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Response surface methodology for estimating  
missing values in a pareto genetic algorithm  

used in parameter design

Metodología de superficie de respuesta para estimar valores faltantes  
en un algoritmo genético de pareto usado en diseño de parámetros

E. Canessa1, and S. Chaigneau2

ABSTRACT 

We present an improved Pareto Genetic Algorithm (PGA), which finds solutions to problems of robust design in multi-response 
systems with 4 responses and as many as 10 control and 5 noise factors. Because some response values might not have been 
obtained in the robust design experiment and are needed in the search process, the PGA uses Response Surface Methodology (RSM) 
to estimate them. Not only the PGA delivered solutions that adequately adjusted the response means to their target values, and with 
low variability, but also found more Pareto efficient solutions than a previous version of the PGA. This improvement makes it easier to 
find solutions that meet the trade-off among variance reduction, mean adjustment and economic considerations. Furthermore, RSM 
allows estimating outputs’ means and variances in highly non-linear systems, making the new PGA appropriate for such systems.
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RESUMEN

En este artículo se presenta un Algoritmo Genético de Pareto (AGP) mejorado que encuentra soluciones a problemas de diseño 
robusto en sistemas multi-respuesta con 4 respuestas y hasta 10 factores de control y 5 de ruido. Ya que algunas respuestas podrían 
no haber sido obtenidas en el experimento de diseño robusto y se necesitan en el proceso de búsqueda, el AGP usa metodología 
de superficie de respuesta (MSR) para estimarlas. El AGP no solo entregó soluciones que ajustan adecuadamente la media de las 
respuestas a sus valores meta y con poca variabilidad, sino que también encontró más soluciones Pareto eficientes que una versión 
previa del AGP. Esta mejora facilita encontrar soluciones que alcancen el balance entre reducción de variabilidad, ajuste de media 
y consideraciones económicas. Además, la MSR permite estimar las medias y varianzas de las respuestas de sistemas altamente no 
lineales, haciendo apropiado el uso del  AGP en dichos sistemas.

Palabras clave: Diseño robusto, diseño de parámetros, algoritmo genético de pareto, metodología de superficie de respuesta.
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Introduction

Parameter Design (PD) is a two-stage method for 
executing robust design (RD) interventions, which tries to 
set controllable input factors of a production or service 
system, so that the system’s outputs stay as stable as 
possible. Then it adjusts other control factors to bring the 
mean of the outputs as close as possible to their target 
values, even under the presence of noise factors (Taguchi, 
1991). To find solutions that achieve both objectives of 
PD and to be able to assess the relative merit of setting 
different control factors to reduce variability and obtain 
mean adjustment, the use of a Pareto Genetic Algorithm 
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(PGA) has been proposed (Canessa, Bielenberg & Allende, 
2014). The PGA is especially useful when an engineer 
needs to consider many control and noise factors and the 
system has many responses that must be simultaneously 
optimized (Canessa et al., 2014; Lin et al., 2014). The PGA 
delivers Pareto efficient solutions and thus, it exposes the 
trade-off between reducing variability and getting mean 
adjustment. Using such solutions, the engineer then 
incorporates other considerations (e.g. costs to implement 
each solution, importance of obtaining a product or service 
with a given level of variance and adjustment to target 
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values) to decide which of the solutions is the most cost-
effective. For this analysis to be worthwhile, the solutions 
delivered by the PGA must be a good approximation to 
the Pareto frontier, both in terms of Pareto efficiency and 
number of solutions found. The original PGA developed 
by Canessa et al. (2014) has worked well under different 
scenarios, but results have shown that a bigger number of 
data points fed to the PGA may enhance the approximation 
to the Pareto frontier (Canessa et al., 2014). Thus, the 
current work applies Response Surface Methodology 
(RSM) (Myers & Montgomery, 2002) to estimate the 
outputs of the system, based on a small number of data 
points gathered in experiments. Then, using the real and 
estimated data, the PGA finds a better approximation to 
the Pareto frontier. The application of genetic algorithms 
to problems of RD and PD is not new (see e.g. Allende, 
Bravo & Canessa, 2010; Canessa, Droop & Allende , 
2011; Wan & Birch, 2011). Also, some researchers have 
studied the use of RSM to optimize systems (e.g. Nair, 
Tam & Ye, 2002; Robinson et al., 2004; Vining & Myers, 
1990; Wu & Hamada, 2009). However, to the best of our 
knowledge, the simultaneous application of PGA and 
RSM to problems of PD with many responses, control and 
noise factors,  is still an open research topic. Moreover, 
the PGA presented here will automatically calculate the 
RSM and use it in the estimation of missing values of 
responses. This last point is important, given that to lower 
the cost of PD studies, generally, engineers use highly 
fractioned experimental designs (Maghsoodloo, Jordan & 
Huang, 2004; Roy, 2001; Taguchi, 1991). Thus, when the 
PGA is iterating, it frequently needs to know the values 
of responses corresponding to combinations of control 
factors (treatments) that might not have been part of the 
experiment that the engineer conducted to gather the 
data. Thus, during the search process of the PGA, it needs 
to estimate those values. A good estimate of these values 
will in turn enhance the search capabilities of the PGA 
and allow the PGA to obtain a good approximation to the 
Pareto frontier. 

Using Response Surface Methodology along 
with the Pareto Genetic Algorithm

The following subsections present some parts of the previous 
PGA (PGA1) and concepts related to RSM necessary for 
understanding the changes made to PGA1. More details of 
PGA1 may be found in Canessa et al.(2014).

Some details of the original Pareto GA (PGA1).

The previous PGA1 developed in Canessa et al. (2014) 
represents the combinations of k control factors that may 
take s different levels (values) of a robust design experiment 
using an integer codification. One chromosome will be 
composed of a combination of different levels for each 
factor, which corresponds to a particular treatment of the 
experiment. Let flj be the factor j of chromosome l, with 
j = 1,2, …, k and l = 1,2, …, N. Each flj can take the value of a 

given level of the factor j, that is 1,2, …, s. One chromosome 
(or solution) is expressed as a row vector (see Equation (1)). 
The matrix representing the total population of solutions X 
will be composed of N chromosomes (see Equation (2)).

 lx = l1f , l2f ,…,
lkf

⎡
⎣⎢

⎤
⎦⎥  (1)

 X =
T

1
x ,

2
x ,…,
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x

⎡
⎣⎢

⎤
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 (2)

Each of the chromosomes (solutions) xl will generate 
different responses yr (r = 1,2,3,…,R) of a multi-response 
system when the control factors are set to the corresponding 
levels specified in the chromosome xl. The PGA searches 
through the space of possible treatment combinations, 
finding the combinations that minimize the variance of 
the responses and adjust their means as close as possible 
to their corresponding target values.  The problem that the 
PGA needs to solve can be expressed by Equation (3):

 

Min f xl( )= yr xl( )− tr⎡
⎣⎢

⎤
⎦⎥
2
,sr

2 xl( )
⎛
⎝
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⎞
⎠
⎟⎟⎟

subject to : Lr ≤ yr xl( )≤Ηr;∀l,r
where : xl = fl1, fl2,…, flk( )∈ X

 (3)

Expression (3) means that the PGA will try to find solutions 
xl, which must adjust the mean of each response yr to its 
corresponding target value τr and simultaneously reduce 
the variance of each response. Lr and Hr are lower and 
upper limits within which, each response yr is feasible and 
must be set by the engineer. Following the work presented 
in Del Castillo, Montgomery & McCarville (1996), a 
penalty function is used to enforce such limits. Finally, in 
the case of single-response systems (R = 1), the PGA directly 
uses expression (3). On the other hand, for multi-response 

systems (R > 1), the PGA aggregates y r x l( )−τ r⎡
⎣⎢

⎤
⎦⎥
2

 over all 

responses yr into φ1 using a desirability function proposed 
in Ortiz et al. (2004). The same is done with all the sr

2 to 
obtain φ2. Given that the desirability functions are defined 

so that the smaller y r x l( )−τ r⎡
⎣⎢

⎤
⎦⎥
2

 and sr
2, the larger φ1 and φ2 

(in the range [0,1]), the problem for multi-response systems 
is stated as a maximization of φ1 and φ2, as Equation (4) 
shows:
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yr xl( )− tr⎡
⎣⎢

⎤
⎦⎥
2⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟,φ2

sr
2 xl( )( )⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

subject to : Lr ≤ yr xl( )≤Ηr;∀l,r
where : xl = fl1, fl2,…, flk( )∈ X

 (4)

More details of these mechanisms may be found in Canessa 
et al. (2014) and are not repeated here for the sake of length 
and because an exhaustive explanation is unnecessary for 
understanding the work  shown here.
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From Equations (3) and (4), one can see that in the 
calculation of the value of those expressions PGA1 needs 
to know the responses corresponding to the experimental 
treatment, which each chromosome represents. However, 
some of those treatments might not have been part of 
the experiment that the engineer conducted to gather 
the data. Thus, PGA1 needs to estimate those responses. 
In PGA1, for estimating the mean of a response for a 
non-tried chromosome (treatment), PGA1 calculates 
the main effect of each of the treatment levels on the 
response and a grand mean using all the observations 
corresponding to the experiment that was carried out. 
Then, PGA1 adds to the grand mean the corresponding 
main effects of the levels indicated by the chromosome. 
For estimating the variance of the response for a non-tried 
chromosome (treatment), PGA1 uses a similar procedure. 
PGA1 first computes a global variance considering all 
the replications of all the treatments tried in the original 
experiment. Then PGA1 calculates the main effect of each 
control factor on the variance. Finally, PGA1 sums the 
main effects of the levels indicated in the chromosome 
to the global variance. Those procedures correspond to a 
linear estimation usually applied in the Taguchi method 
(for a worked out numerical calculation, see example in 
Taguchi (1991, p. 16). In the search process, PGA1 uses 
roulette or probabilistic selection, a uniform crossover 
with pc = 0,3 and a bit by bit (factor by factor) mutation 
operator with pm = 0,05. PGA1’s stopping criterion is to 
iterate 15 times. Larger values of iterations were tried, 
but the performance of PGA1 did not improve (Canessa 
et al., 2014). To implement PGA1, the Strength Pareto 
Evolutionary Algorithm 2 (SPEA2) (Laumans, 2008) is 
used, with minor adjustments that the interested reader 
may find in Canessa et al. (2014).

RSM and its application to the estimation of mis-
sing values in the new Pareto GA (PGA2)

Using techniques that are part of Response Surface 
Methodology (RSM), Vining & Myers (1990) proposed the 
use of second order polynomials to adjust a surface that may 
represent the mean and variance of a system and employ 
that surface in optimization problems. Further analysis of 
that approach indicated that it provides many benefits (for 
a good discussion see Nair, Taam & Ye, 2002). Vining & 
Myers (1990) recommended the following expressions for 
estimating the mean and variance of the output of a system, 
based on the vector of k control factors (X):

 m(X )=
0β + pβp=1

k

∑ px + ppβp=1

k

∑ p
2x + pqβ

p<q

k
∑ px qx + mε  (5)

 v(X )=
0γ + pγp=1

k

∑ px + ppγp=1

k

∑ p
2x + pqγ

p<q

k
∑ px qx + vε  (6)

Expression (5) corresponds to the response surface that 
estimates the mean of the response and Equation (6) 

approximates its variance. Note that both expressions 
assume that each control factor xp is a quantitative variable. 
However, it may be the case that some experiments might 
involve one or more qualitative variables. In such case, the 
researcher will need to represent those qualitative variables 
using indicator variables (Myers & Montgomery, 2002). 
Accordingly, Expressions (5) and (6) must be modified to 
accommodate the use of indicator variables as Equations 
(7) and (8) show:
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0β + pβp=1
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i=1

n

∑ iz + ppβ
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k−1
∑ p

2

x + mε  (7)

 v(X )=
0γ + pγp=1

k

∑ px + iηi=1

n

∑ iz + ppγ
p=1

k−1
∑ p

2

x + vε  (8)

where there are k quantitative control variables, and z1, 
z2, …, zn are n indicator variables, which  represent the 
qualitative control variables. Also, the response surface 
assumes that there are no interactions between indicator 
and quantitative variables and among quantitative variables. 
If that occurs, the experimenter must add some terms to 
Equations (7) and (8), but commonly the researcher tries to 
avoid including those interactions (Myers & Montgomery, 
2002), which agrees with Taguchi’s suggestions for 
conducting parameter design experiments (Taguchi, 1991, 
cf. Roy, 2001). 

To estimate the response surfaces characterized by 
Expressions (5) and (6) or (7) and (8), the Ordinary Least 
Squares (OLS) regression method is generally used (Myers 
& Montgomery, 2002). Thus, the modified PGA (PGA2) 
applies specific versions of Expressions (5) through (8) 
and implements an OLS routine to estimate the response 
surfaces corresponding to the mean and variance of each 
output. Then, PGA2 uses those surfaces to approximate 
the mean and variance of an output, if such values are not 
directly available from the data collected from the robust 
design experiment that was carried out. Since the response 
surface for the variance is only an estimation of the true and 
unknown surface, it could happen that a missing value of 
variance estimated by the surface might be inappropriate, 
i.e. negative. That may occur because PGA2 is estimating a 
value outside the range of the values of the control factors 
used in calculating the regression, i.e. it is extrapolating, 
or simply because the estimated surface is not totally 
representative of the behavior of the variance of the system. 
Therefore, the algorithm verifies whether the estimated 
variance is negative and, if that is the case, it estimates the 
variance again using the original approach of PGA1. As a 
reviewer noted, we acknowledge that a better approach to 
dealing with this problem could be to calculate the response 
surface of variance using a logarithmic transformation (Wu 
& Hamada, 2009), which we will implement in future 
work. However, as results will show, our simple method 
works rather well.
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Summarizing this section, the present proposal consists in 
changing the simple and linear estimation process for the 
mean and variance of responses corresponding to non-tried 
experimental treatments implemented in the original PGA1, 
by a new and more accurate method based on RSM in PGA2.

Application of the new PGA2

To evaluate the performance of the new PGA (PGA2) and 
also compare it to the previous version (PGA1) (Canessa 
et al., 2014), two case studies were used. The first one 
corresponds to a real application of PD to adjust the 
automatic body paint process in a car manufacturing 
plant. The second case study uses a multi-response process 
simulator with four responses, ten control factors and 
five noise factors. This simulator is described in Canessa, 
Droop & Allende (2011) and was used to test PGA1. To be 
able to compare the performance of PGA1 with the one 
of PGA2, both PGAs were set with the same parameters 
described before (e.g. crossover probability pc = 0,3, 
mutation probability pm = 0,05, etc.). Here we present the 
most important aspects of the calculation of the response 
surfaces and the assessment of the performance of PGA2. 
For further details, see the appendix.

Results obtained for the single-response  
real system

In this case, a parameter design experiment was carried out 
to adjust the width of the painted strip of a car painting 
system to a nominal width of 40,0 [cm]. The design of the 
experiment consisted of an orthogonal array L9(3

4) for the 
four control factors and a L4(2

3) for the three noise factors. 
Table 1 shows the control factors and their levels. More 
details and the data may be found in Vandenbrande (2000, 
1998), and also see the appendix.

Table 1. Control factors and levels for the single-response real system

Control Factor Level 1 Level 2 Level 3

A: type of spray gun used Type 1 Type 2 Type 3

B: paint flow [cc / min] 490 440 390

C: fan air flow [Nl / min] 260 220 180

D: atomizing air flow [Nl / min] 390 330 270

Source: Authors

As can be seen from Table 1, factor A is a qualitative 
variable, whereas the rest are quantitative. Thus, Equations 
(7) and (8) must be used for estimating the model. In general, 
the model needs l − 1 dummy variables for representing a 
qualitative variable that has l levels (Myers & Montgomery, 
2002). Given that factor A has three levels, the model must 
use two dummy variables for representing it. Since the 
design of the experiment consisted of an orthogonal array 
L9(34) for the four control factors, the study has nine data 
points for the mean and variance of the response. Thus, in 
order to leave one degree of freedom for the error term, 
the experimenter must choose only eight parameters to 

estimate. In this case, it was decided to estimate the position 
parameter and the four first order coefficients. Then, by 
examining the fit of the model to the data, the researchers 
began to include some quadratic terms, concluding that 
a good fit was obtained when considering the quadratic 
terms for factors B and C. With those considerations, the 
final models are the following:

 m X( )= β0 + βpxp
p=2

4

∑ + δizi
i=1

2

∑ + βppxp
p=2

3

∑
2

+ εm  (9)

 v X( )= γ0 + γ pxp
p=2

4

∑ + ηizi
i=1

2

∑ + γ ppxp
p=2

3

∑
2

+ εv  (10)

Table 2 shows the values of the coefficients of Expressions 
(9) and (10). β0 and γ0 are the position parameters. The 
variables z1 and z2 are the two dummy variables representing 
factor A, x2, x3 and x4 represent the first order coefficient for 
factors B, C and D and, x2

2 and x3
2 represent the quadratic 

coefficients for factors B and C. Note that variables x2, x3, 
x4 were rescaled and centered on their means, so that the 
values of them lie between -1 and 1 (per the procedure 
suggested in Myers & Montgomery, 2002). The models as 
well as the coefficients are all statistically significant at least 
at the 0,05 level. The R2 for the mean response surface is 
0,899 and 0,987 for the variance surface. Thus, it can be 
said that the response surfaces are a good representation of 
the true system.

Table 2. Regression coefficients for the mean and variance response 
surfaces

Coefficients for the 
Mean Response Surface 

(R2 = 0,899)
Value

Coefficients for the 
Variance Response 
Surface (R2 = 0,987)

Value

β0 37,400 γ0 44,506

δ1 (z1) 1,017 η1 (z1) -40,629

δ2 (z2) -2,567 η2 (z2) -40,384

β2 (x2) -3,838 γ2 (x2) 0,325

β3 (x3) -3,642 γ3 (x3) -11,378

β4 (x4) 2,992 γ4 (x4) 16,637

β22 (x2
2) -1,813 γ22 (x2

2) 17,536

β33 (x3
2) 5,075 γ33 (x3

2) -12,251

Source: Authors

The two response surfaces were used in PGA2 to find an 
approximation to the Pareto frontier and 30 experimental 
runs were performed. Figure 1 shows the Pareto efficient 
solutions that were found by PGA2 (marked with a 
square), along with the ones delivered by PGA1 (marked 
with a rhomb). In Figure 1, the values shown in square 
brackets indicate the levels of factors set in each solution. 
For example, solution [1222], represents control factor 
A = 1 (spray gun Type 1), B = 2 (paint flow of 440 [cc / min]), 
C = 2 (fan air flow of 220 [Nl / min] and D = 2 (atomizing 
air flow of 330 [Nl / min]). The horizontal axis shows the 
mean adjustment as |y – T| attained by each solution 
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in [cm]. The vertical axis shows variability reduction as 
s (standard deviation) of the response in [cm]. Note that 
the solutions delivered by PGA1 and PGA2 define similar 
Pareto frontiers. All of the solutions were consistently 
found in the 30 runs. Thus, for this case, PGA1 and 
PGA2 have a similar performance. Given that this single-
response system has a few control and noise factors and 
is quite simple, a more refined missing value estimation 
mechanism does not impact too much the performance 
of the PGAs. Also, and as expected, since the surfaces 
that represent the mean and variance of the system are a 
good approximation to the real system, PGA2 has a good 
performance. In the next subsection, we test PGA2 under 
less favorable conditions, so that we can show how much 
PGA2’s performance is reduced.

combinations, the experimenter can estimate up to 63 
parameters, leaving one degree of freedom for the error 
term. However, when the experimenters were estimating 
the parameters, the multicollinearity statistics showed that 
such a problem existed. Thus, they looked at the VIF of 
each coefficient and began an elimination process for the 
variables that might have caused that problem, arriving at 
the models for the mean and variance of each of the four 
responses shown by Equations (11) and (12), which are 
versions of Expressions (5) and (6) since all the ten control 
factors are quantitative variables:

 
m X( )= β0 + β pxp

p=1

10

∑ + β ppxp
p=1

10

∑
2

+ β
12
x
1
x
2

+β
13
x
1
x
3
+ β

14
x
1
x
4
+ β

23
x
2
x
3
+ εm

 (11)

 
v X( )= γ0 + γ px p

p=1

10

∑ + γ ppx p
p=1

10

∑
2

+ γ
12
x
1
x
2

+γ
13
x
1
x
3
+ γ

14
x
1
x
4
+ γ

23
x
2
x
3
+ εv

 (12)

Expressions (11) and (12) show that the experimenters 
estimated the position parameter, all the linear and quadratic 
coefficients and the interaction terms corresponding to 
double interactions AB, AC, AD and BC (see the appendix 
for further details). Later, for corroborating whether those 
models were a good approximation to the true response 
surfaces, the estimated models and coefficients were 
compared to the expressions that comprise the simulator. 
The expressions and coefficients of the simulator may be 
seen in Allende, Bravo & Canessa (2010) and the comparison 
showed a modest approximation. Table 3 presents the R2 

for each of the four response surfaces corresponding to 
the mean and variance of each of the system’s outputs. 
The R2 are rather good, considering that the simulator was 
deliberately set with a large Gaussian noise, especially 
for response y4, which causes that response surface y4 to 
have the smallest R2 among the four response surfaces. To 
be on the safe side, we added a large noise because we 
wanted to assess the performance of RSM and PGA2 under 
unfavorable conditions. Given that for the real system the 
R2 values are high (0,899 and 0.987) and PGA2 works very 
well, we thought that it would be appropriate to test PGA2 
under less favorable conditions. Hence, if the method 
works under those adverse conditions, it should perform 
even better in more favorable situations, as the results for 
the real system show. 

Table 3. R2 for each of the estimated mean and variance response 
surfaces

Response surface 
representing

R2 for the Mean 
Response Surface

R2 for the Variance 
Response Surface

y1 0,779 0,481

y2 0,382 0,399

y3 0,517 0,405

y4 0,350 0,391

Source: Authors

Figure 1. Pareto frontier for the solutions corresponding to the real 
single-response system.
Source: Authors

Results obtained for the single-response com-
plex systems

To test both PGAs under a more complex situation, a 
simulator was built, which is described in detail in Canessa, 
Droop & Allende (2011). The robust design for this situation 
considers using an inner array L64(4

10) for the ten control 
factors and an outer array L16(4

5) for the five noise factors, 
which represents a hard to treat system (Taguchi, 1991; Roy, 
2001). For the following case studies, the four responses of 
the simulator are optimized independent from each other, 
so that both PGAs deal with four single-response systems.

Since there are four single-response systems with ten 
control factors and five noise factors, it would take 
many pages to describe all the details and present all 
the figures of the building of the four response surfaces 
(see the appendix for further important details). Thus, 
here we present only the most relevant aspects of that 
procedure. Readers interested in further details may 
contact the corresponding author. The experimental 
design considered factors with four levels each and a total 
of 1024 design points (64 treatment combinations for 
control factors times 16 treatment combinations for the 
noise factors). Given that the inner array has 64 treatment 
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After estimating the response surfaces, these were used in 
PGA2 and 30 runs were executed for finding solutions. 
The next paragraphs present the results for each of the four 
responses.

Figure 2 presents the solutions corresponding to the Pareto 
frontier found by PGA2 for the four single-response systems 

(marked with a square). Those solutions were consistently 
found in the 30 runs performed. Also, Figure 2 shows the 
solutions delivered by PGA1 in a previous study (Canessa 
et al., 2014), marked by a rhomb. The horizontal axis shows 
the mean adjustment as |yr − Tr| attained by each solution 
for response r. The vertical axis shows variability reduction 
as sr (standard deviation) for each response r.

Figure 2. Pareto frontier for the solutions corresponding to the single-response system: (a) y1 (b) y2 (c) y3 (d) y4.
Source: Authors

(a) (b)

(c) (d)

For response y1, Figure 2 (a) indicates that PGA2 delivered 
five solutions, whereas PGA1 found 6 points. However, 
note that the Pareto frontier defined by PGA2 is better than 
the one obtained by PGA1. PGA2’s Pareto frontier is totally 
convex, while the one of PGA1 is not. Also, the Pareto 
frontier delivered by PGA2 is a better approximation to the 
real unknown Pareto frontier, given that PGA2’s solutions 
define a Pareto frontier that is closer to the optimal point of 
mean adjustment and variability reduction, i.e. |y1 − T1| = 0 
and s1 = 0, than the one obtained by PGA1. Thus, we 
can say that the missing value RSM estimation method 
improved the performance of PGA2 for response y1. For 
further details regarding the assessment of performance 
see the appendix.

For response y2, Figure 2 (b) shows that PGA2 found five 
efficient solutions, whereas PGA1 found only three. As 
before, PGA2’s solutions define a better approximation to 
the Pareto frontier and PGA2 also found two more extreme 
solutions ([1222132221] and [1222132222]).

Regarding response y3, PGA2 and PGA1 found almost the 
same solutions in terms of mean adjustment and variability 
reduction. However, PGA2 delivered one additional 
solution [3123334123] that helps better define the Pareto 
frontier. Note that solution [3123334123] shifts down-left 
the Pareto frontier, which strictly speaking, removes solution 
[3323344123] from the frontier. Given that PGA2 delivered 
solution [3323344123] as a Pareto efficient one, the Pareto 
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frontier is not totally convex. However, the approximation 
is good.

Finally, for response y4, Figure 2 (d) shows that two solutions 
obtained by PGA2 are exactly the same, in terms of |y4 − T4|  
and s4, as the ones found by PGA1 ([3421331242] and 
[3243131244]). Also, two other solutions are very similar 
([4324141423] and [4413243143]). Additionally, PGA2 
found three new solutions that define a somewhat better 
Pareto frontier than the one delineated by PGA1. Although 
PGA2’s frontier is not totally convex, the approximation is 
very good.

In summary, for the four single-response systems, the 
RSM-based missing value estimation method improves the 
performance of PGA2 compared with PGA1. Note that 
although the response surfaces are modest approximations 
to the real outputs of each system, still the new method 
attains good results. Recall that we deliberately added a 
large noise to the responses. Given that the method works 
rather well, we believe it should perform even better in 
more favorable situations.

Results obtained for the multi-response 
complex system

This case study used the same simulator and the same 
experimental design as before, but it optimized the four 
responses at the same time. This means that the PGAs are 
optimizing a four–dimensional multi-response system. The 
estimation of the response surfaces for PGA2 is the same 
as the one already presented for the four single-response 
systems, i.e. the estimation procedure is the same for 
univariate and multivariate systems.

As in the previous analysis, 30 runs for PGA1 (see Canessa 
et al., 2014) and PGA2 were carried out. Figure 3 presents 
the solutions found by both PGAs. Note that in this case, the 
horizontal axis of Figure 3 shows the desirability function 
value φ1 corresponding to mean adjustment and the vertical 
axis presents the desirability function φ2 representing 
variance reduction. Remember that a larger value of φ1 
means a better mean adjustment and a larger value of 
φ2 represents a smaller variance, so that the PGAs must 
maximize φ1 and φ2 (see Equation (4) and the appendix).

From Figure 3, one can see that both PGAs found three 
solutions. These solutions were consistently found in all 
30 runs performed. Of them two are similar (solutions 
[3312442132] and [3421331242]) and one is a different 
solution ([2122334124] of PGA2). This solution of PGA2 
defines a better approximation to the Pareto frontier. Given 
that the PGAs are dealing with a maximization problem, 
the frontiers should be concave, which is the case for the 
frontier defined by PGA2’s solutions, whereas the one for 
PGA1 is not totally concave. Furthermore, since the Pareto 
frontier delivered by PGA2 is closer to the upper-right 
corner of the graph, which corresponds to the optimal point 

φ1 = φ2 = 1,0, this frontier is a closer approximation to the 
real unknown Pareto frontier.

Figure 3. Pareto frontier for the solutions corresponding to the multi-
response system.
Source: Authors

Note also that although the response surfaces are a modest 
approximation to the real mean and variance surfaces of 
the outputs of the system, given the large noise deliberately 
added to the responses (see Table 3, R2 of surfaces between 
0,5 and 0,35, except for the surface of the mean of y1 
with R2 equal to 0,8, to which we added a small noise), 
the missing value estimation process based on RSM works 
rather well, enhancing the capability of PGA2 of finding 
a good approximation to the Pareto frontier. Hence, we 
should expect that under more favorable noise conditions, 
PGA2 should work even better.

Conclusions

The results of the application of the modified PGA (PGA2) 
to the multi-response system and single-response systems, 
showed that PGA2 outperforms PGA1. Most notably, 
PGA2 found better approximations to the Pareto frontier, 
even if the estimated response surfaces were a modest 
approximation to the real response surfaces of the outputs 
of the systems.

Additionally, for three out of four single-response systems, 
PGA2 found new Pareto efficient solutions. This is important, 
since the manager of a production process generally needs 
to consider economic factors when selecting the solution 
to be implemented. The manager will need to assess the 
trade-off between variance reduction and mean adjustment 
and see which of the two objectives is more important 
and cost-effective in delivering quality products to the 
customers. To be able to do that, the manager will need 
to take into account the cost that the firm must incur for 
implementing each of the solutions found by the PGA. 
Thus, if the PGA delivers a larger number of solutions, the 
manager will have more alternatives to choose from, which 
will make it easier to find a solution that may meet the 
trade-off among variance reduction, mean adjustment and 
economic considerations.
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Regarding the practical application of PGA2, note that the 
experimenter must decide the model that he/she wants to 
use for estimating the mean and variance response surfaces, 
based on expressions (5) trough (8) and the number of 
data points that he or she will collect in the robust design 
experiment. Those considerations are important in the 
design of the experiment and will have an impact on the 
ability of the response surfaces to adequately represent the 
true surfaces that characterize the mean and variance of 
the outputs of the system (Myers & Montgomery, 2002). In 
general, the more levels each considered factor has, the 
more combinations of factors the experimental design 
considers and the larger the number of replications that 
the experimenter carries out, the more representative 
the response surfaces will be (Myers & Montgomery, 
2002). However, the results suggest that even a modest 
approximation to the true response surfaces, may enhance 
the performance of PGA2. 

On the other hand, given that RSM is a good technique for 
estimating mean and variance of highly non-linear systems 
(Myers & Montgomery, 2002; Nair, Taam & Ye, 2002) the 
engineer should use PGA2 instead of PGA1 when he/she 
suspects that is the case. Remember that PGA1’s missing 
value estimation procedure is totally linear, whereas the 
RSM method implemented in PGA2 can accommodate 
non-linearity. Thus, when an engineer has evidence that 
the system under analysis is non-linear, or at least he/
she cannot rule out that possibility, the use of PGA2 from 
the beginning would be sensible. Of course, using PGA2 
comes to the expense of having to define the form of the 
response surfaces, per Expressions (5) to (8), but we think 
that is not a too high price to pay.
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Appendix A: Most important details regarding 
the building of the Response Surfaces and 
assessment of PGA2 performance

This appendix presents some important details related to 
the building of the response surfaces corresponding to the 
mean and variance of each of the responses of a system and 
the assessment of PGA2 performance. The first subsection 
shows how the response surfaces for the first test case were 
built, which corresponds to a single-response real system, 
but including qualitative and quantitative variables. Since 
this system has a conveniently small number of variables, 
we present many of the details of the modelling process 
and assessment of PGA2’s performance. Then, subsection 
three presents only the most important steps carried out to 
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build the response surfaces for the complex multi-response 
system and the corresponding performance evaluation.

Calculations for the single-response real system

This system is a robotic automatic car painting system. To 
improve the process, first a manager, operators and quality 
control personnel of the painting line, along with technical 
support people from the paint suppliers brain-stormed 
the possible control and noise factors that might affect 
the width of a painted strip. Then, simple 2n screening 
experiments were done and analyzed to narrow down the 
control factors and possible levels to the ones shown in 
Table 1. Those experiments were also carried out for the 
noise factors, which were the color of the paint, inlet air 
pressure and paint viscosity at two levels (Vandenbrande, 
1998, 2000). Then, the RD experiment consisted of an 
orthogonal array L9(3

4) for the four control factors and a 
L4(2

3) for the three noise factors. The collected data was 
then used to calculate a regression equation for mean 
and variance of the width of the painted strip using the 
functional forms stated in Equations (7) and (8). Hence, we 
started with a regression equation for mean and another 
for variance with the position parameter, two dummy 
variables representing qualitative factor A at three levels, 
three linear terms for quantitative factors B, C and D, and 
three quadratic terms for those same factors. Given that the 
multicollinearity statistics of the quadratic term of factor D 
showed that a problem existed, we removed that term from 
the regression equations. Thus, we arrived at Equations (9) 
and (10), with all coefficients statistically significant at least 
at the 0,05 level. Additionally, the models exhibited a high 
R2 (see Table 2), which indicates a good fit of the data to the 
model, and hence we finished the process. Table A.1 shows 
the corresponding data used in the regression analyses.

Table A.1. Single-response real system data for calculating R. Surfaces

z1 z2 x2 x3 x4 x2
2 x3

2 ymean yvariance

1 0 0 0 0 0 0 41,150 8,243

1 0 -1 -1 -1 1 1 44,800 1,393

1 0 1 1 1 1 1 35,825 12,563

0 1 1 0 -1 1 0 24,825 3,163

0 1 0 -1 1 0 1 45,175 17,703

0 1 -1 1 0 1 1 41,025 2,069

0 0 1 -1 0 1 1 43,200 65,860

0 0 0 1 -1 0 1 34,475 2,056

0 0 -1 0 1 1 0 41,050 76,170

Source: Authors

Table A.1 shows the independent variables corresponding 
to Equations (9) and (10), and the observations, which are 
the mean of 4 replications. The variables z1 and z2 are the 
two dummy variables representing factor A: 00 = level 3, 
01 = level 2, 10 = level 1, x2, x3 and x4 represent the first order 
coefficient for factors B, C and D, where 1 = level 1, 0 = level 
2 and -1 = level 3, and x2

2 and x3
2 represent the quadratic 

coefficients for factors B and C. Recall that the independent 

variables were rescaled and centered on their means, so that 
the values of them lie between -1 and 1 (per the procedure 
suggested in Myers & Montgomery, 2002). The treatment 
combinations of independent variables correspond to the 
ones of the inner orthogonal array L9(3

4). The coefficients 
obtained in the regressions and corresponding to Equations 
(9) and (10) are shown in Table 2.

Those response surfaces were then inputted to PGA2 and 
the algorithm delivered the solutions presented in Figure  1. 
For calculating the corresponding mean adjustment and 
variance of each solution, the corresponding levels of each 
factor were introduced in the regression Equations (9) and 
(10). Then, using those values the corresponding |y – T|  and 
std. deviation were calculated. For example, for solution 
[1222], y = 37,4 + 1 x 1,017 + 0 x -2,567 + 0 x -3,838  
+ 0 x -3,642 + 0 x 2,992 + 0 x 0 x -1,813 + 0 x 0 x 5,075 
= 38,417 and  |y – 40| = 1,583. For variance, v = 44,506  
+ 1 x -40,629 + 0 x -40,384 + 0 x 0,325 + 0 x -11,378  
+ 0 x 16,637 + 0 x 0 x 17,536 + 0 x 0 x -12,251 = 3,877 and 
s = 1,969. The same procedure was done for calculating the 
mean adjustment and std. deviation of the other solutions 
presented in Figure 1.

Calculations for the multi-response  
complex system

The procedures for calculating the response surfaces and 
assess PGA2’s performance are similar to the ones already 
described for the single-response system. However, note 
that here we have at our disposal the system’s simulator 
(Canessa et al., 2011), and thus we can perform experiments 
with more treatments and also verify the goodness of the 
solutions found by PGA2 directly calculating the system’s 
responses using such simulator. Given that the multi-
response system has four responses, 10 control factors 
each at four levels, and 1024 design points, we don’t 
have enough space to present the data and the calculated 
regression coefficients. That is why we present only the 
final model in Equations (11) and (12). Those equations 
give the refined model we arrive at by beginning with a 
full model, i.e. a model containing a position parameter, all 
10 linear and 10 quadratic terms, and all the 45 possible 
double interactions, which corresponds to Equations (5) 
and (6). The values of the independent variables of the 
regression analysis were rescaled and centered on their 
means, so that the values of them lie between -1 and 1 
(per the procedure suggested in Myers & Montgomery, 
2002). Given that we used 4 levels for each control factor, 
we had 40 values for the independent variables of the 
regression equations. The first regression equation showed 
that many of the coefficients exhibited problems of high 
multicollinearity, as suggested by a VIF above 10,0. Thus, 
looking at the multicollinearity diagnostic statistics, we 
began an elimination process of quadratic and double 
interaction terms that might have caused that problem. We 
mainly focused on those terms, because generally higher 
order terms are the ones that might cause multicollinearity 
(Myers & Montgomery, 2002). Finally, we arrived at the 
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models shown in Equations (11) and (12), which indicate 
that the average of the responses y1, y2, y3 and y4 and their 
variances were modelled by all the linear and quadratic 
terms of the 10 factors A,B,C,D,E,F,G,H,I and J, and double 
interactions AB, AC, AD and BC.

After we obtained the response surfaces corresponding to 
mean and variance of each of the four responses, these 
were inputted into PGA2 and 30 runs were done for 
each case study (i.e., for responses y1, y2, y3 and y4 of the 
one-response complex system and for the four-response 
system). PGA2 then delivered solutions for responses 
y1, y2, y3 and y4 , independent from each other (i.e., 
corresponding to four single-response complex systems) 
and solutions for the four-response system (i.e., the one 
in which we must simultaneously optimize y1, y2, y3 and 
y4 ). For each of those solutions, the corresponding levels 
of the 10 control factors, corresponding to the solutions, 
were inputted into the system’s simulator (Canessa, Droop 
& Allende, 2011) and 30 runs were executed to obtain the 
value of the corresponding responses. Remember that the 
simulator is stochastic and was set with Gaussian noise, so 
that to adequately characterize each response, we must use 
the mean of each response over the 30 runs. Additionally, 
we calculated the standard deviation of the 30 runs for 
each response. For example, for response y1 of the single-
response system and solution [1432121433], we inputted 
into the simulator factor A at level 1, B at level 4, etc. and 
obtained 30 responses y1. Then we calculated the mean of 
those values y1= 205,66  and the std. deviation s1 = 4,79, so 
that |y1 − T1| = 5,66, where T1 = 200. That point (5,66, 4,79) 
was graphed in Figure 2 (a) for solution [1432121433]. The 
same calculations were done for the rest of the solutions 
for y1 in Figure 2 (a) and also for the solutions delivered by 
PGA2 for the rest of the responses shown in Figures 2 (b), 
(c) and (d).

For the four-response system, remember that we used two 
desirability functions, φ1 related to mean adjustment of the 
four responses and φ2 associated with variance reduction 
(see Equation (4)). We explain some details of the process 
by which the value of φ1 and φ2 is calculated for solution 

[2122334124] shown in Figure 3. First, the corresponding 
values of the levels indicated by the solution were inputted 
into the system’s simulator (i.e., A = level 2, B = level 1, etc.) 
and 30 runs performed. Then, using the corresponding 30 
values obtained from the simulator, a mean and variance 
was calculated for y1, y2, y3 and y4. With those values, we 
calculated (yr – Tr)

2 for each response and the corresponding 
values of φ1 and φ2. Table A.2 shows those values.

Table A.2. Calculation of desirability functions φ1 and φ2

Response Mean Variance Tr (yr – Tr)
2  

y1 204,6 9,40 200 21,2

y2 45,2 0,341 50 23,0

y3 789,9 41,12 1000 44,1 x 103

y4 465,2 20,92 500 1211,0

φ2 = 0,895 φ1 = 0,729

Source: Authors

Unfortunately, we don’t have enough space to present and 
explain all the 10 expressions and parameters necessary 
to calculate φ1 and φ2 beginning with the (yr – Tr)

2  and 
the variance of each response. The reader can find the 
details in Canessa et al. (2014). In brief, the process entails 
calculating an individual desirability D1r for each response 
by a linear interpolation between a maximum a1r and 
minimum bir value of (yr – Tr)

2 for each response, which 
can be set by the experimenter. The same is also done 
for calculating individual desirability values D2r for the 
variance of each response, with limits a2r and b2r. Given 
that we will have a desirability for each response, those 
are aggregated by simply taking their mean, both for 
(yr – Tr)

2 and variance, obtaining D1  and D 2  . Then, a 
penalty function Pr is calculated for each response, which 
penalizes solutions with the mean response outside some 
upper Hr and lower Lr limits set up by the experimenter 
(see Equation (4)). This penalty function assigns a linearly 
calculated penalty to responses, whose means are outside 
those two limits. To aggregate the penalties over all the 
responses, the geometric mean of them is calculated P . 
Finally, ϕ

1
=D

1
−P  and ϕ

2
=D

2
−P .


