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Elasto-plastic model to determine the maximum  
force for shaft straightening process

Modelo elasto-plástico para determinar la fuerza máxima  
para un proceso de enderezamiento de un eje

J. C. Galvis1, H. E. Maury2, and R. J. Hernández3

ABSTRACT 

This paper shows the development of a mathematical model based on elasto-plastic behavior of materials in order to determine the 
bending moment and the maximum straightening force required to repair a bent shaft.  The importance of this work is because many 
machines use shafts to transmit power and movement, and these elements can suffer permanent deflections during operation cycles. 
An appropriate reparation process can increase the life of these elements significantly.  Knowing the mechanics for a straightening 
process is essential for design, processes and maintenance engineers in charge of systems that use these elements (shafts).
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RESUMEN

Este artículo muestra el desarrollo de un modelo matemático basado en el comportamiento elasto-plástico del material con el objeto 
de determinar el momento de flexión y la fuerza máxima de enderezamiento requerida para reparar un eje doblado. La importancia 
de este trabajo radica en que muchas máquinas usan ejes para transmitir potencia y movimiento, y estos elementos pueden sufrir 
deflexiones permanentes durante sus ciclos de operación, de tal modo que un proceso adecuado de reparación puede incrementar 
la vida de estos elementos significativamente. Saber la mecánica del proceso de enderezamiento es esencial para los ingenieros de 
diseño, manufactura y mantenimiento a cargo de sistemas que usan este tipo de elementos (ejes).
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Introduction

The most used mechanical element to transmit power and 
movement is a shaft. They are used in all kind of industrial 
systems. During operation they can suffer deflections. In order 
to increase their life cycle, shaft straightening reparations 
are needed. The main parameter for straightening machines 
is the maximum force that can be applied in the process. 
It is important to know the mechanics of the straightening 
process; some studies used experimental data (Schleinzer, 
et al., 2001; Srimani, et al., 2005) and numerical models 
(Jing, et al. 2013; Wu, et al., 2000). Some authors have 
studied the process and how to control the stages based 
on material response (Li, et al., 1999; Seung-Cheol, et al., 
2002). An important phenomenon is the residual stress 
(Schleinzer, et al., 2001) and the springback of the material. 
In many cases they studied the effect on test bars and rails. 
The idea with this work is to develop a model based on the 

elasto-plastic behavior of the material and the geometric 
characteristics of the bent shaft. This will be an important 
tool for design straightening machines, and also to improve 
reparation processes. 

Proposed model

In order to develop a mathematical model of a bent shaft 
deformation based on geometry and mechanical behavior of 
materials, some assumptions have to be made. The final goal 
is to compute the force necessary to straighten a bent shaft. 

First, the bending moment required to straighten the shaft will 
be computed with Equation (1) (Ugural, and Kenster, 1995).

 M f =
−d
2

d
2

∫ σ y( )b y( ) ydy  (1)

Where, y is the height of the cross section, b is the width, 
d is the diameter and σ is the normal stress. Figure 1 
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illustrates the normal stress distribution in the cross section 
of the shaft.

to plastic deformation and the new yield stress σ’ys is equal 
to the strain that caused the deformation observed in the 
component. Figure 2 shows this process.

Figure 1. Normal stress distribution in the cross section of the shaft.
Source: Authors

In this case the cross section is circular, it can be shown 
that the width of the section in terms of height is given by 
Equation (2).

 b y( )= 2 d / 2( )2− y2  (2)

The normal stress, as a function of height, is a piecewise 
continuous and bounded function. The fact that it is a 
continuous piecewise function is due to the transition 
from elastic flow, determined by Hooke’s law, to plastic 
flow which can be approximated by the Ludwik equation 
(Lubliner, 2008); and it is bounded by 0 (no stress applied) 
and sut (ultimate strength). Then, the normal stress as a 
function of height is given by:

 σ y( )=

Ey
R

,                        0≤ y≤ y f  

σys + K
y
R
−
σys
E

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

n

, y f < y≤ d 2

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

 (3)

Where E is the Young modulus of the material, R is the 
average radius of curvature of the shaft in the cross-section 
analyzed (Where R ≠ ∞ due to shaft deflection), σys is the 
yield strength of the material, K is the strain hardening 
coefficient of the material, n is the strain hardening 
exponent of the material and yf is the height which divides 
the elastic and plastic region in the cross section.

On the other hand, once the shaft is deformed plastically, 
the stress-strain curve changes (Strain hardening - Cold 
work) and the new function σ’(y) has to be computed. The 
material tries to recover its original shape (This phenomenon 
is called “springback”). This recovery is approximately 
linear with a slope equal to the Young modulus of the 
material. Also the material suffers a strain hardening due 

Figure 2. Plastic deformation, springback and strain hardening.
Source: Authors

Then, considering the new stress-strain curve, the new 
normal stress function σ’ is given by:

 σ' y( )=

Ey
R'
,                   0≤ y≤ εR' 

σys + K
y
R y( )

−
σys
E

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

n

, εR'< y≤ d
2

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

 (4)

Where R’ is the radius of curvature after deformation with 
stress level σ’ys and the load still applied, ε is the strain 
corresponding to σ’ys and R(y) is the radius of curvature of 
the shaft at height y. This latter term is also dependent on 
the variation of the stress σ’ but this is a function of y, then 
R ends a function of y.

Now, the values of R’ and ε have to be computed. The strain 
ε is determined using equation (5).

 E ε− ′ε( )= σys + K ε−
σys
E

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

n

 (5)

Where ε’ is the strain corresponding to the springback, and 
in this case it is given by:

 ′ε =
d / 2
R

 (6)

Now R’ can be calculated using Equation (7).

 σ'
ys
= σ

ys
+K

d / 2
R'
−
σ
ys

E

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟

n

 (7)



IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (109-110) 109

GALVIS, MAURY, AND HERNÁNDEZ

The stress corresponding to R(y) = ∞ is denoted by σ1. It 
is important to take into account the material springback 
again, so an extra stress (overbending) has to be added, 
this extra stress is denoted by σ2. Figure 3 illustrates both 
stresses.

 

lim
R y( )→∞

M f

4
=
E
R'

0

εR'

∫ y2 d / 2( )2− y2dy

+ σ
2
+σys + K −

σys
E
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d
2

∫ d / 2( )2− y2 ydy 
 (11)

For the design of straightening machines is imperative to 
know the maximum force required to straighten a shaft. In 
order to compute the maximum force is necessary to define 
the maximum diameter dmax, the maximum length of the 
shaft Lmax and the maximum radius of curvature Rmax. 
The latter can be calculated as follows using Equation (12) 
and Equation (13):

 Rmax,  permissible =
d / 2
ε'σut

 (12)

 ε'σut =
σys
E
+
σut −σys
E

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟

1
n

+
σut
E

 (13)

Finally, the maximum force required for a straightening 
process (this is the force the machine has to applied to the 
shaft) is given by:

 Fmax, required = LmaxM fmax,  required  (14)

Results and discussion

To validate the model a case was selected. The material is 
the AISI 4340 steel. The stress-strain curve for this material 
is presented in the Atlas of Stress-Strain Curves (Atlas 
of Stress-Strain Curves, 2002). To determine the strain 
hardening coefficient K and the strain hardening exponent 
n for this steel a linear regression was used:

 σ = Kεn ⇔ lnσ = lnK + nlnε= a
0
+ a

1
lnε  (15)

Where, a0 and a1 are the unknown coefficients for the linear 
regression. Table 1 shows the data used in the regression.

Table 1. Linear regression data for AISI 4340 steel

ε σ (Mpa) In ε In σ

0,01 1166,66667 -4,60517019 7,06190596

0,02 1216,66667 -3,91202301 7,10387016

0,03 1236,88889 -3,5065579 7,12035455

0,04 1261,11111 -3,21887582 7,13974844

0,05 1283,33333 -2,99573227 7,15721614

0,06 1290,33333 -2,81341072 7,16265586

Source: Atlas of Stress-Strain Curves, 2002

The results for K and n are 1515,55 MPa and 0,0567871, 
respectively. Table 2 resumes all data used.

Figure 3. Stresses due to springback effect.
Source: Authors

Given that elastic strain recovery is approximately linear 
with a slope equal to the Young’s modulus and ε1 is the 
strain corresponding to R = ∞, then:

 E =
σ
1
+σ

2( )−σ1
ε
2
−ε

1

=
σ
2

ε
2

 (8)

 Where ε2 can be obtained from Ludwik equation:

 
σ
2
= σys+ K(ε2−σys / E)

n− (σys+ K(−σys / E)
n )

= K((ε
2
−σys / E)

n− (−σys / E)
n )

 (9)

Taking advantage of the symmetry for stress distribution 
and width of the cross section the equation for the bending 
moment Mf is given by:

 

M f

4
=
E
R'
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 (10)

The goal is to know the bending moment Mf when R(y) 
approaches infinity. The integral is a Riemann series 
evaluated over a range in which the function to be integrated 
is uniformly continuous, then:
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Table 2. Data to test the model

dmax 
(mm)

Lmax  
(m)

E  
(GPa)

σut 
(MPa)

σys 
(MPa)

K (MPa) n

400 3 205 1300 1124 1515 0,057

Source: Authors

Finally, the maximum force required for this case is 
11767 kN (1200 Ton). This force is in the range of power of 
the machines designed for this size (1000-3000 Ton).

Conclusions

A mathematical model was developed for straightening 
process of a bent shaft based on material behavior and 
geometric characteristics. The model uses the elasto-plastic 
mechanics of deformation. The model was validated with 
AISI 4340 steel which is a material highly used in machine 
elements.  The maximum force calculated for this case is in 
the range of the applications for the geometric and material 
characteristics. This model is an important tool for design 
new straightening machines, and also to develop better 
reparation and maintenance techniques and processes.  
Future work should focus in more experimental data in 
order to adjust the model.
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