
IngenIería e InvestIgacIón vol. 35 n.° 3, december - 2015 (92-99)

92

New digital demodulator with matched filters  
and curve segmentation techniques for BFSK  

demodulation: Analytical description

Nuevo demodulador digital con filtros macheados y técnicas  
de segmentación de curvas para la demodulación de señales BFSK:  

Descripción analítica

J. Torres1, F. Hernández2, and J. Habermann3

ABSTRACT 

The present article relates, in general, to digital demodulation of Binary Frequency Shift Keying (BFSK). The objective of the present 
research is to obtain a new processing method for demodulating BFSK-signals in order to reduce hardware complexity in comparison 
with other methods reported. The solution proposed here makes use of the matched filter theory and curve segmentation algorithms. 
This paper describes the integration and configuration of a Sampler Correlator and curve segmentation blocks in order to obtain 
a digital receiver for a proper demodulation of the received signal. The proposed solution is shown to strongly reduce hardware 
complexity. In this part, a presentation of the proposed solution regarding the analytical expressions is addressed. The paper covers 
in detail the elements needed for properly configuring the system. In a second article the implementation of the system for FPGA 
technology and the simulation results in order to validate the overall performance are presented.

Keywords: Matched filters, curve segmentation, digital demodulation, BFSK, FPGA.

RESUMEN

El presente artículo está relacionado con la demodulación digital de la señal Binary Frequency Shift Keying (BFSK). El objetivo de la 
investigación es en la obtención de un nuevo método de procesamiento para demodular señales BFSK, el cual presenta menos comple-
jidad en hardware que los reportados hasta la fecha. El sistema propuesto hace uso de la teoría de filtros adaptados y de los algoritmos 
de segmentación de curvas. El artículo describe la integración y configuración de un bloque de correlador por muestreo con un bloque 
de segmentación de curvas con el objetivo de obtener un receptor digital para demodular apropiadamente la señal recibida. La solución 
propuesta reduce considerablemente la complejidad en hardware. En esta parte se expone el sistema abordando de forma analítica las 
expresiones que lo describen. El artículo aborda en detalle los elementos necesarios para la configuración del sistema. En una segunda 
parte se muestra la implementación del sistema en FPGA así como los resultados de simulación que validan el desempeño del sistema.

Palabras clave: Filtros adaptados, segmentación de curvas, demodulación digital, BFSK, FPGA.
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Introduction
Frequency Shift Keying (FSK) is a digital modulation format 
with applications in wireless technologies (Ibrahim et al., 
2013) (Peng et al., 2013), satellite communications (VEŘTÁT, 
MRÁZ, 2013), power lines communications (PLC) (Ouahada, 
2014), mobile communications (Karabulut, 2015), spread 
spectrum systems (Neifar, 2012) and biomedical applications 
(Wang, 2014). Various configurations of circuitry have 
previously been reported for BFSK demodulators. Some of 
them, especially those based on a correlator receiver model, 
are particularly interesting because they perform signal to 
noise ratio maximization (Sklar, 2001) and do not use symbol 
sychronization blocks, such as Quadricorrelator (Gardner, 
1985), Balanced Quadricorrelator (Kang et al., 2011) and 
Quotient Detector (Kreuzgruber, 1994).

These types of detectors are implemented in a two-part 
structure The first part is an analogue correlator (Egau, 
1984); the second part includes procedures for derivation, 
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addition and multiplication, in order to extract the 
instantaneous frequency. Figure 1 depicts the block diagram 
of the Balanced Quadricorrelator. However, due to the large 
number of adders and multipliers needed for the lowpass 
filter (LPF) implementation, such digital implementations 
demand a high cost.

Although the low pass filter and the multiplication 
procedure could be obtained through a flip-flop element, 
as in the digital logic quadricorrelator scheme of (Ahn et 
al., 2005), and the differentiator can be accomplished by 
flip-flop blocks followed by AND-gates, this type of solution 
is prone to instabilities under conditions of low signal to 
noise ratio. This causes total interruption of the counting 
process at the system output, despite its low hardware 
consumption.

Figure 1. Block Scheme of the Balanced Quadricorrelator.

The method discussed in this paper outperforms all previous 
correlator-based schemes, in terms of hardware complexity. 
A new BFSK detection correlator-based scheme, directed to 
the slope recognition instead of the instantaneous frequency 
at the correlator output, is devised. This article addresses 
in detail the analytical expressions used to describe the 
proposed solution, which exhibit a strong reduction with 
regard to hardware complexity.

The rest of the paper is organized as follows: Section 2 
summarizes the proposed solution in a descriptive way, 
for ease of exposition. Section 3 addresses the analytical 
expressions for configuring the proposed solution. Section 4 
addresses a discussion with regard to hardware complexity. 
Finally, the Conclusions are presented in Section 5.

Receiver conception. Cualitative  
description.

In the scheme proposed in this paper a Discrete Correlator 
(Lee et al., 1950) is employed in order to reduce hardware 
complexity (the scheme is depicted in Figure 2). The 
correlator is configured with a local tone of frequency w0 
and phase φL. The received BFSK waveform arrives with a 
frequency wi, i either 0 or 1, with phase φ0 and amplitude 
given by Ac.

At the output of the sampler correlator, linear segments are 
obtained in the temporal series of yp  [n] and yq  [n] for the 
in phase and quadrature branches, respectively. The slope 
of these segments depends on the symbol received. For 
instance, considering the result shown in Figure 3, it can be 

noted that with the received lower frequency w1 the output 
of the correlator is comprised by segments of zero slope 
(e.g. AB and CD ). On the other hand, with the received 
higher frequency w0, the output is comprised by segments 
of non-zero slope (e.g. BC ).

Figure 2. Receiver for the BFSK waveform with segmentation curve 
techniques.

Figure 3. a) Waveform Received. b) Discrete Correlator output.

The main idea of the proposed receiver is to identify the 
approximate linear signal ramp observed at the output of 
the correlator for a sine-wave input (Sklar, 2001), and, by 
means of this procedure, to identify the symbols received. 
The change of slope in the curve showed in Figure 3b 
is directly related to the symbol transmitted. Therefore, 
methods for recognizing such changes can be employed 
for demodulation purposes. 

The curve in Figure 3b is comprised by the linear 
segments AB, BC and CD, and the split of a curve into 
linear segments is a task intensively studied in the field 
of curve segmentation by means of two categories (Iñesta 
et al., 1998): feature point approach and error tolerance 
approach. This paper addresses those methods based on 
the feature point approach.

Methods of feature point approach identify dominant 
points, such as B and C, by means of a curvature 
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measurement. Consequently, this measure can be directly 
related to the slope of each segment. The techniques of 
curve segmentation can be employed for extracting the 
tanφ of each segment on Figure 3b.

In average, the slope of segment AB is approximately zero, 
whereas the slope of segment BC can be described, for the 
in phase branch, as in (Sklar, 2001):

 tanϕp = 
Ac
2
 cos ϕ

0
−ϕL( )  (1)

For the quadrature branch a similar results is obtained:

 tanϕq =− 
Ac
2
 sin ϕ

0
−ϕL( )  (2)

Considering the values of the slope in Equations (1) and 
(2), a receiver can be implemented by squaring the tangent 
functions in Equations (1) and (2), which yields to:

 yout n⎡⎣⎢
⎤
⎦⎥ = tan

2ϕp + tan
2ϕq =

Ac
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

2

 if  wi = w0

0    if  wi ≠ w0

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

 (3)

Summarizing, the proposed solution uses the sampler 
correlator of Figure 2 in order to obtain the linear curves, 
the slope that can be estimated by curve segmentation 
techniques. After estimating the slope values in Equations 
(1) and (2), the operation in Equation (3) is performed for 
obtaining high and low levels and then recovering the 
transmitted bits. The general scheme is depicted in Figure 4 
and the output is depicted in Figure 5.

Figure 4. Receiver for the BFSK waveform with segmentation curve 
techniques.

Figure 5. a) Upper part: Receiver input in Figure 3. b) Lower part: 
Output for the receiver in Figure 3 applying k-angular bending seg-
mentation curve algorithm. Parameters: w0 = 0,1425 rad/s, w1 = 0,3562 
rad/s, k = 44 samples.

From Figure 5 it can be noted that the pulses in b) can be 
used to detect the frequency received in a); this detection 
can be accomplished by means of threshold (dotted line), 
the value that is determined in Section 3. 

Curvature measurement methods

Once the signal of the sampler correlation output is 
obtained, the estimation of the slope of each segment 
follows. To that end, the use of curvature measurement 
methods is analyzed.

Methods such as k-cosine (Wang et al., 2010), k-angular 
bending (Iñesta et al., 1998), Distance Accumulator (Han, 
Poston, 1993) and Scatter Matrix (Anderson, Bezdek, 
1984) are usually employed to measure the curvature from 
images. Among this methods, the k-angular bending is the 
only one that does not implement a division procedure for 
estimating the slope. This is an important issue concerning 
a practical implementation in hardware, for instance in 
FPGA, since a division procedure can produce undesirable 
glitches at the output. Therefore, the implementation of 
k-angular bending is considered here for implementing the 
block curvature measurement depicted in Figure 3.

k-angular bending foundations

This method estimates the slope for each segment 
calculating the ratio between the incoming values and 
the time index in a sliding window of length k. At the 
same time, an average procedure is also implemented for 
reducing the effect of noise. The value for tanφ[n], for the 
quadrature and the in phase branches, is obtained through 
the following relation: 

 tanϕ n⎡⎣⎢
⎤
⎦⎥ =

ybn n⎡⎣⎢
⎤
⎦⎥ − yan n

⎡
⎣⎢
⎤
⎦⎥

xbn n⎡⎣⎢
⎤
⎦⎥ − xan n

⎡
⎣⎢
⎤
⎦⎥

 (4)

where:

ybn n⎡⎣⎢
⎤
⎦⎥ = k / 2+1( )−1

i=n

n+k /2

∑ yi
  

xbn n⎡⎣⎢
⎤
⎦⎥ = k / 2+1( )−1

i=n

n+k /2

∑ i

yan n⎡⎣⎢
⎤
⎦⎥ = k / 2+1( )−1

i=n−k /2

n

∑ yi
 

xan n⎡⎣⎢
⎤
⎦⎥ = k / 2+1( )−1

i=n−k /2

n

∑ i

y1: samples of the curve

i: time index of the curve

k: length of the window

The average procedure is obtained with the previous 

definition of ybn n⎡⎣⎢
⎤
⎦⎥  and yan n⎡⎣⎢

⎤
⎦⎥ . The expression given in 

Equation (4) can also be simplified as indicated by:

 tanϕ n⎡⎣⎢
⎤
⎦⎥ = c

i=n

n+k /2

∑ y i⎡⎣⎢
⎤
⎦⎥ − y i− k / 2

⎡
⎣⎢

⎤
⎦⎥( )  (5)
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where:

 
c= k / 2( )−1 k / 2+1( )−1

Considering the numerator in Equation (4), the expression 
can be simplified as:

 ybn n⎡⎣⎢
⎤
⎦⎥ − yan n

⎡
⎣⎢
⎤
⎦⎥ = k / 2+1( )−1

  
i=n

n+k /2

∑ y i⎡⎣⎢
⎤
⎦⎥ − y i− k / 2

⎡
⎣⎢

⎤
⎦⎥( )  (6)

Considering the denominator in Equation (4), the expression can be simplified by means of:

 xbn− xan =
k
2
+1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−1

i
i=n

n+k
2∑ − i

i=n−k
2

n∑
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟=

k
2
+1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−1

 2  1+2+!+ k
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
= k / 2+1( )−1k / 2 1+ k / 2( )= k / 2  (7)

Then, when applying this procedure in the curvature 
measurement block of Figure 3, the output signal will be 
high or low, corresponding to the higher or lower frequency 
of the input signal, respectively (see Figure 4). Thus, 
changes in those levels can be employed for detecting the 
symbol transmitted. For this purpose, a proper threshold 
must be derived, which is addressed in the next Section. 
The expression given in Equation (6) is useful in the digital 
implementation of the system, an issue that will considered 
in the second part of this paper.

Receiver conception. Analytical description
in order to recover the bits transmitted, it is necessary to 
establish a threshold for identifying the high from the low 
levels at the output of the receiver. This is indicated by the 
dotted line in Figure 5b).

When the operation in Equation (3) is performed, additional 

oscillation is introduced around the expected values Ac
2

4
 

and 0, in the absence of noise. These oscillations are easily 
verified in the high level of Figure 4b they are produced by 
the multiplication of the received signal with the local tone. 
Besides, the amplitude of these oscillations depends on the 
levels at the output of the system, and this can be verified on 
Figure 4b. In this case, the high level exhibits an oscillating 
behavior with higher amplitude than the low level.

In order to establish a threshold, the oscillations produced 
by the operation given in Equation (3) must be considered. 
Taking into account that the amplitude of these oscillations 
depends on the binary levels, then the threshold is not 
easily established as the half of the maximum amplitude; it 
also depends on the oscillating terms. In order to obtain a 
proper value for the threshold, it is necessary to analytically 
describe the proposed system, and this is addressed by the 
following steps:

1. The obtaining of the analytical expressions for yp  [n] 
and yq  [n]  of Figure 2.

2. The obtaining of the variance around the binary levels 
at the output of the system of Figure 4.

Analytical expression for yp [n]  and yq [n]
To obtain the analytical expressions, there are two cases 
to be described. The case in which the lower frequency is 

received, w1, and the case of the higher frequency, w0. For 
the latter, the output of the correlator is as follows (details 
are given in the Appendix A): 

 yp n⎡⎣⎢
⎤
⎦⎥ =

Ac
2
cos ϕ

0
−ϕL( ) n+1( )+ yp00* n⎡⎣⎢

⎤
⎦⎥  (8)

where:

 yp00
* n⎡⎣⎢
⎤
⎦⎥ =

Ac
4 sin w

0( )

sin w
0
−ϕ

0
−ϕL( )

+sin
2w

0
n+1/ 2( )

+ϕ
0
+ϕL

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 (9)

From Equation (8) it can be observed that the first term is 
directly related to the ramp signal, and this is described 
by the segment BC on Figure 3b). This segment has a 

maximum slope given by Ac
2

2
, which means that the 

maximum voltage at the output of the correlator will be 

given by Ac
2

4
N +1( ) , where N represents the total number 

of samples between transitions. Thus, the system used to 

implement the receiver in Figure 4 should be capable of 
storing this value. Additionally, once the detection block 
identifies a transition, then a reset on the accumulator 
block can be settled. By this mechanism, the values of yp  [n]  
and yq  [n]  will be set to zero in order to avoid larger values 

than Ac
2

2
N +1( ) .

The slope of is the segments in the phase and quadrature 
branches are the average value to be estimated by the 
k-bending method. On the other hand, there is also an 
oscillating term, denoted by yp00

∗ n⎡⎣⎢
⎤
⎦⎥  in Equation (9), which 

produces the oscillating behavior at the output of the 
system. For the quadrature branch a similar description to 
Equation (8) is obtained, except that φL must be replaced 

by ϕL -
π
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
. 

On the other hand, the analytical description when the 
received frequency is w1 is given by the relation (A3) in 
the Appendix ,when wi =  w0 , and denoted by yp10

∗ n⎡⎣⎢
⎤
⎦⎥ . In 

this case, the slope is zero in average; this is graphically 
described by the segments AB and CD in Figure 3. 
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Variance at the output of the system.

The variance at the output of the system is given by the 

oscillating term yp00
∗ n⎡⎣⎢

⎤
⎦⎥  for the high levels and yp10

∗ n⎡⎣⎢
⎤
⎦⎥  

for the low levels. The method of k-bending performs the 

Taking into account the use of trigonometric identities for the subtraction of sine functions, the term yp00
∗ n+ i⎡
⎣⎢

⎤
⎦⎥ − yp00

∗ n− i⎡
⎣⎢

⎤
⎦⎥( )

can be simplified as:

  

yp00
* n+ i⎡
⎣⎢

⎤
⎦⎥ − yp00

* n− i⎡
⎣⎢

⎤
⎦⎥( )= Ac

4 sin w
0( )
sin 2w

0
n+ i+1/ 2( )+ϕ0 +ϕL( )− sin 2w0 n− i+1/ 2( )+ϕ0 +ϕL( )( ) 

                                  =
Ac

2 sin w
0( )
sin w

0
i( )cos 2w0 n+1/ 2+ϕ0 +ϕL( )( ) (11)

An upper bound for Equation (11) can be obtained by:

 yp00
* n+ i⎡
⎣⎢

⎤
⎦⎥ − yp00

* n− i⎡
⎣⎢

⎤
⎦⎥( )≤ Ac

2 sin w
0( )
sin w

0
i( )  (12)

According to the upper bound in Equation (12), which is 
independent of the time index n, the sum in Equation (10) 
can be upper bounded as follows: 

 

i=1

k
2

∑ yp00
* n+ i⎡
⎣⎢

⎤
⎦⎥ − yp00

* n− i⎡
⎣⎢

⎤
⎦⎥( )≤

Ac
2 sin w

0( ) i=1

k
2

∑ sin w
0
i( )

≤
Ac

2 sin2 w
0( )
sin w

0

k
2
+1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sin w

0

k
4

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
=Δ p00

 (13)

This sum formula is obtained by straightforward methods, 
described in Appendix B. The relation in Equation (13) is 
also valid for the quadrature branch, since the phase terms 
φ0 and  φL have been neglected; this is denoted by ∆q00.

Finally, the variance of the output yout  [n], for w1 = w0, can be 
upper bounded by:

 vary ≤ c Δp00( )2+ c Δq00( )2  (14)

The quantities given by ∆p00 and ∆q00 are equal in value, and 
they represent the maximum amplitude of the oscillations 
at the output of the square procedure for both branches in 
Figure 4. However, these oscillations are orthogonal, thus 
the sum in Equation (14) can be upper bounded as:

 vary ≤ c Δp00( )2+ c Δq00( )2 ≤ 2  c Δp00( )2 =Δ1  (15)

given that the maximum value of the sum of a sine and a 
cosine function is 2 .

Secondly, when w1 ≠ w0 the variance of the output yout [n] 
can be obtained by means of the procedure implemented 

for obtaining Equation (15). In this case, yp10
∗ n⎡⎣⎢
⎤
⎦⎥  comprises 

two tones, one of them at the frequency w0 + w1
2

 and the 

other tone at w0−w1
2

, as described in Equation (A3), in 

Appendix A. Similar to Equation (15), an upper bound can 
be obtained as:

 

j=1

k
2

∑ yp10
* n+ i⎡
⎣⎢

⎤
⎦⎥ − yp10

* n− i⎡
⎣⎢

⎤
⎦⎥( )≤

≤

Ac

2sin2
w
0
+ w

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

sin
w
0
+ w

1

2
k
2
+1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
 

sin
w
0
+ w

1

2
k
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+

Ac

2sin2
w
0
−w

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

sin
w
0
−w

1

2
k
2
+1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
 

sin
w
0
−w

1

2
k
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

=Δp01

 (16)

For the quadrature branch, a similar upper bound is 
obtained; this is denoted by ∆q01. Finally, after squaring and 
multiplying by 2 c2, an upper bound is obtained by:

 vary ≤ c Δp01( )2+ c Δq01( )2 ≤ 2  c Δp01( )2 =Δ0  (17)

Once the variances are obtained around the high and the 
low levels, a threshold can be established for detecting the 
transitions. In case of the high level, the amplitude of the 
oscillation is given by ∆1 in Equation (15), with a direct 

component equal to Ac
2

4
, as given in Equation (3).

For the low levels, the amplitude of the oscillation is given 
by ∆0. As such, the threshold must be established in some 

intermediate point between Ac
2

4
−Δ

1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 and  ∆0. Here the 

threshold is placed on the middle for increasing the margin 
noise as:

sum indicated in Equation (6), which can be arranged in a 
different way for the ease of calculation as follows:

 ybn
* [n]− yan

* [n]= (k / 2+1)−1 (yp00
* [n+ i]− yp00

* [n− i])
i=1

k /2

∑  (10)
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 yth =
1
2
Ac
2

4
− Δ1 + Δ0

⎛

⎝⎜
⎞

⎠⎟
 (18)

The threshold given in Equation (18) is employed to 
distinguish the low and high levels of the output signal; 
Figure 5 b) shows the result by means of dotted line with 
∆1 = 0,0637, ∆0 = 0,0108, and yth = 0,1250. The terms ∆1 and 
∆0 represent the effect of the oscillating terms. The use of 
this relation is affordable if the amplitude of the oscillations 
around the high and low levels are not comparable, that is, if 
Ac
2

4
−Δ

1
>Δ

0
. Otherwise, a lowpass filter can be employed 

at the output of the system to attenuate the amplitude of 
such oscillations. The precision in the determination of 
transitions, given by the threshold and the risetime of the 
pulses, is directly related to the total number of bits to be 
demodulated without errors, an issue that will be analyzed 
in  Section 2.4.

Besides, the length of window k can be established for 
attenuating ∆1 or ∆0 in Equations (15) and (17). Depending 
on which oscillating term is the highest, k may be chosen in 
order to make zero the sine function.

In case that the value of AC is unknown, the expression given 
in Equation (18) requires to estimate this value. This is due 
to the fact that the output of the system is comprised by high 
and low levels. However, these levels can be transformed 
into bipolar pulses if the direct component (DC level) of the 
output sequence yp  [n] is supressed. This can be achieved 
through the use of a Notch filter, the transfer function given 
by (Proakis, Manolakis, 2006):

 Hnotch z( ) = 1− 2cos wc( ) z−1 + z−2
1− 1+ r 2( )cos wc( ) z−1 + r 2z−2  (19)

where r and wc represent the radius of the pole and the 
center frequency of the filter, respectively. In order to 
suppress the DC level, the value of wc must be settled to 
zero. In this case, the expected value will be zero and the 
threshold can be settled to yth = 0.

Discussion
With regard to hardware complexity, the proposed scheme, 
with the description given in Figures 4, needs 7 adders 
and multipliers. Three adders comes from the accumulator 
blocks and the output of the system, two multipliers are 
from the squaring devices and the others two from the 
multiplier at the beginning of each branch. In addition, 
the curvature measurement blocks can be implemented 
with 2 FIR filters by means of a moving average structure 
(Oppenheim et al., 2010) without multipliers, since all 
the coefficients are equals to 1 as indicated in 5. Finally, 
through the use of the notch filter in Equation (21) a total 
of 7 adders and multipliers are also needed if the value of 
Ac is unknown.

On the other hand, considering the system for the Balanced 
Quadricorrelator in Figure 1, a total of 7 adders and 
multipliers with another 4 FIR filters are required. Comparing 
the elements needed for each receiver, the proposed 
solution may need 7 additional adders and multipliers, but 
a reduction of FIR filters is achieved. Furthermore, the FIR 
filters employed do not use multipliers and the order of the 
filters employed in the Balanced Quadricorrelator could be 
superior to that of the proposed system, taking into account 
the difference between w0 and w1.

Conclusions
The solution presented in this paper proposes a new 
detection scheme for demodulating BFSK signals. High-
order filters are avoided because of one important matter: 
the symbol detection is accomplished through the constant 
slope recognition carried out at the output of a Sampler 
Correlator. This element represents the bridge between 
digital demodulation and curve segmentation techniques. 
From this point of view, new digital demodulators for BFSK 
waveforms can be developed, which advantageously save 
receiver complexity, in comparison to others reported. The 
system is only implemented by FIR and IIR filters, devices 
suitable to be implemented with low complexity.

Appendix A 
This Section summarizes the obtaining of the analytical 
expressions for yp  [n] and yq  [n] in Figure 2. Considering the 
multiplication of the received signal by the local tone and 
after applying some trigonometric identities, the following 
expression is obtained:

 

Ac cos win+ϕ0( )⋅cos w0n+ϕL( )

=
Ac
2

cos ϕ
0
−ϕL( )x1 n⎡⎣⎢ ⎤⎦⎥ − sin ϕ0−ϕL( )

x
2
n⎡⎣⎢
⎤
⎦⎥+ cos ϕ0 +ϕL( )x3 n⎡⎣⎢ ⎤⎦⎥

−sin ϕ
0
+ϕL( )x4 n⎡⎣⎢ ⎤⎦⎥

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 (A1)

Where:

x
1
n⎡⎣⎢
⎤
⎦⎥ = cos wi−w0( )n( )  x

3
n⎡⎣⎢
⎤
⎦⎥ = cos wi + w0( )n( )

x
2
n⎡⎣⎢
⎤
⎦⎥ = sin wi−w0( )n( )  x

4
n⎡⎣⎢
⎤
⎦⎥ = sin wi + w0( )n( )  

The operation of the accumulator block from the sampler 
correlator is to perform the following sum:

yp n⎡⎣⎢
⎤
⎦⎥ =

i=0

n

∑Ac cos win+ϕ0( )⋅cos w0n+ϕL( )=

Ac
2

cos ϕ
0
−ϕL( )

i=0

n

∑x1 n⎡⎣⎢ ⎤⎦⎥

−sin ϕ
0
−ϕL( )

i=0

n

∑x2 n⎡⎣⎢ ⎤⎦⎥+ cos ϕ0 +ϕL( )
i=0

n

∑x3 n⎡⎣⎢ ⎤⎦⎥

−sin ϕ
0
+ϕL( )

i=0

n

∑x4 n⎡⎣⎢ ⎤⎦⎥

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 (A2)
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 After considering the Euler’s theorem and the sum 
formula of the geometric progression (Gradshteyn 1980), 
it is possible to obtain closed form expressions for each 

term x ji=0

n∑ n⎡⎣⎢
⎤
⎦⎥  in Equation (A2). After some straightfor-

ward manipulations, the description for yp  [n] yields:

yp n⎡⎣⎢
⎤
⎦⎥ =

Ac
2
+

1

sin
wi + w0
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

sin
wi + w0
2

n+1( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cos

wi + w0
2

n+ϕ
0
−ϕL

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

+
1

sin
wi + w0
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

sin
wi + w0
2

n+1( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cos

wi + w0
2

n+ϕ
0
−ϕL

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 (A3)

The description given in Equation (A3) considers the case 
when the frequency received is different to that of the lo-
cal tone, that is w1 ≠ w0. The case in which w1 = w0 can be 

obtained by taking the limit limwi→w0
yp n⎡⎣⎢
⎤
⎦⎥  to yield the relation:

 yp n⎡⎣⎢
⎤
⎦⎥ =

Ac
2
cos ϕ

0
−ϕL( ) n+1( )+ yp00* n⎡⎣⎢

⎤
⎦⎥  (A4)

where:

 

yp00
* n⎡⎣⎢
⎤
⎦⎥ =

Ac
4 sin w

0( )
sin w

0
−ϕ

0
−ϕL( )+ sin 2w0 n+1/ 2( )+ϕ0 +ϕL( )( )

 (A5)

For the quadrature branch similar expressions are obtained upon substituting φL by ϕL−
π
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ .

Appendix B 
In this section the sum formula for relation Equation (13) is obtained as follows:

   

 

i=1

k
2

∑ sin w
0
i( ) =

i=1

k
2

∑
e jw0i− e− jw0i

2 j
≤ i=0
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 B1)

In this development, the Euler’s identity and the formula of the geometric progression have been used (Gradshteyn 1980).
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