.241920180031

R Core Team. (2021). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing. 
https://www.r-project.org/

Rafieeinasab, A., Seo, D. J., Lee, H., and Kim, S. (2014). Compa-
rative evaluation of maximum likelihood ensemble filter and 
ensemble Kalman filter for real-time assimilation of stream-
flow data into operational hydrologic models. Journal of 
Hydrology, 519(PD), 2663-2675. https://doi.org/10.1016/j.
jhydrol.2014.06.052

Shmueli, G., and Lichtendahl, K. (2016). Practical time series 
forecasting with R: A hands on guide. Axelrod Schnall Pu-
blishers.

Simon, D. (2001, June). Kalman filtering. Embedded Systems 
Programming, 72-79. https://abel.math.harvard.edu/archi-
ve/116_fall_03/handouts/kalman.pdf

Singh, A., and Zommers, Z. (Eds.). (2014). Reducing disaster: 
Early warning systems for climate change. Springer. https://
doi.org/10.1007/978-94-017-8598-3

Servicio Metereológico Nacional (SMN) (2019). Sistema de in-
formación climática computarizada CLICOM. Servicio Me-
tereológico Nacional. http://clicom-mex.cicese.mx/malla/
index.php

Sun, L., Seidou, O., Nistor, I., and Liu, K. (2016). Review of the 
Kalman-type hydrological data assimilation. Hydrological 
Sciences Journal, 61(13), 2348-2366. https://doi.org/10.10
80/02626667.2015.1127376

Valdés, J., Mejía, J., and Rodríguez-Iturbe, I. (1980). Filtros de 
Kalman en la hidrología: predicción de descargas fluviales 
para la operación óptima de embalses. Informe Técnico No. 
80-2. https://n9.cl/hd6y9

https://doi.org/10.1016/j.advwatres.2008.06.005
https://doi.org/10.1016/j.advwatres.2008.06.005
https://doi.org/10.1007/978-0-387-75959-3
https://doi.org/10.1007/978-0-387-75959-3
https://doi.org/10.1029/94jc00572
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1007/978-3-642-03711-5
https://doi.org/10.1007/978-3-642-03711-5
https://doi.org/10.1017/CBO9781139177245
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1109/ACC.2006.1657419
https://doi.org/10.1109/ACC.2006.1657419
http://revistatyca.org.mx/ojs/index.php/tyca/article/view/1176
http://revistatyca.org.mx/ojs/index.php/tyca/article/view/1176
https://www.inegi.org.mx/temas/hidrografia/default.html#Descargas
https://www.inegi.org.mx/temas/hidrografia/default.html#Descargas
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.renene.2008.09.006
https://doi.org/10.1016/j.renene.2008.09.006
https://doi.org/10.1029/2006WR005756
https://doi.org/10.1029/2006WR005756
https://revistas.unal.edu.co/index.php/ingeinv/article/view/28517
https://revistas.unal.edu.co/index.php/ingeinv/article/view/28517
https://doi.org/10.1016/j.jhydrol.2018.03.015
https://doi.org/10.1016/j.jhydrol.2018.03.015
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2071-00542015000200005
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2071-00542015000200005
https://doi.org/10.1016/j.jhydrol.2017.05.024
https://doi.org/10.1016/j.jhydrol.2017.05.024
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222014000200006
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222014000200006
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222014000200006
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1590/2318-0331.241920180031 
https://www.r-project.org/
https://doi.org/10.1016/j.jhydrol.2014.06.052
https://doi.org/10.1016/j.jhydrol.2014.06.052
https://abel.math.harvard.edu/archive/116_fall_03/handouts/kalman.pdf
https://abel.math.harvard.edu/archive/116_fall_03/handouts/kalman.pdf
https://doi.org/10.1007/978-94-017-8598-3
https://doi.org/10.1007/978-94-017-8598-3
http://clicom-mex.cicese.mx/malla/index.php
http://clicom-mex.cicese.mx/malla/index.php
https://doi.org/10.1080/02626667.2015.1127376
https://doi.org/10.1080/02626667.2015.1127376
https://n9.cl/hd6y9


IngenIería e InvestIgacIón vol. 42 no. 3, December - 20228 of 8

EnsEmblE Kalman FiltEr For Hourly strEamFlow ForEcasting in Huaynamota rivEr, nayarit, méxico

Wang, S., Huang, G. H., Baetz, B. W., Cai, X. M., Ancell, B. 
C., and Fan, Y. R. (2017). Examining dynamic interactions 
among experimental factors influencing hydrologic data 
assimilation with the ensemble Kalman filter. Journal of 
Hydrology, 554, 743-757. https://doi.org/10.1016/j.jhy-
drol.2017.09.052

Welch, G., and Bishop, G. (2006). An introduction to the Kal-
man filter. https://www.cs.unc.edu/~welch/media/pdf/kal-
man_intro.pdf

Winkler, R. D., Moore, R. D. D., Redding, T. E., Spittlehouse, 
D. L., Carlyle-Moses, D. E., and Smerdon, B. D. (2010). Hy-
drologic processes and watershed response. In R. Pike, T. 
Redding, R. Moore, R. Winkler, and K. Bladon (Eds.), Com-
pendium of forest hydrology and geomorphology in British 

Columbia (pp. 133-178). B.C. Ministry of Forests and Ran-
ge. https://www.for.gov.bc.ca/hfd/pubs/docs/lmh/Lmh66/
Lmh66_ch06.pdf

Xu, J., Li, W., Ji, M., Lu, F., and Dong, S. (2009). A comprehensi-
ve approach to characterization of the nonlinearity of runoff 
in the headwaters of the Tarim River, western China. Hydro-
logical Processes, 24(2), 136-146. https://doi.org/10.1002/
hyp.7484

Zou, L., Zhan, C., Xia, J., Wang, T., and Gippel, C. J. (2017). Im-
plementation of evapotranspiration data assimilation with 
catchment scale distributed hydrological model via an en-
semble Kalman Filter. Journal of Hydrology, 549, 685-702. 
https://doi.org/10.1016/j.jhydrol.2017.04.036

https://doi.org/10.1016/j.jhydrol.2017.09.052
https://doi.org/10.1016/j.jhydrol.2017.09.052
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.for.gov.bc.ca/hfd/pubs/docs/lmh/Lmh66/Lmh66_ch06.pdf
https://www.for.gov.bc.ca/hfd/pubs/docs/lmh/Lmh66/Lmh66_ch06.pdf
https://doi.org/10.1002/hyp.7484
https://doi.org/10.1002/hyp.7484
https://doi.org/10.1016/j.jhydrol.2017.04.036

