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An Efficient Algorithm Applied to Optimized Billing 
Sequencing

Un algoritmo eficiente aplicado a la secuencia de facturación optimizada
Anderson Rogério Faia Pinto 1 and Marcelo Seido Nagano 2

ABSTRACT 
This paper addresses the Optimized Billing Sequencing (OBS) problem to maximize billing of the order portfolio of a typical Distribution 
Center (DC). This is a new problem in the literature, and the search for the best billing mix has generated demands for better optimization 
methods for DCs. Therefore, the objective of this paper is to provide an effective algorithm that presents quick and optimized solutions 
for higher-complexity OBS levels. This algorithm is called Iterative Greedy Algorithm (IGA-OBS), and its performance is compared to the 
genetic algorithm (GA-OBS) by Pinto and Nagano. Performance evaluations were carried out after intense computational experiments 
for problems with different complexity levels. The results demonstrate that the GA-OBS is limited to medium-size instances, whereas the 
IGA-OBS is better adapted to reality, providing OBS with solutions with satisfactory time and quality. The IGA-OBS enables managers to 
make decisions in a more agile and consistent way in terms of the trade-off between the level of customer service and the maximization 
of the financial result of DCs. This paper fills a gap in the literature, makes innovative contributions, and provides suggestions for further 
research aimed at developing more suitable optimization methods for OBS.
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RESUMEN
Este documento aborda el problema de la Secuenciación Optimizada de Facturación (OBS) para maximizar la facturación de la cartera 
de pedidos de un centro de distribución (CD) típico. Este es un nuevo problema en la literatura, y la búsqueda de la mejor combinación 
de facturación ha exigido mejores métodos para optimizar los CD. Por lo tanto, el objetivo de este artículo es proporcionar un algoritmo 
eficaz que presente soluciones rápidas y optimizadas para niveles más altos de complejidad OBS. Este algoritmo se denomina Algoritmo 
Voraz Iterativo (IGA-OBS) y su rendimiento se compara con el del algoritmo genético (GA-OBS) de Pinto y Nagano. Se llevaron 
a cabo evaluaciones de desempeño después de intensos experimentos computacionales para problemas con diferentes niveles de 
complejidad. Los resultados demuestran que el GA-OBS se limita a instancias de tamaño medio, mientras que el IGA-OBS se adapta 
mejor a la realidad brindando soluciones en tiempo y calidad satisfactorios a OBS. El IGA-OBS permite a los gerentes tomar decisiones 
de una manera mas ágil y consistente frente al trade-off entre el nivel de servicio al cliente y la maximización del resultado financiero 
de los CD. Este artículo llena un vacío en la literatura, aporta contribuciones innovadoras y proporciona sugerencias para futuras 
investigaciones destinadas a desarrollar métodos de optimización más adecuados para OBS.

Palabras clave: algoritmo voraz iterativo, algoritmo genético, facturación maximizada, centro de distribución
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Introduction

During the last decades, most companies have started to 
aim for large production and distribution volumes focusing 
on reducing lead times and inventory (van den Berg and 
Zijm, 1999; Richards, 2011; Haq and Boddu, 2017). The 
majority of customers, according to Pinto and Nagano 
(2020), have reduced the size of their orders and started to 
place them in shorter time intervals and minimum amounts 
of multiple Stock Keeping Units (SKUs) in their Distribution 
Centers (DCs). This tendency has resulted in shorter order 
fulfilment deadlines, and, consequently, it has started to 
demand greater process agility in DCs (Seyedrezaei et al., 
2012; Matthews and Visagie, 2013; Marchet et al., 2015). 
The fact is that there are still no tools that can foresee the 
exact demand volume for dynamic stochastic environments 
in an unequivocal way (Seyedrezaei et al., 2012; Sereshti 
and Bijari, 2013; Baud-Lavigne et al., 2014). The option to 

maintain minimum levels in uncertain scenarios can cause, 
at a given billing moment, some SKU restrictions in the DC 
(Pinto et al., 2018). Additionally, most customers do not 
accept billings or receiving partial purchases, for example, 
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in the e-commerce sector (Rim and Park, 2008). This fault 
will result in conflicting orders and the need to determine 
billing and fulfilment rankings for these SKUs (Rim and Park, 
2008; Slotnick, 2011; Seyedrezaei et al., 2012; Huang and 
Ke, 2017; Ledari et al., 2018; Leung et al., 2018; Boysen et 
al., 2019; Pinto and Nagano, 2020). In this sense, this paper 
adresses a specific decision-making problem to maximize 
billing, which is called Optimized Billing Sequencing (OBS). 
This problem was initially approached by Pinto et al. (2018) 
and refers to the optimization of the billing processes of the 
order portfolio in a typical DC. In practice, OBS problems 
are usually very complex, and the pressure to maximize 
results and meet delivery deadlines demands agility in 
finding the best solution. However, dealing with a set of 
rules, restrictions, and decision variables without the help 
of a suitable quantitative tool becomes a complex task when 
the objective is to optimize the OBS. Fast decision-making 
based solely on experience or feeling may lead to waste of 
time and financial losses in the DC (Pinto et al., 2018). The 
literature, however, is insufficient and does not provide 
optimization methods (OMs) that can arrive at time and 
quality solutions that are satisfactory to all OBS instances. 
The available research neglects important practical aspects 
or offers lengthy solutions that constitute limitations for 
DCs. Therefore, there is a demand for OMs that are more 
robust and suited for the reality of DCs, which basically 
consist of achieving two OBS targets: OM robustness and 
practical application in DCs. Thus, this paper focusses 
on adapting to real world demands in order to deal with 
practical dilemmas not yet addressed by the OMs proposed 
for OBS. The entire OBS configuration under study is the 
same as the one considered by Pinto and Nagano (2020). 
In this sense, the amount of available inventory for billing 
is always controlled at minimum levels based on SKU 
demands. There are therefore some uncertainties regarding 
the management of the demand, which is stochastic, and 
billings occur based on Variable Time Windows (VTW). 
Most delivery deadlines are tighter, and there is a high 
frequency of small orders containing minimum amounts of 
multiple SKUs. Billing decisions prioritize order fulfilment 
and payment dates by the Earliest Due Date (EDD) rule. 
The proposed approach aims to enable managers to make 
decisions in a more agile and consistent way regarding 
the trade-off between the level of customer service and 
the financial result maximization of the aforementioned 
DCs. Thus, the objective of this paper is to provide an 
efficient billing maximization algorithm that, in an agile 
and consistent manner, produces optimized solutions for 
higher levels of OBS complexity. This algorithm is called 
Iterative Greedy Algorithm (IGA-OBS), and its performance 
is compared to the genetic algorithm (GA-OBS) by Pinto 
and Nagano (2020). In technical terms, the latter is an 
extension and improvement of the first GA-OBS that was 
proposed in the literature by Pinto et al. (2018), whereas, in 
methodological terms, this is a quantitative research based 
on mathematical modeling and computational simulation. 
Performance evaluations of the IGA-OBS in this work are 
carried out by means of intense computational experiments 
for a set of problems with different OBS complexity levels. 

We have focused our attention on the potential of IGA-OBS/
GA-OBS for practical effectiveness and their capacity to 
adapt to the reality of current DCs. This paper is structured 
as follows: section 2 explains the OBS problem; section 
3 presents the Literature review; section 4 expresses the 
model formulation of the OBS; section 5 presents the 
IGA-OBS; section 6 demonstrates the GA-OBS; section 7 
brings the computational experiments and the performance 
assessments of the GA-OBS and the IGA-OBS; finally, the 
last section states the final considerations and the main 
suggestions for future studies and approaches to the OBS. 

OBS problem

This section presents the OBS problem to maximize the 
billing of a typical DC. In this OBS, there are uncertainties 
regarding the management of the demand, which is 
stochastic, and SKU inventories available for billing are 
controlled at minimum levels in the DC. It is common for 
customers to place more than one order simultaneously, 
which constitutes a dynamic (online) input in the order 
portfolio regardless of SKU availability. These orders may 
have varied sizes and different quantities, or distinct unit 
selling prices for multiple combinations of different SKUs or 
of the same SKU. Most customers demand tighter delivery 
deadlines for a set of orders with multiple fulfilment and 
payment dates for a given VTW. Billing sequences are 
determined by analyzing the best combinations between 
fulfilment and payment dates, which are always prioritized 
by the EDD rule. All billings are generated after a certain 
number of orders accumulates in the order portfolio, 
which also occurs within time intervals pre-set by the 
VTW. Demands with partial inventory restrictions are 
billed according to costumer approval, and those referring 
to total restrictions are billed when the SKUs are available. 
Every order that is not billed due to SKU restrictions is 
transferred to the following VTW until the quantities of the 
mentioned SKUs are available in the DC. Therefore, the OBS 
problem is caused by restrictions or management failures 
resulting from the dynamics of changes, uncertainties, and 
disorders, in addition the pressing emergency in the reality 
of current DCs (Pinto et al., 2018). Decisions are usually 
made based on fulfillment rankings pre-defined by internal 
policies, which include a set of rules, constraints, and 
decision variables inherent to the OBS. In the literature, the 
mechanism to determine which SKUs are billed for each 
order was classified by Pinto et al. (2018) as a variation of 
the Knapsack Problem (KP). Thus, the OBS may be reduced 
to a decision-making problem, for which the ideal solution 
is to maximize the total billing of the order portfolio (Pinto 
and Nagano, 2020).

Literature Review

The available literature shows the research by Pinto et al. 
(2018) to be the first to approach and propose an OM 
for a specific problem of the so-called OBS. This OM is 
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formulated through a hybrid GA, whose structure is based 
on the canonic GA by Holland (1975) and programmed in 
Visual Basic for Applications (VBA) from Microsoft Office 
Excel 2013. The hybrid GA is called GA-OBS, and it is 
formulated by means of binary genetic structures that use an 
elitist selection and an aptitude function guided by penalties 
and repairs of individuals that are unfeasible to the OBS. 
This GA-OBS can deal with inventory restrictions and with 
customer acceptance criteria regarding billings of partial 
amounts of SKUs to attribute them in an optimized manner 
to the order portfolio demand in compliance with the First 
Come, First Served (FCFS) rule. Experiments demonstrated 
that the proposed GA-OBS provides solutions that optimize 
billing and expedite decision-making processes for the OBS. 

More recently, an important innovation that aims to provide 
approaches to OBS that are better adapted to real-world 
needs was proposed by Pinto and Nagano (2020). This 
approach proposes an extension and enhancement of 
the OBS by Pinto et al. (2018), along with the Optimized 
Picking Sequence (OPS) by Pinto and Nagano (2019). These 
problems refer to the optimization of billing and manual 
picking processes, respectively, in a typical parts Warehouse 
(WA).  The WA in question operates with a picking system 
that fits into the low-level picker-to-parts category with pick-
and-sort process, and it has only one area known as Pick-up 
and Drop-off (P/D). The research objective was to provide 
a OM that integrated and offered optimized solutions for 
OBS/OPS in order to better deal with the trade-off between 
the level of customer service and the efficiency of said WA. 
The proposed OM was formulated by integrating two GAs 
called GA-OBS and GA-OPS. GA-OBS deals with inventory 
restrictions and possible partial billings, maximizes the 
total order portfolio billing by prioritizing the fulfilment and 
payment dates in compliance with the Earliest Due Date 
(EDD) rule, and generates a picking order for the GA-OPS. 
In the sequence, GA-OPS, which comprises the iteration of 
batch (GABATCH) and routing (GATSP) algorithms to satisfy all 
specificities of the problem and to minimize picking total 
time and cost for the OPS. Programming was done in Python, 
and both data inputs/outputs and results analyses were 
supported by Microsoft Office Excel 2016. Experiments with 
problems with different complexity levels showed that the 
proposed tool produces solutions of satisfactory quality and 
speeds up decision-making and operational processes so as 
to optimize financial results and productivity of the WAs. 

Evidently, GA applications stand out for their robustness, 
implementation, and hybridization flexibility with other 
OMs (Gen et al., 2008; Bottani et al., 2012). However, Pinto 
et al. (2018) applied the GA-OBS to solve only one single-
size problem, and they did not include large OBS instances. 
The objective of the authors’ approach was to gain insights 
into the best population size configuration and number 
of generations linked to variations in the genetic operator 
parameters that can maximize the solution potential of the 
GA-OBS. Therefore, the authors themselves recognize the 
need for tests in problems of higher instances, as well as the 
implementation of other parameters, operators, and genetic 

representations or evolutionary designs that can improve 
performance. In Pinto and Nagano (2020), the proposal was 
to address the integration of problems by considering a series 
of practical dilemmas present in WAs. The solutions are of 
satisfactory quality for different instances and complexity 
levels configured for the OBS/OPS. However, solutions for 
problems in large instances demand considerable efforts 
in terms of checking and repairing chromosomes to be 
performed by GAs. These occurrences may result in an 
exponential increase of computational processing time and 
make the OM inefficient for some WAs.

Similar approaches to the OBS that presuppose inventory 
restrictions and uncertainties associated to the demand 
forecast were proposed by Rim and Park (2008) and 
Seyedrezaei et al. (2012). Rim and Park (2008) used the 
entire binary Linear Programming (LP) to deal with inventory 
restrictions in order to fulfil DC orders, aiming to maximize 
the Order Fill Rate (OFR). SKUs are only attributed to orders 
if there is available inventory in the DC; if there is not, orders 
are transferred to the next day and fulfilled according to SKU 
availability and priority rules to avoid excessive delays to 
the OFR. Experiments demonstrated that LP is better than 
the simple models in terms of order size and/or number of 
SKUs when compared to the FCFS rule. Seyedrezaei et al. 
(2012) applied the GA to a NP-complete inventory forecast 
and demand problem to plan and maximize the number 
of orders fulfilled according to Customer Importance, 
SKU Useful Life, and Back-Orders. This GA calculates the 
demand coefficient of each customer for a given time period 
and defines an inventory considering the DC’s capacity 
and the useful life of the SKUs. Hence, orders that are not 
fulfilled due to SKU restrictions are transported to the next 
period (back-order). Compared to the Lingo software, the 
GA arrived at solutions with higher quality and satisfactory 
time to better manage DCs. In the search for more robust 
strategies and optimization methods, advanced technologies 
for intelligent decision making in manufacturing and logistics 
are presented by Chien et al. (2012). Other approaches 
focused on producing solutions that can maximize costs 
and/or maximize order fulfilment profit in an agile and 
flexible manner are found in high-impact journals (Ghiami 
et al., 2013; Mousavi et al., 2013; Bandyopadhyay and 
Bhattacharya, 2014; Diabat, 2014; Park and Kyung, 2014; 
Diabat and Deskoores, 2016; Kumar et al., 2016; Mousavi 
et al., 2017; İnkaya and Akansel, 2017).

Model formulation

In the OBS, the SKU notation refers to the registration 
number that distinguishes the n product types available in 
the DC stock. The quantity of each SKU in stock at a given t 
moment of the VTW is given by xi, and it is represented by 
the set X = {x1, x2, ..., xn}, in which the subscript i = (1, 2 ..., 
n) denotes the i-th SKU. The Purchase Order Portfolio (POP) 
comprises n orders, represented by POP = {O1, O2, ..., On}, 
and the subscript j refers to the j-th order ∀j = (1, 2, ..., n). 
These orders are from a set of m customers, represented 
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by CG = {C1, C2, ..., Cm}, in which the subscript a = (1, 2, 
..., m) denotes the a-th customer (Cα) of the POP. The total 
demand of xi in the POP is given by Qi, whereas the demand 
of xi in Oj is given by qij, being Oj = {q1j, q2j, ..., qnj} ∀i = (1, 
2 ..., n) attributes of Cα. If TV is the Total Value of the POP 
at the t instant of billing in the VTW, then, the TV will only 
be obtained if xi ≥ Qi, in which yi is the restriction of xi and 
wi = (Qi - yi) is the availability of xi in case yi > 0. Thus, the 
notation ijYeswCα determines that the customer accepts wi billing 
to Oj, whereas ijNowCα determines that the customer does not 
accept wi billing to Oj. The insertion date of qij in the POP is 
denoted by idij, and, subsequently, the pre-defined priority 
criteria for the OBS are obtained: i) fdij – order fulfilment 
date of i in Oj; ii) pdij – order payment date of i in Oj and; iii) 
prij – unit selling price of i in Oj. The entire billing process of 
qij is carried out by comparing Qi to the offer of xi, so that, 
every non-billed qij will be transferred to t+1 to be processed 
again by the next VTW. Up next are the indexes, parameters 
and restrictions, as well as the decision criteria and variables 
that configure the OBS optimization problem:

• Indexes

i : denotes the i-th SKU of the n SKUs of the DC;
j : denotes the j-th order of the n orders of the POP;
α : denotes the a-th customer of the j-th order of POP.

• Parameters and restrictions

VTW: Variable Time Windows;
t : VTW billing moment;
Oj : refers to the j-th order of the POP in t;
Ca : refers to the a-th customer of the POP in t;
qij : SKU demand in the Oj of the POP in t;
Qi : total demand of a SKU of the POP in t;
xi : total number of a SKU in the DC in t;
yi : restriction of xi in the DC regarding the Qi of the 
POP in t;
wi : partial availability of xi (Qi – yi) in the DC in case
yi > 0 in t.

• Decision criteria and variables

prij : SKU unit price in the Oj;
fdij : SKU fulifilment date in the Oj;
pdij : SKU payment date in the Oj;

ijYeswCα : determines if Ca accepts billings of wi to Oj;
ijNowCα : determines if Ca does not accept billings of wi to Oj.

OBS optimization is subjected to the calculation of the 
possible Maximum Billing (MB) that can be obtained from 
the inventory of each SKU available in the DC versus the Qi 
of the POP at a given t moment of the VTW. The calculation 
of the MB is then used to check the need for execution and 
of an IGA-OBS/GA-OBS search parameter to optimize the 
OBS. In cases where the MB < TV, i.e. if xi < Qi, so the 
MB will be the main parameter of the best possible solution 
for the OBS. The calculation criterion to obtain the MB, as 
demonstrated by Equation (1), prioritizes the highest prij 
according to the following parameters: i) bwij – billing value 
of wij and; ii) bqij – billing value of qij.

if     or  if     
ij iji i ij ij w i i ij ij q Q x pr w b Q x pr q b> → × = ≤ → × =    

Then, MB can be obtained according to Equation (2). In the 
sequence, Table 1 demonstrates a calculation example of the 
MB for a given POP.  In this example, we presuppose that 
the CD’s inventory volume is represented by X = {3a, 5b, 3c, 
5d, 0e, 1f, 0g and 5h}.

1 1 1 1
  

j jO On n

ij ij ij ij
j i j i

MB q pr w pr
= = = =

= × + ×∑∑ ∑∑

Table 1 shows that, given the availability of xi, and prioritizing 
only the highest prij according to bwij and bqij, the algorithm 
found the best billing mix, i.e., MB = 1 840,00, then, MB < 
TV (xi < Qi). For example, for “d”, despite fdd200 < fdd250, the 
algorithm prioritized billing for O250, given that, prd250 > prd200 
in POP. Note that the MB does not yet consider all the criteria 
and decision variables inherent to the OBS. Therefore, Total 

(2)

Number 
Order
(Oj)

Code    
Customer           

(Cα)

Product 
Description

(SKU)

Total
SKU       
(Qi)

Price     
Unit            
(prij)

Billing      
Order            

(bij)

Order
Date         
(idij)

Fulfilment 
Date        
(fdij)

Payment 
Date       
(pdij)

Accepts 
partial qi                     

(wij)

Stock 
Attribution  

(xi)

Maximum 
Billing  
(MB)

100 10 a 3 50,00 150,00 10/05/2021 10/06/2021 10/07/2021 Yes 2 100,00
100 10 c 2 150,00 300,00 10/05/2021 10/06/2021 10/07/2021 Yes 2 300,00
150 15 c 1 155,00 155,00 15/05/2021 20/06/2021 20/07/2021 No 1 155,00
200 20 b 2 100,00 200,00 15/05/2021 10/06/2021 10/07/2021 No 2 200,00
200 30 c 2 150,00 300,00 15/05/2021 10/06/2021 10/07/2021 No - -
200 30 d 4 200,00 800,00 15/05/2021 10/06/2021 10/07/2021 No 3 600,00
250 10 d 2 212,50 425,00 18/05/2021 15/06/2021 10/07/2021 No 2 425,00
300 30 a 1 60,00 60,00 18/05/2021 10/06/2021 10/07/2021 No 1 60,00
300 30 e 2 25,00 50,00 18/05/2021 10/06/2021 10/07/2021 No - -

Total Value (TV)                     19              2 440,00               13      1 840,00

Table 1. Maximum billing example

Source: Authors

(1)
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Billing (TB) maximization of the POP can be expressed as a 
mathematical programming model to maximize TBmax:

max
1 1 1 1

Maximize   
j jO On n

ij ij ij ij
j i j i

 TB q pr w pr
= = = =

= × + ×∑∑ ∑∑

Subjected to:    

0ix >             i = 1, 2, ..., n

  ijNow
i ijx q Cα≥ ∀             j = 1, 2, ..., n

0  ijYesw
ijw Cα> ∀             α = 1, 2, ..., m

On: Fulfilment by priority fdij, in POP                       
On: Fulfilment by precedent pdij in POP                   
On: Fulfilment from highest to lowest prij in POP      

The objective function in Equation (3) is to find the maximum 
possible billing of the POP. Restriction (4) ensures that qi 
will only be attributed to Oj if, in a t given moment of the 
VTW, the variable xi > 0 in the DC. Restriction (5) ensures 
that, ∀ ijNowCα , the total demand of qij can only be attributed 
to its corresponding Oj if, at a t given moment of VTW, the 
variable xi ≥ qij in the DC. Restriction (6) will make sure that 
a given wi can only be attributed to Oj if wi > 0 in the POP 
and ijYeswCα  . Variables (7), (8), and (9) determine that the rules 
for fdij, pdij, and prij are satisfied in the POP.

Iterative Greedy Algorithm (IGA-OBS)

The logic of the IGA-OBS is based on the verification 
and attribution technique through the iteration of a set of 
interdependent elements which configure the OBS. The 
first phase of its formulation is the sorting mechanism of 
the POP by the fulfilment priority levels defined by fdij/pdij/
prij. It is assumed that fdij and pdij have respectively higher 
priority levels than the prij of the POP. Hence, qij and wij 
are attributed by automatically comparing and updating 
inventory balances after each SKU attribution. Therefore, qi 
or wi is attributed to Oj by the variable sij. Thus, sij = qi or wi; 
otherwise, sij = 0 to obtain the TB maximization according 
to Equation (10).

max
1 1 1 1

  
j jO On n

ij ij ij ij
j i j i

TB q pr w pr
= = = =

= × + ×∑∑ ∑∑

Thus, qi or wi may or may not be attributed to the j-th 
depending on parameters and restrictions, decision criteria, 
and variables inherent to the OBS. The attribution routine 
verifies whether there is a balance of xi in the DC, and, 
after each execution, the IGA-OBS produces a solution that 
maximizes the TB of the POP. qi or wi to Oj is attributed 
according to the following conditions:

1.  If xi = 0, sij = 0 according to Equation (11).

if 0 0i ij ijx q s= ∀ → =

2.  If xi = wij in case ijNowCα , sij = 0 according to Equation (12).

if  0ijNow
i ij a ijx w C s= ↔ → =

3. If fdt+1 < fdt, fdt+1 is prioritized over fdt according to 
Equation (13).

1 1if   ijYes t t t

ij

w fd fd fd
i ij a j j ij ij qx w C O O pr w b+ += ∀ ↔ < → × =

4.  If pdt+1 < pdt, pdt+1 has preference over pdt according to 
Equation (14).

1 1 1if    ijYes t t t t t

ij

w fd pd pdfd pd
i ij a j j j j ij ij qx w C O O O O pr w b+ + += ∀ ∧ = ↔ < → × =

5.  If prij+1 > prij, prij+1 is prioritized over prij according to 
Equation (15).

1 1if   ij ij ij ijt t

ij

pr prw prfd pd
i ij a j j j j ij ij q

Yesx w C O O O O pr w b+ += ∀ ∧ = ↔ > → × =

To exemplify the solution of the problem given by Table 1, 
Table 2 shows how the IGA-OBS performs both the POP 
ordering and the assignments of xi to maximize TB. The 
following colors are used to demonstrate the attributions 
of qij and wij in order to exemplify the calculation that 
maximizes TB: i) black: it refers to the total attributions of 
qij; ii) green: it corresponds to the attributions of wij; and 
iii) red: it indicates the qij and wij that were not attributed 
due to the total restrictions of a given SKU.

On Table 2, it can be observed that, for “α”, O100 and 
O300 have identical fdij and pdij. However, pra300 > pra100 
and, if O100 has ijYeswCα as a criterion for billings of wij, si100 
= 2α and si300 = 1α. Note that for “c”, O150, even having 
the highest prc among the orders, is discarded because 
fd150 is higher than fd100 and fd200. In case of “d”, there 
is insufficient inventory of xd to satisfy O200 and O250, 
and both have ijNowCα as a criterion for billings of wij. Thus, 
if fd200 < fd250, the option is to satisfy O200. As for “e”, 
there were no attributions as xd = 0, that is, the entire 
IGA-OBS solution logic satisfies all demands inherent 
to the OBS to maximize the TB. Table 3 presents the 
list of qij to be billed, whereas the qij that will not be 
billed is represented by y = {1a, 2c, 2d and 2e} due to 
yi restrictions. In sequence, Algorithm 1 shows the IGA-
OBS pseudocode

Genetic algorithm (GA-OBS)

In the evolutive genetic structure of the GA-OBS, the 
representation of chromosome (C) is given by a binary string 
{0,1}, which attributes qi or wi to Oj by variable sij = 1 ; 
otherwise, sij = 0. Then, a C is divided into On genes, and qij 
or wij is an allele of the j-th gene according to Figure 1.

(3)

(4)

(5)

(6)

(7)
(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)
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Number 
Order
(Oj)

Code    
Customer           

(Cα)

Description 
Product
(SKU)

Total
SKU       
(Qi)

Price     
Unit            
(prij)

Billing      
Order            

(bij)

Order
Date         
(idij)

Fulfilment 
Date        
(fdij)

Payment 
Date       
(pdij)

Accepts 
partial qi                     

(wij)

Stock  
Attribution  
(qij and wij)

Total    
Billing
(TB)

100 10 a 3 50,00 150,00 10/05/2021 10/06/2021 10/07/2021 Yes 2 100,00
300 30 a 1 60,00 60,00 18/05/2021 10/06/2021 10/07/2021 No 1 60,00
200 20 b 2 100,00 200,00 15/05/2021 10/06/2021 10/07/2021 No 2 200,00
100 10 c 2 150,00 300,00 10/05/2021 10/06/2021 10/07/2021 Yes 1 150,00
200 30 c 2 150,00 300,00 15/05/2021 10/06/2021 10/07/2021 No 2 300,00
150 15 c 1 155,00 155,00 15/05/2021 20/06/2021 20/07/2021 No 0 -
200 30 d 4 200,00 800,00 15/05/2021 10/06/2021 10/07/2021 No 4 800,00
250 10 d 2 212,50 425,00 18/05/2021 15/06/2021 10/07/2021 No 0 -
300 30 e 2 25,00 50,00 18/05/2021 10/06/2021 10/07/2021 No 0 -

Total Value (TV)                     19              2 440.00               12      1 610,00

Table 2. IGA-OBS solution example

Source: Authors

Source: Authors

Number 
Order
(Oj)

Code    
Customer           

(Cα)

Product 
Description

(SKU)

Total
SKU       
(Qi)

Price     
Unit            
(prij)

Billing      
Order            

(bij)

Order
Date         
(idij)

Fulfilment 
Date        
(fdij)

Payment 
Date       
(pdij)

Accepts 
partial qi                     

(wij)

Stock (xi) 
Attribution  
(qij and wij)

Total    
Billing
(TB)

100 10 a 2 50,00 100,00 10/05/2019 10/06/2019 10/07/2019 Yes 2 100,00
100 10 c 1 150,00 150,00 10/05/2019 10/06/2019 10/07/2019 Yes 1 150,00
200 20 b 2 100,00 200,00 15/05/2019 10/06/2019 10/07/2019 No 2 200,00
200 30 c 2 150,00 300,00 15/05/2019 10/06/2019 10/07/2019 No 2 300,00
200 30 d 4 200,00 800,00 15/05/2019 10/06/2019 10/07/2019 No 4 800,00
300 30 a 1 60,00 60,00 18/05/2019 10/06/2019 10/07/2019 No 1 60,00

Total Value (TV)                     12             1 610,00               12     1 610,00

Table 3. Billing list

procedure: IGA-OBS // attribution iteration    
input: problem data and IGA-OBS parameters 
output: best solution                         
beginning                                 

sort out POP                            
SKU: registration number of i in POP   
fdj : fulfillment date of i in Oj                               
pdij : payment date of i  in Oj
 sort out SKU:

      prij : unit selling price of i  in Oj
for each qij check:

if xi > 0 e xi ≥ qij bill ← update inventory (xi) and check next SKU;
if xi > 0 e qij > xi and ijYeswCα

bill wi ← update xi and check next SKU;
if xi = 0 ← do not bill and check next SKU                                       
if xi > 0 e qij > xi and ijNowCα ← do not bill and check next SKU;
if prt <  prt+1 ← bill prt+1 ← update xi and check next SKU;

output: the best solution;       
end

Algorithm 1. General implementation structure (IGA-OBS)
Source: Authors

Attributions Chromosome for Billing 
Orders O100 O150 O200 O250 O300

SKUs 3a 2c 1c 2b 2c 2d 2d 1d 2e

Attributions 0 0 1 1 1 1 1 1 0

Orders (Genes - Oj) - - - Demand (Bits - qij)

Figure 1. Assignment chromosome for billing (GA-OBS)
Source: Authors

The population is a matrix denoted by Npop, with Nbits being 
the number of bits of C, and Nger the total of generations 
in the exécution of the GA-OBS (Haupt, R. and Haupt, S., 
2004). The initial Npop is generated randomly (Man et al., 
1996), i.e., if sij < 0,5, sij = 0 ; otherwise, sij = 1, and Nbits 
is equal to the number of POP lines. Therefore, the Billing 
Obtained (BO) by C is given by Equation (16).

1 1 1 1
  

j jbits bitsO ON N

ij ij ij ij ij ij
j i j i

BO s q pr s w pr
= = = =

= × × + × ×∑∑ ∑∑
    

{ }0,1ijs =

The fitness function (Ffitness) first penalizes every C that is 
not feasible to the OBS by assigning a negative value equal 
to the bqij of the invalid bit, in which ∀sij = 1 according to 
the following conditions:If sij = 1 and xi = 0: penalty Pex is 
imposed according to Equation (17).

 if  1 0   
bits

ij ij ij

N

x q ij i ij ij q
j i

Pe b s x pr q b
=

= = ∀ = → × =∑

1.  If sij = 1 to wij in case ijNowCα : penalty Pew is imposed 
according to Equation (18).

 if  1   
bits

ij

ij ij ij

N
w

w q ij ij a ij ij q
j i

NoPe b s w C pr w b
=

= = ∀ ↔ → × =∑

(16)

(17)

(18)
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2. The sij = 1 must prioritize the first fdij in the POP: If xi < 
Qi, fdt is preferred over fdt+1; otherwise, penalty Pefd is 
imposed according to Equation (19).

1 1   if  1 0  
bits

t t t

ij ij ij

N
fd fd fd

fd q i i ij j ij j ij ij q
j i

Pe b x Q s O s O pr q b+ +

=

= < ↔ = ∀ ∧ = ∀ → × =∑

3. The sij = 1 must prioritize the first pdij in the POP: after 
checking the fdij, if pdt+1 < pdt, pdt+1 is prioritized; 
otherwise, penalty Pepd is imposed according to Equation 
(20).

1 1   if 1  
bits

t t t t t t

ij ij ij

N
fd fd pd pd pd pd

pd q j j ij j j j ij ij q
j i

Pe b O O s O O O pr q b+ +

=

= = ∧ = ∀ ↔ < → × =∑

4.  The sij = 1 must prioritize the highest prij in the POP: 
after checking the fdij and the pdij, if prij+1 > prij, prij+1 is 
prioritized; otherwise, penalty Pepr is imposed according 
to Equation (21).

1 1   if 1  
bits

t t t t t t

ij ij ij

N
pd pd pr pr pr pr

pr q j j ij j j j ij ij q
j i

Pe b O O s O O O pr q b+ +

=

= = ∧ = ∀ ↔ > → × =∑

Next, Ffitness makes repairs by swapping “l” for “0” in bits with 
incidence of Pex and Pew by means of Rex and Rew repairs 
according to Equations (22) and (23).

  1 0 0
ijijx x ij i ijRe Pe s x s= ↔ = ∀ = → =

Re  1  0ij

ij ij

w
w w ij ij a ij

NoPe s w C s= ↔ = ∀ ↔ → =

Therefore, bqij and bwij for Nbits repaired are $0,00, and $1,00 
is attributed to Ffitness in case Ffitness ≤ 1, i.e., Ffitness may vary 
from $0,00 to BO according to Equation (24). 

1
( )

if  $1,00  $ 1,00

bits

ij ij ij

N

fd pd pr
jfitness

fitness

BO Pe Pe Pe
F

BO F
=


− + += 

 < → =

∑

The roulette wheel by Holland (1975), linked to Elitism 
(E) by De Jong (1988), is used as a selection technique, in 
which only the best C (CElite) of each Nger is transferred to 
become the first C of Nger+1. The selection probability of each 
individual i is equivalent to a certain slice of the roulette 
wheel, as expressed by Equation (25). 

1
i pop

fitnessi
s N

fitnessii

F
p

F
=

=
∑

To exemplify this, Table 4 shows the calculus of the selection 
probability for four individuals. Then, the select graphic by 
the roulette wheel with elitism is demonstrated by Figure 2.

The implemented crossover operator is of the two-point 
kind, and the mutation is an adaptation of the flip type, both 
by Holland (1975). Figure 3 illustrates the crossover and 
mutation diagram implemented to GA-OBS.

 

 
Figure 3. Crossover and mutation diagram (GA-OBS)
Source: Authors

Figure 3 shows that the crossover is applied to the “Parents” 
according to the crossover probability (pc) pre-defined for 
the GA-OBS. In the crossover, each Oj and qij remain static, 
while permutations occur only for sij in order to form the 
“Sons” of Nger+1. Figure 3 also shows that the mutation 

(19)

(20)

(21)

(22)

(23)

(24)

(25)

Individual
(String) 

Fitness
Function

Selection
Percentage 

Piece of   
Roulette 

 Chromosome (C1) 1 360,00 39% 138,70

 Chromosome (C2) 1 250,00 35% 127,48

 Chromosome (C3) 460,00 13% 46,91

 Chromosome (C4) 460,00 13% 46,91

Total Population 3 530,00 100% 360,00

Table 4. Evaluation calculus and selection percentage (GA-OBS)

Source: Authors

Figure 2. Graphic of the roulette wheel with elitism (GA-OBS)
Source: Authors

Population                                   Father-1
Pn 300 100 200 100 200 150 200 250 300
qij 1a 3a 2b 2c 2c 1c 4d 2d 2e
sij 0 1 0 1 1 0 1 0 0
Pn 300 100 200 100 200 150 200 250 300
qij 1a 3a 2b 2c 2c 1c 4d 2d 2e
sij 1 1 0 1 0 1 0 0 0

 Father-2
Crossover                                      Son-1
Pn 300 100 200 100 200 150 200 250 300
qij 1a 3a 2b 2c 2c 1c 4d 2d 2e
sij 0 1 0 1 0 1 1 0 0
Pn 300 100 200 100 200 150 200 250 300
qij 1a 3a 2b 2c 2c 1c 4d 2d 2e
sij 1 1 0 1 1 0 0 0 0

 Son-2
Mutation                                       Son-1
Pn 300 100 200 100 200 150 200 250 300
qij 1a 3a 2b 2c 2c 1c 4d 2d 2e
sij 0 1 0 0 0 1 1 1 0
Pn 300 100 200 100 200 150 200 250 300
qij 1a 3a 2b 2c 2c 1c 4d 2d 2e
sij 1 1 1 1 1 0 1 0 0

Son-2
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affects the “Sons” resulting from the crossover, and it will 
be applied according to the mutation probability (pm), 
whereas tx is the rate for the exchange between the Nbits of 
C. Therefore, each bit to be mutated is randomly chosen and 
receives a value corresponding to the exchange between 0 
and 1 for the sij of C. Note that the mutated bits (red) make 
changes in the genetic pattern of the “Sons”.

Thereupon, pc, pm, and tx allow a parameterization that can 
vary from 0 to 100%. However, after being pre-defined, they 
remain fixed during all the Nger in each execution of the GA-
OBS. To generate Npop+1, the Npop swapping technique with 
elitism by De Jong (1988) is used. The termination criterion 
used, prevailing the first one obtained, is that the MB or Nger 
is used. Algorithm 2 shows the GA-OBS pseudocode.

procedure: GA-OBS // GA initial population generation                                           
input: problem data and GA parameters                                                        
output: best solution (CElite)                                                                    
beginning                                                                                   

random attributions sij = 0 or sij = 1 to qij of POP                                           
 aptitude eval(Npop) by decoding routine;                                                  

for each bit sij = 1:                                                                    
check if total (qij) or partial (wij) billing is possible: 
 if xi > 0 and xi ≥ qi bill ← update inventory (xi) and check next item;

 if xi > 0 and qi > xi and ijYeswCα bill wi ← update xi and check next item;
 if xi = 0 ← penalize bqij ← repair bit and check next item;
 if xi > 0 and  qi > xi and ijNowCα ← penalize bwij and repair item;

 if fdt+1 billed before fdt ← penalize bqij                                            
 if pdt+1 billed before pdt ← penalize bqij                                           
 if prt+1 billed and prt > prt+1 ← penalize bqij                                          
Ffitness ← BO – total of penalties and repairs;

if Ffitness < 0
  Ffitness ← $ 1,00;

 output: Ffitness - individual’s aptitude value (C);
while (condition is not finished) of 

Npop crossing to generate C(g);                                                       
Npop mutation to modify C(g);                                                         
aptitude eval(C) by codification routine;
select Npop(g+1) for Npop(g) and C(g);
g ← g+1;

end
output: the best solution (CElite);

end

Algorithm 2. General implementation structure (GA-OBS)
Source: Authors

Computational experiments and result analyses

This section and its subsections detail problem 
configurations, computational experiments, and analyses 

of the results obtained by the GA-OBS and the IGA-OBS. 
These analyses focused on assessing performance and on 
the conditions to adapt GA-OBS/IGA-OBS to the reality 
of the aforementioned DC. Algorithm implementations 
and computational experiments were carried out in a 
microcomputer featuring a 2.0GHz i7 processor and 8GB 
of RAM. Programming was conducted in Python, and 
both data inputs/outputs and analyses were supported 
by Microsoft Office Excel 2016. Experiments included a 
set of problems with different complexity levels based on 
the literature and the reality of DCs. The entire problem 
configurations and the instances used in the experiments 
are identical to those considered by Pinto and Nagano 
(2020). Therefore, the problems are classified into three 
categories: i) Small (SM); ii) Medium (ME) and; iii) Large 
(LG).

Test problems and parameter setting
This subsection details problem formulations and 
parameter configurations or each OBS category. For 
a better comparative analysis of the algorithms, all the 
problems are configured so that the MB is the optimized 
solution for the OBS. Thus, in the DC under study, there 
is a total of 1 250 types of SKUs to satisfy the POP at 
a given t moment of the VTW. Depending on the OBS 
category, SKU restrictions in the DC are the following: 
i) xi = 0 from 1 to 2,5% and; ii) xi = 2 from 2 to 3%. All 
billing processes take place immediately after VTW = 8 
(hours), where 50% of the POP orders contain ijYeswCα and 
frYes. The number of SKUs that repeat among the n orders 
of each POP range from 50 to 80%. However: i) if xi = 0, 
there will be no SKU repeated in another order; ii) if xi = 
2, there will be only one SKU repeated in another order. 
Date configurations are shown next, and they presuppose 
that t refers to the date of the last order input in the POP. 
For idij: i) 50% have idij = t; and ii) 50% of the remaining 
idij range from idij = t-5 days to idij = t-1 days. For fdij: i) 
30% (fdij = t); ii) 30% (fdij = t+10 days); iii) 20% (fdij = t+20 
days); and iv) 20% (fdij = t+30 days). For pdij: i) 20% (pdij = 
t); ii) 20% (pdij = t+10 days); iii) 20% (pdij = t+15 days); iv) 
20% (pdij = t+30 days); and v) 20% (pdij = t+45 days). prij 
is randomly determined by an even distribution function 
[100, 1 000]. However: i) if xi = 0, prij = $200,00; ii) if 
xi = 2, prij = $100,00; and iii) if SKU repeated among 
orders is ijNowCα , then prij = $ 120,00. Table 5 summarizes 
the problems formulated for the OBS.

OBS Problem SM-1 SM-2 ME-3 ME-4 LG-6 LG-6
Number of orders of POP 10 15 20 30 40 50
Number of SKU in each Oj 2 2 4 4 6 6

Demand of each SKU in Oj 2 2 2 2 2 2
Different types of SKU in each Oj 20 30 80 120 240 300
Total demand of SKU in each Oj 40 60 160 240 480 600
Total Value (TV) of billing in each 

POP 15 000,00 20 000,00 54 908,00 9 836,00 209 408,00 250 274,00

Table 5. Summary of problem settings

Source: Authors
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Computational results and analyses
This section describes the results of the computational 
experiments and the performance analyses of the GA-OBS/
IGA-OBS proposed for the OBS. The analyses were carried 
out by means of Outcome Assessment Metrics (OAM), and 
the final assessment was consubstantiated by the set of 
average results obtained by the GA-OBS/IGA-OBS. GA-OBS 
computational experiments demonstrated that a critical 
factor in the generation of high-aptitude inviduals is the 
calibration of the genetic operators. There is no standard 
formula to indicate which ideal parameter configuration 
will produce the appearance of CElite in the GA-OBS. While 
considering that the new generations are not deterministic, 
we sought to better deal with the trade-off between the 
quality of the solutions and the computational efficacy of 
the GA-OBS. The option was to use average parameters that 
better adjusted to the real situations and the design of the 
evolutive genetic structure of the GA-OBS. After the execution 
series for the each OBS problem category, combinations and 
parameter minimum and maximum limits that provided the 
best solutions to the GA-OBS are summarized in Table 6.

Table 6. Parameterization for genetic algorithms (GA-OBS)

Source: Authors
 
In Table 6, it is possible to verify that the initial Npop ranges 
from 200 to 2 000 individuals, and that the Nger ranges from 
200 to 12 000 individuals. Notice that pc ranges from 50 to 

80%, while pm ranges from 20 to 80% using a tx of 1 or 2% 
depending on OBS complexity. Tables 7 and 8 sumarize the 
results obtained by the GA-OBS and IGA-OBS according to 
the following OAM: i) Tardiness in Customer Orders (TCO); 
ii) Number of Fulfilled Orders (NFO); iii) Total of Billed 
Products (TBP); iv) Computational Processing Time (CPT); 
v) Maximum Billing (MB) ; and vi) Total Billing (TB).

Tables 7 and 8 demonstrate that GA-OBS and IGA-OBS 
can satisfy all rules, restrictions, and decision criteria 
to maximize the TB for each OBS instance. The genetic 
structure implemented in the GA-OBS can conduct the 
search for CElite and meet all conditions attributed to the OBS. 
In general, the GA-OBS converges up to CElite from the third 
until the tenth generation at most for each OBS category. 
This demonstrates that the size of both the Npop and the Nger, 
and that pc, pm, and tx have proved to be sufficient to create 
a level of diversity capable of capturing all OBS specificities 
and allow the convergence of the GA-OBS. 

However, obtaining the best results for instances of higher 
OBS levels is conditioned to significant increases in the size 
of the Npop and the Nger. Thus, there is a relative dependence 
on the size of the Npop and the Nger, which, if they are not 
large enough to expand the search space, will make the 
GA-OBS stagnate in a local solution that is distant from 
TB maximization. Note that, for a POP with more than 30 
orders containing more than 80 lines and 200 SKUs, the 
GA-OBS obtained a much higher CPT than the IGA-OBS. 
This happens because the GA-OBS solutions require an 
exaustive search for a large number of possible solutions, 
thus demanding intensive effort in verifications and repairs, 
which exponentially expands the CPT and can make it 
unfeasible for OBS reality. Probabilistic properties and the 
configuration of the genetic representation linked to an 
aptitude function guided by penalties and repairs are critical 

Parameters SM-1 SM-2 ME-3 ME-4 LG-5 LG-6

Population size (Npop) 200 400 800 1 000 1 500 2 000

Generation number (Nger) 200 400 2.000 5 000 8 000 12 000

Crossover probability (pc) 80% 80% 80% 50% 50% 50%

Mutation probability (pm) 80% 50% 20% 20% 20% 30%

Mutation rate of bits (tx) 2% 1% 1% 1% 1% 1%

  OAMs Measures SM-1 SM-2 ME-3 ME-4 LG -5 LG -6
TCO Unit – – – – – –
NFO Unit 10 15 20 30 40 50
TBP Unit 34 50 134 200 402 500
CPT Minutes 0,522 1 124 70 857 316 952 1 367 555 3 492 102
MB Dollar (US$) 14 400,00 19 000,00 52 908,00 94 336,00 201 608,00 240 274,00
TB Dollar (US$) 14 400,00 19 000,00 52 908,00 94 336,00 201 608,00 240 274,00

  OAMs Measures SM-1 SM-2 ME-3 ME-4 LG -5 LG -6
TCO Unit – – – – – –
NFO Unit 10 15 20 30 40 50
TBP Unit  34  50  134  200  402  500 
CPT Minutes  0,063  0,067  0,083  0,100  0,133  0,200 
MB Dollar (US$)  14 400,00  19 000,00  52 908,00  94 336,00  201 608,00  240 274,00 
TB Dollar (US$)  14 400,00  19 000,00  52 908,00  94 336,00  201 608,00  240 274,00 

Table 7. Results obtained by genetic algorithms (GA-OBS)

Table 8. Results obtained by the Iterative Greedy Algorithm (IGA-OBS)

Source: Authors

Source: Authors
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factors for the evolution and convergence of the GA-OBS. 
We also verified that the GA-OBS is extremely sensitive to 
the calibration of genetic operators and the parameterization 
of pc, pm, and tx, which is the best possible to favor the 
diffusion of positive genetic features for each new generation 
of the GA-OBS. Improper parameterizations can destroy the 
aptitude of the individuals or force the evolution to occur 
more slowly, as well as leading to a premature convergence 
or demanding a CPT that makes the GA-OBS unfeasible. The 
fact is that, the greater the OBS instance, the greater the 
number of penalties and repairs, thus the longer the GA-
OBS solution will be.

In practical terms, the GA-OBS is limited to medium-size 
problems and differs from the needs of managers when 
faced with the complexities present in the daily reality 
of DCs. On the other hand, the experiments evidenced 
that the performance of the IGA-OBS was much better 
than that of the GA-OBS, and that it produced optimized 
solutions with a CPT that is less than one minute for any 
OBS category. The use of the IGA-OBS enables managers to 
deal more quickly and consistently with higher levels of OBS 
complexity; the faster the flow of information, the higher 
is the degree of negotiation accuracy, and the faster is the 
OBS decision-making. These actions result in less waste of 
time and greater flexibility and precision to schedule billing 
and picking processes within the DC. IGA-OBS solutions 
optimize the quality of order protfolio fulfilment and cash 
flow management by reducing the DC’s eventual financial 
losses. In general terms, the IGA-OBS provides a tool that 
enables managers to make decisions in a more agile and 
consistent way regarding the trade-off between the level 
of customer service and the maximization of the DC’s 
financial result. In addition to that, the IGA-OBS does not 
use penalties or repairs, and it can be implemented without 
major difficulties to other OBS and DC configurations. The 
option to use Excel allows the main current management 
software programs to extract .xls files to make uploads to 
the IGA-OBS. Analysis of SKU inventory specificities and the 
best VTW adjustment regarding the POP size also contribute 
to formulating OMs with practical designs that are more 
robust and suitable for OBS.

Final considerations

This paper proposes an efficient algorithm to solve a 
specific billing maximization problem called Optimized 
Billing Sequencing (OBS). Initially approached by Pinto et 
al. (2018), OBS refers to the optimization of order portfolio 
billing processes in a typical Distribution Center (DC). In 
the OBS under study, Stock Keeping Unit (SKU) inventories 
are controlled at mimimum levels inside the DC. There 
are, however, uncertainties regarding the management of 
the demand, which is stochastic, and billings occur from 
Variable Time Windows (VTW). Most delivery deadlines are 
tight, and there is a high frequency of small orders containing 
minimum amounts of multiple SKUs. It is not uncommon 
that, when billing, determining fulfilment rankings may be 

necessary, as well as analyzing whether customers accept 
partial amounts due to SKU restrictions. Decision making 
about billing prioritizes fulfilment and payment dates in 
compliance with the Earliest Due Date (EDD) rule. Thus, 
the new algorithm proposed for the OBS was called Iterative 
Greedy Algorithm (IGA-OBS) and its performance was 
compared to the genetic algorithm (GA-OBS) by Pinto and 
Nagano (2020). Experiments with problems with different 
levels of complexity demonstrated that the algorithms 
satisfy all rules, restrictions, and decision variables, and they 
obtain solutions of satisfactory quality for all OBS instances. 
It was evidenced that the GA-OBS is limited to medium-size 
problems, as it demands a high computational processing 
time that differs from those required to the reality of 
current DCs. However, the GA-OBS is capable of producing 
optimized solutions with a computational processing time 
of less than one minute for any OBS problem. This research 
fills a gap in the literature and makes valuable contributions 
to further studies on the development of algorithms with 
practical designs that are more robust and suitable for OBS. 
The proposed IGA-OBS enables managers to make decisions 
in a more agile and consistent way in terms of the trade-off 
between the level of customer service and the maximization 
of the financial result of the aforementioned DC. There is still 
a vast field of inquiries and assumptions for new optimization 
methods for many other approaches and configurations for 
the so-called OBS. The main limitation is that the literature 
does not yet provide an available database with different OBS 
problems to better test the IGA-OBS/GA-OBS. Suggestions 
for further researches are: i) to conduct studies with actual 
applications, so a comparative analysis of the processes 
adopted by managers versus those resulting from the IGA-
OBS can be made; ii) to implement more efficient designs to 
elements, parameters, and genetic operators, or formulate 
evolutionary genetic representations that improve the GA-
OBS performance; iii) to carry out extensive computational 
experiments by means of comparative studies among 
other renowned metaheuristics versus the IGA-OBS; iv) to 
assess the IGA-OBS with dynamic variables in order to deal 
with payment deadlines, cashflow, demand forecast, and 
production lead times that replenish DC inventories.
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