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ABSTRACT  

Association rule mining is a very popular data mining technique. Rules in this technique are often used to identify and represent de-

pendencies between attributes in databases. Specifically, fuzzy association rules are rules that use the concepts of fuzzy sets and can 

be considered as a special case of fuzzy predicates. Many quality measures have been defined for fuzzy association rules, but all 

consider a specific structure: antecedent and consequence. In the case of fuzzy predicates in the normal form (i.e., conjunctive or 

disjunctive), it is necessary to define different quality measures that do not consider the structure as an antecedent or a consequence. 

The only available measure for this scenario is the fuzzy predicate truth value (FPTV), which has serious limitations. The evaluation of 

fuzzy predicates in the normal form through appropriate quality measures has not yet been clearly defined in the literature. Thus, we 

propose several quality measures specifically for fuzzy predicates in the conjunctive (CNF) and disjunctive (DNF) normal forms. Experi-

mental studies illustrate the use of the proposed measures and allow some general conclusions about each measure. 

Keywords: data mining, fuzzy predicate, quality measures, conjunctive and disjunctive normal forms. 

 

RESUMEN 

La extracción de las reglas de asociación es una técnica de minería de datos muy popular, las cuales son utilizadas a menudo para 

identificar y representar dependencias entre atributos en bases de datos. Específicamente, las reglas de asociación difusas utilizan 

conceptos de conjuntos difusos y pueden ser vistas como un caso especial de predicados difusos. Muchas medidas de calidad han 

sido definidas para reglas de asociación difusa, pero todas consideran la estructura específica de reglas: antecedente y conse-

cuente.  

En el caso general de predicados difusos en forma normal (conjuntiva o disyuntiva), es necesario definir diferentes medidas de cali-

dad que no estén  en función de antecedente y consecuente, puesto que la única medida disponible para ello, es el valor de verdad 

para predicados difusos (FPTV) y tiene serias limitaciones. La evaluación de un predicado difuso en forma normal, a través de medidas 

adecuadas de calidad no ha sido todavía claramente definida por otros autores. Por esa razón, en este trabajo se proponen varias 

medidas de calidad para los predicados difusos, en formas normal conjuntiva o disyuntiva. Los experimentos demuestran el uso que 

se le puede dar a las métricas propuestas y permiten llegar a conclusiones generales de cada una de ellas. 

Palabras clave: minería de datos, predicados difusos, medidas de calidad, forma normal conjuntiva y disyuntiva. 
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Introduction1234 
Knowledge discovery, whose objective is to obtain useful 
knowledge from data, is recognized as a basic necessity. The the-
ory of fuzzy sets can certainly aid in the data-mining process to 
reach this goal. Fuzzy sets handle numerical values better than ex-
isting methods because fuzzy sets soften the effect of sharp bound-
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aries (Zadeh, 1965; Fayyad, Piatetsky-Shapiro & Smyth, 1996; Du-
arte, 1999; Han & Kamber, 2006; Venugopal, Srinivasa & Patnaik, 
2009). 

Many techniques used in datasets have their corresponding “fuzzy 
version.” For instance, fuzzy association rules described by the 
natural language are well suited for human comprehension and 
help to increase the flexibility for supporting users in making deci-
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sions (Delgado, Marín, Sánchez & Vila, 2003). Fuzzy clustering gen-
erally provides a more suitable partition of a set of objects than 
does classical clustering (Han & Kamber, 2006). 

The discovery of fuzzy predicates in conjunctive (CNF) and dis-
junctive normal form (DNF) provides a convenient and effective 
general way to identify and represent certain dependencies among 
items in fuzzy transactions (Ceruto, Lapeira, Rosete & Espin, 
2013). We believe that fuzzy predicates in CNF and DNF can be 
generalized somewhat because they produce patterns that the 
classic methods cannot obtain; we can also use it to generate an 

equivalent pattern. For instance, in classic logic ¬A ∨ B is equiva-
lent to a conditional rule A�B (Bruno, 1998; Trillas, 2009).   

It is worth clarifying that some logical expressions that are equiv-
alent in classical logic may have different truth values in fuzzy logic. 
In addition, the truth value of a formula depends on the type of 
fuzzy operator used. This implies that two formulas that are equiv-
alent in classical logic are only approximately equivalent (i.e., only 
to a certain degree) in fuzzy logic. For example, it has been stated 
that the Axioms of Kleene Algebra are more true than false in 
Compensatory Fuzzy Logic (Espin, Fernandez, Mazcorro, Marx-
Gómez & Lecich, 2006).  

Fuzzy predicate mining is a task that can be faced as an optimiza-
tion problem. You can combine fuzzy set concepts and higher-level 
procedures (i.e., metaheuristics) to find and generate automati-
cally good fuzzy predicates. This learning process is not supervised. 

All techniques require a suitable measure to evaluate the model 
correctly. When mining fuzzy predicates, only one quality measure 
is of value: the Fuzzy Predicate Truth Value (FPTV) (Ceruto, 
Lapeira, Rosete & Espin, 2013). Although the FPTV is not robust 
to outliers, it penalizes the presence of zeros strongly (i.e., veto 
criteria). This property introduces the necessary capacity of re-
striction in compensation when certain goals are not fully satisfied 
(Espin, Fernandez, Mazcorro, Marx-Gómez & Lecich, 2006). The 
use of a universal quantifier also restricts the final output, which 
will be determined by the type of fuzzy logic operator selected. As 
a result, we can conclude that other formulas that can be used to 
evaluate the quality of the predicates must be determined.  

Measuring the quality of the discovered patterns is an active and 
important area of data mining research. For example, measures 
for association rules such as confidence, lift and certainty factor 
have been used extensively (Guillet & Hamilton, 2007; Chandra-
veer, Sana & Zaid, 2013). However, these measures are defined in 
terms of the antecedent and consequence (i.e., the structure of 
the model). Some of the measures that have been proposed for 
association rules, such as “support,” may be used as a basic inspi-
ration for measuring the quality of fuzzy predicates; in this paper, 
we focus on the limitations of some of the association rule 
measures and how they can be adapted to fuzzy predicates. Then, 
we propose several new quality measures for fuzzy predicates un-
der a different knowledge representation model. 

Section 2 addresses the basic definitions of the association rules 
and support measure. The second important pillar in this paper is 
the explanation of the primary concepts of fuzzy predicates in 
CNF and DNF (section 3). In section 4, we present the proposed 
quality measures for fuzzy predicates in CNF and DNF. Section 5 
shows and discusses the results that are obtained using the pro-
posed measures with real-world datasets. Section 6 presents some 
concluding remarks. 

 

Association rules 
An association rule is an expression of the form A�B, where 'A' 
and 'B' are different sets of attributes. This rule can be evaluated 
by a number of quality measures, but “support” is one of the best-
known measures that is not defined in terms of the antecedent 
and consequence (Agrawal & Srikant, 1994). 

Support is the percentage of transactions that contain both A 
and B: 

����	(� → �) = 	 |� ∩ �|||  (1) 

 

|� ∩ �| = �conj 	��(�), �(�)�
�∈�

 (2) 

In (1), the numerator is the number of transactions that contain 
the itemset (A and B), and X is the size (i.e., number of transac-
tions) of the database. Its values are in the range [0, 1]. If the an-
tecedent and consequence are not present in any transaction, then 
it is equal to 0. If they occur in all transactions, its value is equal to 
1. 

An itemset with a support greater than the minimum support 
threshold is called a frequent or large itemset. 

The disadvantage of support arises in the rare item problem. Items 
that occur very infrequently in the data set are deleted, although 
they would still produce interesting and potentially valuable rules 
(Sheikh & Tanveer, 2004). 

If T = {t1, t2, ..., tn} is the database, and ti represents one tuple in 
T, C = {c1, c2, ..., cm} can represent all attributes of the database. 
Table 1 shows a sample database with quantitative attributes (e.g., 
age and income). Thus, T = {t1, t2, t3, t4, t5, t6, t7, t8 } and C = {Age, 
Income}. For example, if the value of Income in the fourth record 
is required, t4 [c2] can be used to get the value 3000. 

Table I. Sample database 

 c1 = Age c2 = Income 

t1 26 400 

t2 29 950 

t3 26 900 

t4 40 3000 

t5 23 2300 

t6 64 1500 

t7 35 1000 

t8 54 2000 

The theory of fuzzy sets can certainly help data mining reach this 
goal. The adjective "fuzzy" seems to be very popular and frequently 
used in contemporary studies concerning the logical and set-the-
oretical foundations of mathematics. Using the fuzzy set concept, 
the discovered patterns are more understandable to human com-
prehension. Fuzzy sets manage values more efficiently than existing 
methods because fuzzy sets soften the effect of sharp boundaries 
(Zadeh, 1965; Zadeh, 1975; Fayyad, Piatetsky-Shapiro & Smyth, 
1996; Duarte, 1999; Han & Kamber, 2006; Venugopal, Srinivasa & 
Patnaik, 2009). 

We can define a set of meaningful linguistic labels represented by 
fuzzy sets on the domain of the quantitative attributes in Table 1; 
these are used as a new domain (Galindo, Urrutia & Piattini, 2006).  
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Several fuzzy sets F= {f1, f2,..., fk} may be associated by attribute; 
for instance, if each attribute has three fuzzy sets, FAge may equal 
{f1=young, f2=middle-age, f3=old}, and FIncome may equal {f4=low, 
f5=medium, f6=high}. 

This process is called fuzzification and may be performed using 
many of the available membership functions; for example, triangle, 
trapezoidal or left and right shoulder functions are commonly used 
because they yield good results, and their computation is simple. 
Other authors have proposed the use of other shapes including 
Sigmoid and Gaussian shapes (Cox, 1994; Mitsuishi, Endou & 
Shidama, 2000; Galindo, Urrutia & Piattini, 2006). Table 2 presents 
what could occur if the quantitative attributes (Table 1) were re-
placed by fuzzy attributes.  

Table 2. Sample fuzzy database 

 f1 f2 f3 f4 f5 f6 

t1 0.6 0.4 0 1 0 0 

t2 0.4 0.6 0 0.1 0.9 0 

t3 0.6 0.4 0 0.2 0.8 0 

t4 0 1 0 0 0 1 

t5 0.8 0.2 0 0 0.4 0.6 

t6 0 0.6 0.4 0 1 0 

t7 0 1 0 0 1 0 

t8 0 0.4 0.6 0 1 0 

The standard approach to generalizing the quality measures for 
fuzzy association rules (Delgado, Marín, Sánchez & Vila, 2003) is 
to replace the set-theoretic operations, namely the Cartesian 
product and cardinality, with corresponding fuzzy set-theoretic 
operations: negation, t-norm and t-conorm (Dubois, Hüllermeier 
& Prade, 2003). These definitions establish families of measures, 
depending of the evaluation method and the quantifier of choice 
(Mitsuishi, Endou & Shidama, 2000).  

Table 3 illustrates the computation of support for different exam-
ples of fuzzy association rules based on the database in Table 2 
using the definitions of Zadeh (1965) (i.e., minimum for conjunc-
tion and maximum for disjunction).  

Table 3. Support for different sample rules 

Rule Support 

young � medium 0.17 

middle-age � high 0.15 

old  � low 0 

Fuzzy predicates in CNF and DNF 
Predicates are commonly used to refer to the properties of ob-
jects by defining the set of all objects that have some property in 
common. In general, a predicate is a statement that may be true 
or false depending on the values of its variables. However, in fuzzy 
logic, the strict true/false valuation of the predicate is replaced by 
a quantity interpreted as the degree of truth (Trillas, 2009). 

A fuzzy predicate may be a tree where each internal node may be 
a fuzzy operator (e.g., conjunction, disjunction, and negation), and 
each leaf is a fuzzy variable of the database (Trillas, 2009). Each 
fuzzy variable can be associated with adverbs called hedges, which 
are terms that modify the shape of fuzzy sets. Hedges have two 
primary behaviors: reinforcement, such as "very", or weakening, 
such as "little" (Bouchon-Meunier & Yao, 1992). 

A formula is in conjunctive normal form (CNF) if it is a conjunction 
of clauses, where a clause is a disjunction of literals; otherwise put, 
it is an AND of ORs. A formula is in disjunctive normal form 

(DNF) if it is a disjunction of clauses, where a clause is a conjunc-
tion of literals. As in the DNF, the only propositional connectives 
that a formula in CNF can contain are AND, OR, and NOT. The 
NOT operator can only be used as part of a literal, which indicates 
that it can only precede a propositional variable or a predicate 
symbol. 

We believe that fuzzy predicates in CNF and DNF have some 
grade of generality because they yield patterns that classic meth-
ods cannot obtain; also, equivalent patterns can be generated. This 
transformation is based on the rules of logical equivalences 
(Bruno, 1998) (Trillas, 2009). Even when these equivalences are 
more true than false in multivalued logic, fuzzy predicates in CNF 
and DNF is a good pattern representation to generalize 
knowledge.  

These predicates are sometimes created by a human expert or, in 
the best circumstances, by the mutual consent of a group of them. 
However, they can also be created by algorithms that “learn” 
when “processing” real data. Predicate mining is a task that can be 
examined as an optimization problem and metaheuristics can be 
used to solve it. 

Each fuzzy predicate in CNF or DNF can code by a vector that 
represents the attributes in different clauses and values. You can 
use positional integer encoding, where each value has a translation 
according to the following scale (see Table 4). In the predicate, 
variables can appear more than once (i.e., they may be included in 
two or more clauses). 

Table 4. Scale 

Value Code Meaning Formula Result 

F=0.6 

0 absence - - 

1 F F 0.6 

2 not F 1- F 0.4 

3 very F F2 0.36 

4 extremely F F3 0.21 

5 slightly F F1/2 0.77 

An example of one predicate and its corresponding code solution 
is shown in Table 5. 

Table 5. Predicate example 

Predicate (middle-age AND  NOT high)   OR   (very medium) 

Clauses middle-age AND NOT high very medium 

Variables f1 f2 f3 f4 f5 f6 f1 f2 f3 f4 f5 f6 

Code 0 1 0 0 0 2 0 0 0 0 3 0 

Formula - f2 - - - 1- f6 - - - - (f5)2 - 

For each predicate, the unique quality measure that is known is 
the FPTV (Ceruto, Rosete & Espin, 2010), which depends on the 
number of clauses (Z), variables (Y) and records (X) of the data 
set. The fuzzy value of the FPTV is in range [0, 1]: 

��	(⋀	����� ) = 	�!"#	(��($�%)&, . . , ��($�%)() (3) 
 ��	(∨ 	����� ) = 	*+�#	(��($�%)&, . . , ��($�%)() (4) 
 ��,	 = �!"#	((��(∨ ����� )&, . . , (��(∨ ����� )-)	 (5) 
 ��.	 = *+�#	((��(∧ ����� )&, . . , (��(∧ ����� )-) (6) 
 

01�� = 	 2∀���,								+4	�% *+��5 	+�	+"	,60	∀���.							+4	�% *+��5 	+�	+"	.60 (7) 
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The procedure to compute FPTV is summarized in the next pseu-
docode. 

BEGIN 
 For each record in the database (X) 
        For each clause in the predicate (Z) 
          For each attribute of the clause (Y) 
              Calculate the real value (TVvar) of all attributes  
               involved in the predicate (use Table 4) 
 
          Calculate the TV of the clauses (TV∧clause or  
          TV∨clause) depending on the operator (equation 3-4) 
     Calculate the TV of the predicate in the record (TVC or  
     TVF) according to the normal form (equation 5-6). 
Calculate the final value using the universal quantifier (conjunction) 
in all rows (equation 7) 

END  

The FPTV is computed using fuzzy logic operators. Fuzzy logic 
does not give a unique definition of the classic operations such as 
union or intersection. Different operators that can be used imply 
differences in the truth value that will be obtained. Zadeh opera-
tors (i.e., min-max) are insensitive (Zadeh, 1965). In this case, the 
change of one argument may not change the value of the result 

(e.g., 0.5 ∧ 0.5 = 0.5; 0.5 ∧ 0.8 = 0.5). Probability operators (Mi-
zumoto, 1981a) are not idempotent; the conjunction of two vari-
ables with the same values does not result in the same number 

(0.5 ∧ 0.5 = 0.25). Compensatory fuzzy logic is sensitive and idem-
potent (Espin, Fernandez, Mazcorro, Marx-Gómez & Lecich, 2006) 
because associativity is excluded; examples of this include the Ge-
ometric Mean and their dual (Mizumoto, 1989).  

To illustrate the computation of FPTV, we show a simple example 
based on the database in Table 2, the predicate in Table 5 (i.e., 
DNF with two clauses) and the Zadeh fuzzy operator (i.e., mini-
mum and maximum) using the pseudocode described above. In 
Table 6, the first three columns represent the TV of all variables. 
The fourth denotes the result of computing the TV of the first 
clause (i.e., middle-age AND NOT high) using a minimum to cre-
ate the conjunction between the first and second column. The TV 
(clause 2) has the same value of TV (very medium). 

Table 6. Evaluation step by step 

TV 
(f2) 

TV 
(f6) 

TV 
(f5) 

TV 
(∧∧∧∧ clause1) 

TVD (clause 1 

∨ ∨ ∨ ∨ clause 2) 
∀7	89:(7) 

0.4 1 0 0.4 0.4 

0 

0.6 1 0.81 0.6 0.81 

0.4 1 0.64 0.4 0.64 

1 0 0 0 0 

0.2 0.4 0.16 0.2 0.2 

0.6 1 1 0.6 1 

1 1 1 1 1 

0.4 1 1 0.4 1 

As shown in this example, the FPTV of this predicate is 0 (i.e., 
conjunction of the values obtained in TVD) because there is a zero 
in the fourth row. Veto criteria introduce this hard restriction 
when certain goals are not satisfied (Espin, Fernandez, Mazcorro, 
Marx-Gómez & Lecich, 2006). This record is only an outlier; in 
general, the predicate functions well in this database. If it happens 
during the search, the predicate obtained would be wrongly dis-
carded. 

Conversely, it always uses the universal quantifier (i.e., conjunction 
of all results). This operator tends to restrict the output that will 

be determined by the type of fuzzy logic operator that is selected. 
FPTV will only return a high true value when all records have 
higher values. 

For all of the reasons mentioned before, it is important to have 
others measures to evaluate the quality of fuzzy predicates in nor-
mal form to guide the search.  

New quality measures of fuzzy predicates 
in CNF or DNF 
The first measure proposed is the Fuzzy Predicate Support (FPS). 
In this case, the numerator is the sum of the truth values of the 
predicate in each tuple without applying the universal quantifier in 
each transaction divided by the absolute number of transactions. 
FPS can be interpreted as the average support of the predicate: 

FPS =
>?
@∑ ��,	�∈�||∑ ��.	�∈�||

		 If the predicate is in CNF 

(8) 

If the predicate is in DNF 

The second measure is the Fuzzy Predicate Binary Support 
(FPBS). FPBS allows the determination of which percentage of rec-
ords in the databases has a truth value below the threshold. De-
pending of the threshold selected, if the value of FPBS is low, then 
the predicate is not good: 

FPBS = 	∑ FPBTV�∈�|X|  (9) 

In this case, a threshold is used to calculate the Fuzzy Predicate 
Binary Truth Value (FPBTV) in each record. FPBTV can be con-
sidered alpha-cut (i.e., a subset of elements with membership 
grades of at least alpha). 

Table 7 shows the computation of FPS and FPBS following the pre-
vious example. The selected threshold was 0.4, and all values 
greater than or equal to the threshold were set to 1. 

Table 7. computation of FPS and FPBS 

TVD FPBTV FPS FPBS 

0.4 1 

0.55 0.75 

0.81 1 

0.64 1 

0 0 

0.2 0 

1 1 

1 1 

1 1 

The other proposals are associated with measures of central ten-
dency. The mean or average is affected by the asymmetry of the 
data distribution and the presence of "outliers." For these reasons, 
average pruning, a technique in machine learning that reduces the 
size of the instances by removing sections that may be based on 
noisy or mistaken data, is selected for use (Han & Kamber, 2006). 
To calculate it, the data are first sorted in ascending order, and 
then a certain percentage of data in each end of the distribution is 
removed. 

We propose three new measures (see Table 8):  

• Fuzzy Predicate Central Pruning Average (FPCPA): remove 
25% of the low extremes and 25% of the high extremes, and 
create the subset P: 
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FPCPA = ∑ TV	(x)�∈I|P| 												1 ⊂  (10) 

This measure may be interpreted as the average truth 
value of the transaction with median truth values; it 
yields a version of the Fuzzy Predicate Support (FPS) that 
is less sensible to the extreme truth values in the trans-
actions. 

• Fuzzy Predicate Low Pruning Average (FPLPA):  remove 
50% of the lower values and create the subset L.: 

FPLPA = ∑ TV	(x)�∈L|L| 						M ⊂ , M ≠ 1 (11) 

This measure may be interpreted as the average truth 
value of the transaction with high truth values; it yields 
an optimistic version of the FPS. 

• Fuzzy Predicate High Average Pruning (FPHPA): remove 
50% of the higher values and create the subset H: 

FPHPA = ∑ TV	(x)�∈P|H| 							Q ⊂ , Q ≠ M (12) 

This measure may be interpreted as the average truth 
value of the transaction with low truth values; it yields a 
pessimistic version of the FPS. 

Table 8. Computation of average measures 

Ranking X Subset 
P 

Subset 
L 

Subset 
H 

0   0 

0.2   0.2 

0.4 0.4  0.4 

0.64 0.64  0.64 

0.81 0.81 0.81  

1 1 1  

1  1  

1  1  

 FPCPA=0,71 FPLPA=0,95 FPHPA =0,31 

In addition, we propose a measure of comprehensibility, which at-
tempts to quantify how easy it can be to understand the predicate. 
The generated predicates may have a large number of attributes, 
making them difficult to understand. In the cases of association 
rules, there have been some measures to manage this subject by 
evaluating the number of variables that are included in the rule 
(Martín, Rosete, Alcala-Fdez & Herrera, 2013). The same idea may 
be applied to fuzzy predicates. 

The Fuzzy Predicate Comprehensibility (FPC) is defined as: 

FPC = 1Y							 (13) 

 

In equation 13, Y is the number of variables involved in the predi-
cate. This measure may be interpreted as the inverse of the num-
ber of variables that are used in the predicate. As shown, this 
measure does not depend on the number of fuzzy variables in the 
databases. The value of FPC in the previous example is 0.33.  

The fuzzy value of all measures proposed in this section is in the 
range [0, 1], where the value 1 indicates the best possible value 
(i.e., the given knowledge is true in all database); if the value drops 
to 0, the fuzzy value is more false than true. 

The last measure proposed is the Quantity of Zeros (QZ) in the 
databases. This measure helps to determine if the value of FTPV is 
accurate. If the value of QZ is low, while the other measures have 
a high true value, then the value in question is likely an outlier, and 
the predicate then provides relevant knowledge. 

Experiments  
This section illustrates how the proposed measures can be used 
to evaluate the quality of fuzzy predicates in normal form. Experi-
ments were conducted with real-world datasets available in UC 
Irvine Machine Learning Repository (http://archive.ics.uci.edu/ 
ml/). The algorithm used in this experiment to discover fuzzy pred-
icates in CNF or DNF is called FuzzyPred, which was proposed by 
Ceruto, Rosete & Espin (2010); Rosete, Ceruto, Espin & Marx-
Gómez (2011); and Ceruto, Lapeira, Rosete & Espin (2013). 

Table 9 summarizes the primary characteristics of the datasets, 
which uses the following labels: D = databases; A = total number 
of attributes; LL = linguistic labels used; F = parameters of fuzzi-
fication; R = quantity of records. We extracted three quantitative 
attributes randomly from each database. The membership func-
tions of each attribute were defined primarily by a uniform parti-
tion with trapezoidal membership functions. The linguistic label for 
each variable selected was also selected randomly. 

We perform 30 runs, each with a maximum of 500 iterations, using 
several metaheuristics to obtain predicates with high truth values 
(FPTV) using FuzzyPred. The FPTV was computed using the Zadeh 
Operator (Min-Max). 

Table 10. Characteristics of the datasets 

D A LL F R 

Balance Scale (BS) 4 

LW.Little 1,4 Sigmoidal 

625 LD.Little 1,4 Sigmoidal 

RW.High 3,5 Sigmoidal 

Basketball (BA) 5 

AsisstMi.Low .04,.08,.12,.15 

96 Height.Medium .12,.15,.23,.27 

PointsMin.Medium .23,.27,.30,.34 

Quake (Q) 4 

FocalDepth.Little -82,0.0,164,246 

2178 Lattitude.Little -95,-66,-8,20 

Longitude.High -35,36,180,251 

Pollution (P) 16 

Prec.Little 3,10,22,28 

60 Jan.Medium 3, 5, 8, 11 

Educ.Little -0.5,0.9,3.7,5.1 

Solar Flare (SF) 11 

Activity.Little 0.8,1.0,1.4,1.6 

1066 Evolution.High 1.8,2.2,3.0,3.40 

HistComplex.Little 1.4,1.6,2.0,2.2 

Bolts (BO) 8 

Run.Little 1.0,9.8,16.6,24.4 

40 Speed1.High 3.6,4.4,5.3,6.0 

Total.High 18,22,26,30 

Table 10 contains the evaluations of the best three predicates in 
each database using all proposed measures. The first column 
(Fuzzy Predicated Identifier, FPId) corresponds to an identifier 
associated with each predicate in each database. The first part of 
the FPId identifies the corresponding database; for example, BS2 is 
a predicate obtained from the database Balance Scale (BS). The 
selected threshold to compute the measure FPBS was 0.2.  

Because the number of potentially applicable predicates may be 
large, we illustrate one example for each database: 

• BS1: (slightly LD.Little) AND (slightly LW.Little   OR  LD.Lit-
tle) 
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• BA1: slightly AsisstMi.Low OR NOT Height.Medium AND  
(NOT AsisstMi.Low) 

• Q1: (FocalDepth.Little) AND (Longitude.High) 

• P1: NOT Jan.Medium AND Educ.Little 

• SF1: (NOT Evolution.High) AND (NOT Activity.Little)  

• BO1: (NOT Total.High) AND (NOT Run.Little) 

Table 10. Measures extended by rules 

FPId FPTV FPS FPBS FPCPA FPLPA FPHPA FPC QZ 

BS1 .70 .74 1 .75 .79 .69 .33 0 

BS2 .70 .69 1 .71 .74 .65 .25 0 

BS3 .5 .6 1 .61 .63 .58 .25 0 

BA1 .02 .91 .97 0,95 1 0,82 .33 0 

BA2 .02 .87 .97 0,93 1 0,75 .16 0 

BA3 0 .59 .65 .72 .9 .18 .33 88 

Q1 .36 .95 1 .97 1 .90 .5 0 

Q2 .21 .94 .97 .96 1 .89 .25 0 

Q3 .19 .93 .97 .96 1 .87 .16 0 

P1 1 1 1 1 1 1 .25 0 

P2 1 1 1 1 1 1 1 0 

P3 1 1 1 1 1 1 .5 0 

SF1 .5 .80 1 .87 1 .60 .25 0 

SF2 0 .03 .03 .03 .06 0 .25 1028 

SF3 0 .98 .99 .99 1 .97 .33 2 

BO1 .33 .92 .97 .96 1 .84 .5 0 

BO2 .70 .92 1 .95 1 .84 .25 0 

BO3 .5 .89 1 .93 1 .78 .33 0 

Analyzing the results presented in the Table 10, the following facts 
can be stated: 

• If 50% of the highest values are removed (FPHPA), good per-
formance is still shown; the predicate has good coverage in 
the database (database Q). 

• When FPTV is near 1, no other measure is required for good 
performance because other measures would be more re-
laxed than those proposed and would thus not provide any 
new knowledge (database P). 

• When FPTV=0, the veto criteria may be the cause, but an-
other analysis is required to be certain.  

• If the predicate is penalized for every measure (e.g., due to 
the presence of 1028 zeros at 1066 tuples, like SF2), then the 
quality of this predicate is poor.  

• When the other measures have a high true value, then the 
value of interest can be considered an outlier (e.g., the value 
only has two zeros, like in SF3). For example, when the meas-
ure FPLPA is very small, the value of FPTV is not caused by a 
veto of a tuple. This conclusion can be reaffirmed by FPBS, 
depending on the threshold selected. This is a great example 
of a predicate (SF3) that can be lost if only FPTV were con-
sidered. 

This section has shown how the proposed measures can be used 
to understand the meaning of the predicates and the real charac-
teristics of the databases.  

 

 

Conclusions  
The approach outlined in this paper justifies the use of different 
types of quality measures for fuzzy predicates in CNF and DNF. 
We compared fuzzy predicate truth values to seven other 
measures, three of which were statistical. The experiments show 
that when FPTV is near 1, no other measure is required for good 
performance. We suggest that the new measures are a good 
choice in other cases, particularly when FPTV is equal to 0 because 
they can help determine if the veto criteria are important. The 
proposed measures may be used to evaluate fuzzy predicates in 
different contexts independently of the way they are obtained. We 
also intend to use diverse and extensive test data to confirm the 
claims made in this paper. 
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