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estimating the layer properties of pavements 
 

Evaluación del desempeño de redes neuronales artificiales para  

estimar propiedades de capas de pavimentos 
 

G. Beltrán1 and M. Romo2  

 

ABSTRACT  

A major concern in assessing the structural condition of existing flexible pavements is the estimation of the mechanical properties of 

constituent layers, which is useful for the design and decision-making process in road management systems. This parameter identifica-

tion problem is truly complex due to the large number of variables involved in pavement behavior. To this end, non-conventional 

adaptive or approximate solutions via Artificial Neural Networks – ANNs – are considered to properly map pavement response field 

measurements. Previous investigations have demonstrated the exceptional ability of ANNs in layer moduli estimation from non-de-

structive deflection tests, but most of the reported cases were developed using synthetic deflection data or hypothetical pavement 

systems. This paper presents further attempts to back-calculate layer moduli via ANN modeling, using a database gathered from field 

tests performed on three- and four-layer pavement systems. Traditional layer structuring and pavements with a stabilized subbase were 

considered. A three-stage methodology is developed in this study to design and validate an “optimum” ANN-based model, i.e., the 

best architecture possible along with adequate learning rules. An assessment of the resulting ANN model demonstrates its forecasting 

capabilities and efficiency in solving a complex parameter identification problem concerning pavements. 
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RESUMEN 

Una de las principales preocupaciones en la evaluación de la condición estructural de pavimentos flexibles en servicio, es la estima-

ción de propiedades mecánicas de las capas, útiles para el diseño y toma de decisiones en los sistemas de gestión de carreteras. 

Este problema de identificación de parámetros es realmente complejo, debido al gran número de variables involucradas en el com-

portamiento de los pavimentos. Para esos fines, se ha considerado modelar  la respuesta del pavimentos ante pruebas de campo, 

mediante soluciones adaptativas o aproximadas no convencionales usando Redes Neuronales Artificiales - RNAs. Las investigaciones 

previas han demostrado la capacidad excepcional de las RNAs para estimar módulos de capas, a partir de pruebas no destructivas 

de deflexión; sin embargo, la mayoría de los casos reportados han utilizado datos sintéticos de deflexión, o sistemas de pavimento 

hipotéticos. En este trabajo se presentan nuevos intentos para retrocalcular los módulos de capa con modelos de RNAs, a partir de 

una base de datos obtenida de pruebas de deflexión realizadas en campo sobre sistemas de pavimento de tres y cuatro capas; se 

consideraron estructuras tradicionales y pavimentos con capas de subbase rigidizada. Para el diseño y validación del modelo "óp-

timo" de  RNAs, es decir, la mejor arquitectura posible y el algoritmo de aprendizaje más adecuado, se desarrolló una metodología 

en tres etapas. La evaluación del modelo neuronal resultante, muestra su capacidad y eficiencia de predicción para resolver un 

problema complejo de identificación de parámetros en pavimentos. 

Palabras clave: Redes neuronales artificiales, pavimentos, auscultación no destructiva, deflexiones, módulos de capa. 
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Introduction1 2 

The remaining service life and maintenance decisions of existing 

pavements are highly dependent on structural conditions during 

their operation. In particular, flexible pavements are considered as 

multilayer systems under repeated loading, whose structural 
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response significantly depends on the features of the pavement 

layers: materials, stiffness, strength and thickness. 

The structural condition of pavements can be properly evaluated 

using non-destructive surface deflection testing; impulse load 

devices, such as Falling Weight Deflectometers (FWDs) and Heavy  
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Weight Deflectometers (HWDs), are most likely the most 

commonly used measuring devices for this purpose. Based on the 

measured responses of pavements in deflection tests, it is possible 

to estimate material layer moduli through back analyses. To 

address this complex, non-linear, multivariate parameter 

identification problem, more efficient methods should be 

considered. 

Many studies have used Artificial Neural Networks, ANNs, as an 

efficient, non-deterministic and very realistic approximation 

method for solving parameter identification problems, with a large 

potential as a complementary or alternative analysis method. 

ANNs have demonstrated the ability to successfully map 

pavement responses at a high processing speed, yielding results in 

real-time. 

The first results of ANN modeling in the estimation of layer 

moduli, using FWD deflection basins, were reported in the 1990s 

(Meier and Rix, 1994, 1995; Tutumluer and Meier, 1996; Lee et al, 

1998). Other studies have been performed for specific tasks: 

reducing computational time (Saltan et al, 2013; Rakesh et al, 

2006), creating new deflection basins to construct a reliable ANN 

when the available data are scarce (Saltan and Terzi, 2008), and 

evaluating the effect of the ANN settings on the modeling 

performance (Goktepe et al, 2006; Sharma and Das, 2008). 

Although good estimates have been achieved, most prior studies 

have been conducted using synthetic data and hypothetical 

pavement sections. Hence, the ability of ANN modeling was 

constrained by the selected range and distribution of the synthetic 

training data used. It should be emphasized that this is not an 

exclusive limitation of the ANNs as any method of analysis is 

sensitive to the quality of the databases. 

There have been attempts to analyze field data using ANNs: a 

back-calculation procedure from FWD time history deflections 

and surface-wave measurements was proposed (Kim et al, 2000); 

however, the results were limited to the magnitude of the load 

used to generate waves. More specific analyses have been 

conducted on airport pavement (Gopalakrishnan and Thompson, 

2004), full-depth structures (Ceylan et al, 2005) and subbase layer 

materials (Saltan and Sezgin, 2006). 

The most recent studies have focused on developing more 

accurate and efficient models using optimization algorithms and 

hybrid systems (Kim et al, 2010; Gopalakrishnan and Khaitan, 

2010; Gopalakrishnan, 2010; Nazzal and Tatari, 2013). However, 

few of the above mentioned studies have addressed the design 

process of ANNs. 

In this investigation, a number of analyses were performed to 

define the best possible architecture along with adequate learning 

rules and the proper settings of the ANN model. Furthermore, a 

new procedure to increase the forecasting capabilities of ANNs is 

advanced in this paper. The database used includes wide ranges of 

parameter values obtained from impact deflection tests, 

performed on existing three- and four-layer pavement systems. 

An assessment of the resulting ANN model demonstrates its 

forecasting capabilities and flexibility in performing analyses under 

particular considerations; efficiency is demonstrated by its low 
computational cost. Further model validation is performed by 

verifying the coherence between the predicted behavior and the 

actual observed pavement conditions. 

 

Impact load deflection test 

Impulse load tests using FWD and HWD devices properly 

simulate traffic loading features such as type, magnitude and time-

varying vehicle loading. These devices apply an impulse load (Q) 

through a mass in free fall on a circular plate placed on the 

pavement surface, where the vertical displacement response (D1, 

D2,..., Di) is recorded by various sensors located at different 

distances from the impact point, as shown in Figure 1. Accordingly, 

a deflection basin can be defined; the maximum displacement, 

known as the peak deflection, occurs beneath the loading point. 

The scope and limitations of this testing procedure should be con-

sidered in a proper interpretation of the deflection data: all param-

eters derived represent the loading and environmental conditions 

at the time of testing. It should also be borne in mind that most 
analytical methods are not suitable when either extensive deteri-

oration or thin layers exist in the pavement (ASTM, 2003). 

 
Figure 1. Impact load deflection test - deflection basin 

Traditional estimation of layer moduli 

In the technical literature, a number of procedures to back-

calculate layer moduli from deflection data have been discussed 

(Goktepe et al, 2005; Goel and Das, 2008). Statics- and dynamics-

based approaches (Chatti et al, 2004; Loizos et al, 2005; Seo et al, 

2013) provide both closed-form solutions via layer-elasticity 

theory and numerical solutions via finite element methods. 

Although non-linearity in material behavior can be considered in 

the analyses, the cost and the computational complexity increase 

considerably; therefore, simplified assumptions, such as the linear 

and elastic behaviors of the materials, have to be assumed to 

efficiently solve the problem. 

In common practice, the back-calculation problem is reduced to a 

basic principle of action (applied load) and response (deflections), 

both related by any known law of soil material behavior (e.g., 

elastic, critical state, or viscoelastic): layer moduli are first assumed 

to compute theoretical deflections, and the moduli are then 

adjusted through an iterative process, attempting to match the 

computed and measured deflections by minimizing an error 

function until certain criteria for acceptance are met. 

However, the trial-and-error approach coupled with multilayer 

elasticity theory does not necessarily provide a unique set of 

modulus values, In fact, different combinations of layer moduli 

could lead to similar errors, and therefore, diverse solutions can 

be obtained (Mehta and Roque, 2003); thus, good judgment is 

required to select the most reasonable solution. In spite of 

traditional method constraints, the obtained estimations are 

widely accepted, given the complexity of pavement behavior 

modeling. 
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Artificial Neural Networks 

ANNs are computational tools in which learning and adaptation 

converge to develop “intelligent” software that enables the 

modeling of complex and variable systems. ANNs use prior 

knowledge to solve a problem by incorporating new information 

throughout an evolving learning process to increase their 

forecasting capabilities. This feature enables the development of 

algorithms that better mimic humans’ way of thinking. Accordingly, 

complex nonlinear problems can be treated more rationally when 

multivariate models for regression computations are developed or 

when pattern recognition from a data set is the issue at hand.  

This technique is inspired by the complex structure and efficiency 

of the human brain, where intelligence is the result of the high 

connectivity between large numbers of neurons (Haykin, 1999). 
Similarly, ANNs are formed by interconnected processing 

neurons that receive, process and transmit signals or information 

to other connected neurons. Each link has an associated value 

called a weight, which can be fitted to simulate a particular feature 

or behavior.  

An ANN is a parallel multilayer structure formed by an input layer, 

hidden layers and an output layer; each layer is constituted by neu-

rons, as shown in Figure 2. 

 
Figure 2. Basic layered ANN configuration 

The results of ANN modeling largely depend on how the neurons 

are interconnected (architecture) and on the strength of these 

connections (weights values). Complex architectures have been 

commonly associated to non-linear, multi-dimensional problems. 

Typical elements of an ANN system are learning rules, error 

functions, input functions, and transfer functions, all of which have 

to be defined through a trial-and-error process. 

There are two stages in ANN model development. The first stage 

is the training stage, wherein learning is achieved from input-

output data sets; the learning process could be supervised if the 

desired outputs are given for the specified inputs or reinforced if 

the desired outputs are somewhat known (Logical Designs 

Consulting, Inc., 1996). The second stage is the testing stage, 

wherein the ability of the ANN to yield reasonable outputs for 

new data sets is evaluated; all performance statistics must be 

reported using the testing data. When suitable results are obtained 

in both stages, the resulting ANN is said to be a model capable of 

making reliable predictions from unknown data sets. 

For solving parameter identification problems via ANNs, input 

variables and desired outputs are presented to the network, 

whereby each is associated to a neuron; the network assigns initial 

values to the weights, which are adjusted during successive 

iterations. After each iteration, the network provides outputs that 

are compared with desired outputs until a given error criterion is 

satisfied. It is then said that the network has naturally learned the 

input-output relations. In this study, the Mean Absolute Error, 

MAE, function was used as a convergence criterion 

MAE=∑|( Dijmeas – Dijcomp)|) ⁄ M, 

where 

Dijmeas = measured deflection at sensor i for basin j 

Dijcomp = computed deflection at sensor i for basin j 

M = number of basins * number of sensors 

It was determined that the MAE reduces the effect of atypical or 

dispersed values (LDC. Inc. 1996), which is an advantage for the 

case studied here, given the variety of pavement responses that 

depend on environmental conditions, deterioration, etc. 

It is worth mentioning that once a well-trained ANN is developed, 

it can obtain fast and reliable predictions. Furthermore, by 

introducing plasticity (the ability to always learn) into the ANN, 
new information in the network’s long-term memory can be 

assimilated. Henceforth, the ANN capabilities are enhanced. 

Application 

A 28 km road length with two lanes was selected as the case study. 

Based on available information, the parameters listed in Table 1 

were selected to create the database for the pavement structural 

analysis. Figure 1 shows the main parameters related to deflection 

testing that were considered in this study. The applied loads vary 

between 4 and 7 tons, and seven sensors located at 0.0 m, 0.3 m, 

0.45 m, 0.6 m, 0.9 m, 1.2 m and 1.8 m from the loading point were 

used for the deflection basin measurements. 

Table 1. General database 

Data Type Parameters 

Pavement system 
Measured layer thicknesses 

Layer materials (Poisson ratio) 

Deflection testing: 

On right lane: 278 tests 

On left lane: 280 tests 

Applied load, Q (ton)  

Measured deflections  

Sensors position 

Stiffness parameters Layer moduli via layer-elasticity theory 

Structural defects  
Rutting, cracking, patching, potholes, 

shoving 

As illustrated in Figure 3 and in Table 2, there are two types of 
pavement systems within the 28 km road stretch: a three-layer 

system (from abscissa 119 to 127), where the stiffness of the layers 

decreases with depth, and a four-layer system (elsewhere along 

the road) having a subbase stiffer than the granular base. 

 
Figure 3. Structural pavement systems along the studied road 

 

Table 2. Ranges of layer thicknesses (m) 

Layer Three-layer system Four-layer system 

Asphalt layer 

0.15 – 0.20 

(asph. concrete+asph. 

base) 

0.06 – 0.10 

 (asp. concrete) 

Granular base 0.0 0.11 – 0.13 

Stabilized subbase 0. 29 - 0.31 

Lower layers 3.00 
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The analysis procedure advanced in this study can be summarized 

in three stages. The first one is related to the ANN design and 

training process, which uses the available database on the road 

right lane. In the second stage, the forecasting capabilities are 

assessed using different data from that used for training the ANN 

system (road left lane). The final stage is an additional verification 

of the proposed model, performed by comparing the predicted 

layer moduli values with the actual condition of the pavement.  

First stage: The ANN design and training process 

For the purposes of designing an ANN to predict layer moduli, the 

first task was to identify significant variables in the input-output 

data sets. Given the large number of variables that affect pavement 

behavior, sensitivity analyses were conducted to identify the most 

influential variables. 

Twelve variables were identified as the input set to account for 

most of pavement response during the loading deflection test: the 

load level (Q), layer thicknesses (h1, h2, h3, h4) and the surface 

pavement deflections in each test (D1, D2, D3, D4, D5, D6, D7). 

Typical values of Poisson’s ratio were assumed for each layer 

material (0.3, 0.4, 0.35 and 0.45 for the asphalt layer, granular base, 

stabilized subbase and lower layer, respectively). 

Regarding the output, the moduli calculated by Orozco (2005) via 

layered-elasticity theory (ELET) from the same deflection testing 

database were considered as an initial approximation for Etarget 

in the ANN training process. The resulting ANN configuration 

was the three-layer feed-forward model illustrated in Figure 4. 

 
Figure 4. ANN-based back-calculation model 

To define the ANN architecture and the learning rule that led to 
better results, a sensitivity study was performed, considering 18 

combinations, as shown in Table 3; supervised and graded learning 

were used in the training stages. 

Table 3. Sensitivity analysis options 

Architectures Learning Algorithm 

Multilayer Normal Feed Forward-MLN 
Back Propagation  (BPN) 

Quick Propagation  (QP) 

Jacob’s Enhanced BPN (JE) 

Simulated Annealing (SA) 

 Solis and Wets Random Optimization 

(SW) 

Powell’s Method (PM) 

Multilayer Full-Feed Forward-MLF 

Jordan Recurrent-JR 

In this first stage, the two processes illustrated schematically in 
Figure 5 were developed: the ANN design and the deflection basin 

verification. The sensitivity study enabled the definition of the 

mean standard deviation as pre-processing, dot product as the in-

put function, and sigmoid as the transfer function. 

 
Figure 5. ANN design and deflection-basin verification processes 

The approximation between the target moduli Etarget and the 

computed EANN was evaluated using the error criterion MAE; the 

decreasing trend in the error was checked every 500 iterations. If 

this trend was not observed, the new Etarget values for the fol-
lowing considered iterations were the last iteration EANN values 

(see the first step in Figure 5). This greatly enhances the possibility 

of meeting the adopted convergence criterion. 

As has been reported by Mehta and Roque (2003), different com-

binations of layer moduli could lead to similar errors. To assist in 

selecting the more adequate set of moduli, a deflection basin ver-

ification process was conducted via ANNs. 

The computed moduli EANN obtained for each option were used 

as inputs, and measured deflection basins were considered as tar-

get outputs (the second step in Figure 5). The option that yielded 

the smallest error between the predicted and field-measured de-

flection basins and better regression analysis indicators was se-

lected as the optimal solution. 

The forecasting reliability of the ANN options was judged on the 

basis of how well their computations matched the field-measured 

deflection basins. The matching accuracy was defined based on the 

similarity to a perfect match, which is achieved when a linear re-

gression exists between the computed and measured deflections 

such that the slope of the trend line (b) is equal to one, intercept 

value (a) is equal to zero and determination coefficient (r2) is equal 

to one. These parameters were evaluated for the 18 options, but 

only the top five are included in Table 4. 

Table 4. Summary of best results – deflection verification process 

Architecture Learning algorithm b a r2 

Multilayer Normal Feed 

Forward 
Quick Propagation 0.984 0.001 0.942 

Jordan Recurrent Back Propagation 1.018 0.004 0.941 

Jordan Recurrent Jacob’s Enhanced 1.019 0.001 0.942 

Jordan Recurrent Simulated Annealing 0.978 0.006 0.980 

Multilayer Full-Feed 

Forward 
Powell’s Method 0.972 0.009 0.951 
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Although all five options are reliable, in this study, the Multilayer 
Normal Feed Forward (MLN) architecture and the Quick Propa-

gation (QP) learning algorithm were selected because the meas-

ured and computed deflections are closer to a perfect match. Fur-

thermore, an MAE of 2% was obtained after 485 iterations in one 

minute, demonstrating the computational efficiency of this ANN. 

Table 5 shows the ranges of the layer moduli initially used for 

training the network, ELET, and those finally estimated through 

the optimum ANN; seed moduli suggested by the ASTM (2003) 

and the values reported in the NCHRP program (ARA Inc. and 

ERES, 2004) are also included as a reference. It is observed that 

most of the predicted modules are reasonable for each layer of 

pavement studied here. Furthermore, the ELET values vary in 

wider ranges than do the EANN values in all pavement layers. Low 
or atypical values were occasionally obtained. To identify possible 

causes, it was deemed important to evaluate the results along with 

the actual pavement’s surface conditions. 

Table 5. Layer moduli (MPa) 

Layer 

Initial 

values 

-ELET- 

Estimated 

values 

-EANN- 

ASTM 
NCHRP 

Low High 

Asphalt Concrete  640 - 8000 1000-8000 3500 ≤ 2100 ≥ 10500 

Granular Base 30 - 620 70 - 570 200 ≤ 100 ≥ 280 

Stabilized Subbase 50 - 800 150 - 800 350 ≤ 350 ≥ 700 

Lower Layers 30 - 490 50 - 470 50 - 140 ≤  20 ≥ 140 

It is worth noting that the above results are only conclusive 
regarding the network training and testing stages. However, its 

capability of forecasting reasonable outputs for new data that 

include information off the range of values used in the training and 

testing stages is not assured. Thus, in the next paragraph, the 

generalization capability of this ANN is assessed. 

Second step: ANN generalization capability 

A generalization capability assessment of the optimum ANN was 

performed using a data set different from that used to design and 

train the network. The available database compiled using measure-

ments of the left lane of the road was introduced as an input in 

the test set of the optimum ANN. The layer moduli were then 

computed for these new conditions. As observed in Figure 6, the 

estimated and measured deflections are in good agreement. 

 
Figure 6. Measured and computed deflections - left lane 

Third step: Final verification  

Further model verification was performed by comparing the actual 

condition on the left lane of the road with the predicted layer 

moduli values. The layer material variability and the structural 

defects throughout the left lane were considered to this end. 

Figure 7 shows the modulus estimations for each layer along the 

left lane of the analyzed road. The spatial variation of the modulus 

shows that the asphalt concrete moduli estimated along the three-

layer system (from abscissa 119 to 127) are the lowest in the road, 

which could be due to the lower stiffness of the asphalt base that 

is part of the asphalt layer (see Fig. 3). It can also be observed that 

the moduli estimated for the stabilized subbase layer are higher 

than those of the granular base along the four-layer system. 

 
Figure 7. Estimated layer moduli along the left lane 

To identify the possible causes of the low or atypical values of the 
obtained layer moduli, the actual pavement’s surface condition was 

included in the analysis. Figure 8 shows the peak deflections and 

the structural distresses of the pavement along the left lane. 

 
Figure 8. Pavement condition for the left lane 

From a close inspection of Figures 7 and 8, it is reasonable to con-
clude that the estimated moduli values are affected by the surface 

condition: lower values are obtained either where deflections and 

rutting are higher or near to areas with more severe distresses. 

Accordingly, lower moduli imply deteriorated zones that deserve 

special attention by maintenance programs. 

Conclusions 

In this paper, the performance of ANN modeling in estimating the 

layer moduli of pavements was assessed in terms of forecasting 

reliability and efficiency. The developed three-step methodology 

enabled both the design and validation of the ANN model. 
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Based on the sensitivity analyses, a three-layer feed-forward ANN 

model with an MLN architecture and a QP learning algorithm was 

defined as optimum. For the case considered here, the EANN pre-

dictions fall within a narrower band than do the layer moduli esti-

mated via multilayer elastic theory. The EANN computations were 

obtained in less than 1 minute using a personal computer, showing 

the computational efficiency of the designed ANN. 

The deflection-basin verification process was most helpful for se-

lecting the best solution among all the considered solutions. The 

forecasting capabilities were assessed by comparing the model 

predictions to the field measurements. The optimum ANN 

showed very good agreement: the values of the trend line slope 

and the coefficient of determination were close to one, and the 

intercept was nearly zero, with a 2% error (MAE). 

The ANN generalization capability was such that the predicted 

layer moduli on the left lane determined via the optimum ANN 

very closely reproduce the pavement field-measured deflection 

basins.  

Although most of the predicted moduli appear to be reasonable, 

some low values were obtained. By comparing these values with 

actual pavement conditions, it was determined that the pavement 

features are well mapped by the ANN model. Stabilized subbase-

layer moduli are higher than those of the granular base. The lowest 

values of the asphalt layer moduli were obtained along the three-

layer system, due to a combination of high levels of rutting and 

deflections, the presence of structural distresses, and likely, the 

presence of an asphalt base as a constituent of the asphalt layer. 

Based on the high quality of the obtained results, it seems reason-

able to conclude that the proposed ANN model can be confidently 

employed for the prediction of layer moduli of flexible pavements. 
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