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Physical characteristics of pipes as indicators  
of structural state for decision-making considerations  

in sewer asset management 

Las características físicas de las tuberías como indicadores  
de la condición estructural y su utilización para tomar decisiones  

en la gestión de activos del sistema de alcantarillado

Liliana López-Kleine1, Nathalie Hernández2, and Andrés Torres3 

ABSTRACT 

Sewer deterioration is a problem that affects many cities of the world. This affects the structural state of the sewer systems, as well 
as its hydraulic capacity and the service level. As a consequence, the sewer system stakeholders are working on the development 
of a proactive sewer management to make decision in time and avoid public emergencies. Therefore, the objective of this work 
was to predict the variable state using a clustering algorithm (k-means) in Bogotá’s sewer pipes based on its physical characteristics. 
Among the most representative results was to find a relationship between pipes’ characteristics and their structural state (chi-squared). 
Furthermore, the slope and ground level variables were the most related ones to the state of the pipes. The detected relationships 
are linear and can be used to make management decisions when pipes are clustered and the clusters are mapped on a principal 
component plane.

Keywords: k-means, sewer asset management, cluster analysis, principal components analysis (PCA), proactive sewer mana-
gement, sewer pipes, structural pipes state, Bogota’s sewer system. 

RESUMEN

El deterioro de los sistemas de alcantarillado es un problema que afecta a las ciudades, no solo en su estado estructural sino también 
en su capacidad hidráulica y nivel de servicio. En consecuencia, los encargados del sistema de alcantarillado están trabajando en 
el desarrollo de una gestión proactiva para tomar decisiones a tiempo y evitar emergencias públicas. Es por esto que el objetivo 
de este trabajo fue predecir la condición de las tuberías en la ciudad de Bogotá utilizando algoritmos tipo cluster (k –means), para 
discriminar las tuberías que tienen buena condición estructural de las que no. Entre los resultados más sobresalientes se encontró 
una relación entre las características estructurales de las tuberías y su estado (prueba Chi – cuadrado) siendo la pendiente y la 
profundidad las variables más relacionadas con el estado de las tuberías. Adicionalmente, estas relaciones encontradas resultaron 
lineales al agrupar las tuberías en un plano de componentes principales. 

Palabras clave: k-means, gestión de sistemas de alcantarillado, cluster, análisis de componentes principales (ACP), gestión proactiva 
de alcantarillados, tuberías de alcantarillado, condición estructural de tuberías de alcantarillado, sistema de alcantarillado de Bogotá.
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Introduction

As a consequence of the growth of cities, urban water 
systems are exposed to increased pressures in terms of 
climate change, environmental pollution, limited resources 
and aging infrastructure (Ferguson et al., 2013). Drainage 
systems, which present alarming aging and deterioration 
rates, are part of the cities’ infrastructure developed over 
several years (Osman, 2012). As a consequence of their 
structural deterioration, most of the sewer systems are 
being every time more prone to fail (Ward & Savic, 2012). 
This impacts directly on the level of service and quality 
of life in the communities (Micevski et al., 2002; Osman 
2012, Liu & Kleiner, 2013).
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Multiple factors influence deterioration of pipes such as 
their physical characteristics (diameter, length, depth, 
material, type of joints), installation processes, external 
factors (characteristic of the supporting soil, soil usage, 
environmental characteristics) and other factors such as 
age, type of pipe and inappropriate upkeeping (Davis et 
al., 2001). More recently, factors such as climate change, 
soil change and demographic increase have been reported 
as influencing pipes deterioration (Kleidorfer et al., 2013).

Although, in other countries, several models for planning the 
maintenance of sewer systems exist (Saegrov, 2006; Mashford et 
al., 2010), most of them are based on complete and appropriate 
information, which is not available for the Colombian case. 
Information on sewer systems inspections is sparse (coverage 
is low) and the quality of the information is not guaranteed 
(Rodríguez et al., 2012). For example the coverage of inspection 
per year in Bogota’s sewer system is estimated to be 2 %, 
meaning that the average time between two inspections is 50 
years, which is very low compared to international standards 
(Alluche & Freure, 2002, U.S. EPA, 1999).

Traditionally, in Colombia water service companies have 
taken in charge asset maintenance and operation with a 
reactive approach of upkeeping (solving the problem 
after failure). Nevertheless, experiences show that this 
approach can be more expensive than using a proactive 
one (Rodríguez et al., 2012).

Given that sewer pipes are close to completing their useful 
life cycle , it is foreseeable that in the following years 
management of infrastructures will be prioritized over the 
development of new ones. For now it is very important 
that variables indicating the state of pipes are measured. 
Therefore, it is crucial that statistical methods predicting in 
any way the state of pipes in Bogotá, based on measurable 
characteristics, are developed. These methods need to take 
into account the percentage of inspected sewer networks, 
the frequency and the quality of the inspection.

In this study we investigate if a prediction of the variable 
state is possible using a clustering algorithm. To illustrate 
our findings the original variable state and the new 
constructed clusters are mapped on a Principal Component 
Space. The above-mentioned results allow a first approach 
on estimating approximately the structural state of sewer 
pipes and discriminating those with a good state (state 1) 
from those which need revision (state 5). These results can 
therefore be used for decision making regarding planning 
detailed inspections, maintenance, replacements and 
overall public expenses.

Materials and Methods

Data

For evaluating the structural condition of pipes of the 
sewer system in Bogotá, a database obtained using CCTV 

between 2007 and 2011 was made available by the public 
aqueduct and sewer systems company in Bogotá, Empresa 
de Acueducto y Alcantarillado de Bogotá (EAAB) (Figure 
1). This database contains information about the physical 
characteristics of pipes, their location and structural state. 
The structural state was obtained applying the norm NS-058 
(EAAB, 2001) on 3563 waste and rain sewer pipes. Figure 
1 shows the location of the inspected sewer pipes from 
2007 to 2011 (black lines) and the whole sewer network of 
Bogotá (gray lines).

The characteristics that were retained due to their possible 
relationship with the structural state of pipes were: (i) slope, 
(ii) diameter, (iii) type of material, (iv) age, (v) ground level 
at the beginning of the pipe, (vi) ground level at the end of 
the pipe, (vii) depth at the beginning of the pipe, (viii) depth 
at the end of the pipe, (ix) surface type at ground level, 
(x) type of pipe and other factors such as the geographical 
coordinates (east, west). For further analysis only numerical 
variables were used. The variable state of the pipe indicates 
the amount of structural damage of a pipe and it was used 
as an auxiliary variable with the five original categories, 
but also with three and two categories obtained grouping 
states two, three, four; and two, three, four, five as shown 
in Table 1.

Figure 1. Map of sewer system of Bogotá. 
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Table 1. Auxiliary variable state of the pipe with five (5), three (3) 
and two (2) categories.

State (5)  
Original categories

State (3) State (2 )

1 1 1

2 2 2

3 2 2

4 2 2

5 3 2

Statistical Analysis

A descriptive analysis of the data was undertaken using 
boxplots in order to identify outliers. Then, the linear 
correlations between variables were estimated using 
Pearson’s linear coefficient. These estimates were used 
to choose which variables were suitable for the Principal 
Component Analysis because this analysis is based on 
linear relationships.

The Principal Component Analysis (PCA) was used to 
resume the structure of the data using linear combinations 
of the original variables (Lebart et al., 1995). These linear 
combinations are called Principal Components (PCs), and 
are obtained by solving an eigenvalue problem which 
assures that the first PC retains maximum variance of the 
data (Lebart et al., 1995) and allows a representation of the 
original data on a lower dimension space. 

The clustering algorithm k-means (Hartigan & Wong, 1979) 
was used to group pipes in a desired number of clusters 
aiming to retrieve the categories of the variable state. 
Results were mapped on the PC space in order to observe 
the obtained behaviors.

The concordance between constructed clusters and 
original categories of the variable state was evaluated using 
a chi-square hypothesis test, in which the null hypothesis 
is no association between variables. Therefore, if the test 
is rejected, an association between variables is concluded.

Results and discussion

Boxplots were constructed for all variables (supplementary 
material).  They allowed detecting an important number of 
outliers for the ground level variable, but not for the other 
variables. Therefore, no pipes were eliminated from the 
data set.

Taking into account that the aim here was to find similarity 
patterns between pipes across all numerical variables, 
the linear correlation structure was studied (Table 2). The 
observed linear relationships are relatively high indicating 
that a linear multivariate analysis is suitable for these data. 
This correlation coefficient is very close to one between 
the variables ground level1 (ground level upstream the pipe 

section) and ground level2 (ground level downstream the 
pipe section) indicating that the information contained in 
them is redundant and therefore we decided to eliminate 
ground level2. Moreover, the linear relationship of the 
linear coordinates (X and Y) to all other variables is very 
weak (lower than rP = 0,50), indicating that there is no linear 
relationship between numerical variables and location. The 
variable depth2 also has a relatively low linear relationship 
to the other ones (maximum is 0,56) (see Table 2).

Table 2. Matrix of Pearson’s linear correlation coefficient between all 
pairs of numerical variables of the database. Diameter (D), Slope (S), 
Ground level1 (L1), Depth1 (D1), Ground level2 (L2), Depth2 (H2), 
Age (A), X and Y.

D S L1 H1 L2 H2 A X Y

D 1,00 -0,24 -0,10 0,21 -0,10 0,16 0,09 0,01 -0,03

 S -0,24 1,00 0,63 0,18 0,62 -0,04 0,14 0,24 -0,31

L1 -0,10 0,63 1,00 0,28 1,00 -0,03 0,13 0,21 -0,42

H1 0,21 0,18 0,28 1,00 0,27 0,56 -0,01 0,03 -0,13

L2 -0,10 0,62 1,00 0,27 1,00 -0,03 0,13 0,21 -0,42

H2 0,16 -0,04 -0,03 0,56 -0,03 1,00 -0,05 -0,06 0,06

A 0,09 0,14 0,13 -0,01 0,13 -0,05 1,00 0,00 -0,50

X 0,01 0,24 0,21 0,03 0,21 -0,06 0,00 1,00 0,37

Y -0,03 -0,31 -0,42 -0,13 -0,42 0,06 -0,05 0,37 1,00

According with the above results, the authors carried out 
the PCA on three different scenarios taking into account: (i) 
All variables of the dataset; (ii) without X and Y variables; 
and (iii) without localization variables (X and Y) and depth2 
variable. The PCs retain in decreasing order as much 
variance as possible and they are linear combinations 
(projections) of the original variables. PCA therefore allows 
resuming a multivariate table in a two-dimension plot in 
order to observe data structure. Furthermore, we used this 
plot to show clusters (Figures 4 and 5). 

The PCA results on each scenario indicate that for the first 
scenario the first two PCs retain 47 % of the total variance; in 
the second 57 %; and the third 60,5 %. For more details on 
these variance percentages please refer to the supplementary 
material. The final PCs components that will be used from 
here for illustration are the ones retaining 60,5 % of the 
total variance with 37,4 % on the first PC and 23,1 % on the 
second PC (this result is represented in all figures).

The correlation circle is the projection of the variables on 
the first two PCs: the first PC (PC1) is represented on the 
horizontal axis, and the second one (PC2) on the vertical 
axis. The orthogonal projection of the corresponding 
vector of each variable over each PC represents the degree 
of explanation that variable has over each PC. Being the 
first PC (PC1) the one that explains the most variability of 
the problem, the variables with a high magnitude of their 
projection in PC1 will be the ones that most explain the 
variability of the problem. The correlation circle shown in 
Figure 2 indicates that the first PC (PC1) is highly explained 
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by ground level and slope variables, which means that these 
variables contribute with the highest amount of information 
for the construction of this PC. It is important to clear that 
age shows a small projection with the first two PCs: the small 
magnitude indicates that age does not explain the variability 
between pipes as strong as the other variables do it.

Figure 2. Correlation circle of the final PCA. 60,5 % of variance is 
retained on the first two first PCs. 

Variability between pipes, taking into account some 
variables as slope, age, depth, diameter and ground level, is 
shown in Figure 3. In this figure, each point represents one 
pipe on the first two PCs plane. This means that two pipes 
with a high distance in x-axis (PC1) have very different 
characteristics in terms of slope, age, depth, diameter 
and ground level, being slope and ground level the most 
different characteristics between these two pipes. In the 
same way, two pipes with a high distance in y-axis (PC2) 
means that their diameter and depth are very different. In 
addition, the points on the left side of Figure 3 represent 
the pipes with more important magnitude of slope and 
ground level (as shown in Figure 2) in comparison with 
pipes represented by points on the right side of Figure 3. 
Likewise, points on the upper part of Figure 3 represent 
pipes with more important values of depth and diameter 
(according to Figure 2) than pipes represented by points on 
the upper part of Figure 3. 

Taking into account that the main objective here is to 
find a relationship between the numerical variables (now 
resumed on the PC1 and PC2 scatterplot – Figure 3), with 
the variable state, we mapped this auxiliary variable on the 
plot indicating which pipes have each of the categories of 
the variable state (Figure 4). This scatterplot does not show 
a clear structuration of the structural state variable when 
it is evaluated with five categories (or structural degrees) 
because no separation between structural categories 
(from 1 to 5) in the PC plane is obtained: all the ellipses 
representing each structural category are overlapped in this 
PC plane (see Figure 4).  Therefore, these categories were 
reduced to two and three (see Table 1), but no structuring 
is observed on the scatterplots (for plots see supplementary 
material). This does not mean that there is no structuring, 
but at least it is not observable on the PCA scatterplot.

Figure 3. Scatterplot of pipes on the first two PCs of the final PCA. 
60,5 % of variance is retained on these two first PCs. 

Figure 4. Scatterplot of pipes on the first two PCs, using the variables 
state with five categories as an auxiliary variable to be mapped. 

We mapped k-means constructed clusters on the 
scatterplot as well (Figure 5), hoping for these clusters 
emulate the categories of the variable state. It is possible 
to observe that a structure of clear separation (less 
overlaps between cluster ellipses) is possible along PC1 
(horizontal axis), and therefore mainly explained by 
ground level and slope variables according to Figure 2 
(Figure 5).

(a)
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Figure 5. Scatterplot of pipes on the first two PCs, using k-means 
constructed clusters as an auxiliary variable to be mapped.  Map of: (a) 
five clusters, (b) three clusters and (c) 2 clusters.

Furthermore, we investigated if a relationship between the 
obtained k-means clusters and the variable state existed 
applying a chi-square test. The null hypothesis of this test 
is of no association between variables, as explained before. 
Therefore, a rejection indicates that an association between 
clusters and original categories exists. Thus, in case of 
rejection (significant P-values smaller than alpha = 0,05), 
the obtained clusters are retrieving groups of pipes related 
to the state and a prediction of the state is made possible. 
P-values obtained were significant for all three numbers of 
clusters compared to the original variable state (Tables 3, 4, 
5):  p-value = 2,2 × 10-16 for five clusters, p-value = 0,03165 
for three clusters, p-value = 0,02726 for two clusters. This 
leads to the conclusion that any number of clusters can be 
used to retrieve the pipe state.

Nevertheless, just knowing that clusters are significantly 
related to state of the pipe does not inform about 1) which 
cluster corresponds to which state and 2) the quality of 
prediction. In order to answer the first question, constructed 
clusters were mapped on the PC space and compared to 
the mapping of the variable state. For the second question, 
contingency tables were constructed (Tables 3, 4, 5) and 
used to compute the percentage of predictions. 

When the frequencies of pipes at each one of the clusters 
are compared to the categories of the variable state for the 
case of five categories (Table 3), it can be observed that the 
highest frequencies are obtained for states 1 and 5. Pipes 
with state 1 are observed at the left side on the PC space 
(Figure 5a). They have the highest values for the ground 
level and slope numerical variables as can be observed on 
the correlation circle. For the grouping with five clusters 
and five categories, the cluster grouping more pipes with 
state 1 is cluster 3: 34 %, (197/566 = 0,34). Observing the 
mapping of five clusters on the PC space (Figure 5a), it is 
also possible to see that cluster 3 is the one with the center 
most at the left. For the case of five clusters, clusters 1 and 
2 have centers that are very close.

In the same sense, when the grouping with three and two 
categories/clusters is observed (Table 4 and 5, respectively), 
frequencies are highest for state 1 for the clusters found left 
on the PC space: clusters 3 and 2 (Figure 5b and Figure 5c, 
respectively) are grouping pipes with state 1: 207/602 = 0,34 
and 229/66 = 0,35. These results indicate that pipes found 
on the left of the PC space, with highest values of slope 
and ground level, can be clustered together in a group 
containing approximately 34 % of pipes with state 1, based 
only on the numerical variables. Similarly, it is also possible 
to retrieve pipes with state 5 through the clusters. The 
clusters that group mainly pipes with this state are cluster 
3 (399/1184 = 0,34) for the group of three clusters, and 1 
(2027/2902 = 0,70) for two clusters. 

Given the results for state 5 with two clusters, in which 
prediction is 70 %, we suggest building two clusters. The 
cluster grouping pipes with high values of ground level and 
slope variables would be the one grouping pipes of state 1 
(with ca. 34 % of pipes of state 1), and opposite to this one 
on the first PC plane would be the cluster grouping mostly 
pipes of state 5 (with ca. 70 % of pipes of state 5). These 
pipes belonging to the cluster of pipes with state 5 should 
be revised in priority. These results indicate that, even 
though it is not possible to directly predict the structural 
state from physical characteristics, a relationship exists 
and therefore models based on them can be proposed. 
Additionally, this analysis showed that some characteristics 
are more related than others, such as ground level and 
slope. In previous studies other variables that showed low 
relationship to state have been found to influence state 
of the pipes. These variables are age, diameter and depth 
(Davies et al., 2001; Saegrov, 2006; Niño et al., 2012). 
Nevertheless, multivariate analyses are stronger because 
they allow detecting a global relationship and influence of 
several factors (Hao et al., 2012).

Particularly in the city of Bogotá and especially for the 
analyzed database, it has been detected that pipes with 
high slopes and in elevated neighborhoods (east mountains 
and Suba), seem to be in better structural conditions than 
those near the Bogotá river (low slopes and low elevation). 

(b)

(c)
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Questions arise on the choice of slopes. Not only hydraulic 
or topographical conditions should be taken into account, 
because low slopes could favor hydraulic retention 
times and increase H2S production favoring corrosion of 
concrete pipes (Jiang et al., 2015). On the other hand, it 
is possible that pipes near the river could be exposed to 
higher phreatic levels during rainy seasons depending on 
soil type and permeability. These infiltrations could cause 
liquefaction of soils surrounding pipes and therefore loss of 
supporting material, which is important for the dissipation 
of strengths (Barragán & Prado, 2014): the direct support of 
the strengths on pipes could cause fissures and cracks. 

Nowadays, the sewer asset management in Bogota is driven 
in a reactive way (acting after the failure) inducing major risk 
of collapses in the whole sewer system and spending more 
money than to develop a proactive asset management plan 
(Rodriguez et al., 2012). Therefore, these preliminary results 
should be taken into account in the development of plans 
focused on proactive sewer asset management with particular 
characteristics (for example, topography and financial issues) 
typical of Latin-American cities such as Bogota.

Table 3. Contingency table comparing five categories of the variable 
state with five constructed clusters (using k-means).

State with five categories Row

Cluster 1 2 3 4 5 Sums

1 128 69 21 56 149 423

2 184 97 33 38 34 386

3 197 83 37 91 158 566

4 320 180 46 212 376 1134

5 275 163 45 188 383 1054

Table 4. Contingency table comparing three categories of the varia-
ble state with three constructed clusters (using k-means).

State with three categories Row

Cluster 1 2 3 Sums

1 334 451 399 1184

2 563 683 531 1777

3 207 225 170 602

Table 5. Contingency table comparing two categories of the variable 
state with two constructed clusters (using k-means).

State with two categories Row

Cluster 1 2 Sums

1 875 2027 2902

2 229 432 661

Conclusions

A relationship between structural characteristics of pipes 
and their state has been found using a descriptive PCA 
coupled with k-means clustering. The importance of the 
different variables has been established, being slope and 
ground level the most related ones to the state of the pipes. 
The detected relationships are linear and can be used to 
make management decisions when pipes are clustered 
and the clusters are mapped on a principal component 
plane. Therefore, the statistical approach is pertinent for 
characterization. Nevertheless, an exact prediction is not 
possible and further samples, but also other statistical 
methods based on non-linear data structure (López-Kleine 
& Torres, 2014), or a combination between statistical 
methods and learning machine methods such as Fuzzy 
k-means (Soto & Jiménez, 2011) could be investigated. 
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