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ABSTRACT  

Variability is true heterogeneity existing within a population that cannot be reduced or eliminated by more or better determinations. 

Uncertainty represents ignorance about poorly characterized phenomena, but it can be reduced by collecting more data. The aim 

of this paper was to study the impact of the variability and uncertainty of the main variables, i.e., emissions and meteorology, of the 

PM10 concentration caused by a point source located at Malagueño (Córdoba, Argentina). To perform this analysis, a scheme was 

developed using the USEPA Industrial Source Complex model algorithms with a Monte Carlo methodology. Using a simulation with one 

hundred thousand iterations, the concentration distribution was obtained and showed that the uncertainty in wind direction had the 

greatest impact on the estimates. 
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RESUMEN 

La variabilidad es la heterogeneidad real dentro de una población, que no puede ser reducida ni eliminada por más o mejores 

determinaciones.  La incertidumbre representa la ignorancia acerca de un fenómeno pobremente caracterizado, pero que puede 

reducirse mediante la recopilación de más datos.  El objetivo de este trabajo es estimar la concentración de PM10 provocada por 

las emisiones de una fuente puntual ubicada en Malagueño (Córdoba, Argentina), considerando la variabilidad y la incertidumbre 

de la meteorología y las emisiones.  Para abordar este análisis fue desarrollado un método que utiliza los algoritmos del modelo 

Industrial Source Complex de la USEPA junto a la metodología Monte Carlo.  Con cien mil iteraciones se obtuvo la distribución de 

concentraciones, encontrándose que la incertidumbre en la dirección del viento es la de mayor incidencia sobre las estimaciones. 
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Introduction1234 

Atmospheric dispersion models are tools used for predicting the 

fate and transport of air pollutants to assess the impact of emission 

sources on air quality (Monteiro et al., 2008). However, because 

atmospheric dispersion is a stochastic phenomenon, the concen-

tration at a given time and place cannot be predicted accurately 

(Chatwin, 1982). In addition to the inherent uncertainty and vari-

ability of atmospheric processes, there are also errors associated 

with the air quality models and the parameters used (Hanna et al., 

1998). Examples of these are errors associated with the input data, 

the use of surrogate data, the model formulation and its subse-

quent application outside its validity range. While variability is the 

true heterogeneity observed in nature (with temporal, spatial or 

inter-individual differences), uncertainty is defined as the incom-

plete knowledge of a specific magnitude whose "real value" could 
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only be established if there were a perfect measuring device (Cul-

len and Frey, 1999). Variability is a property of the system under 

study and cannot be reduced even by improving the measurement 

system. In contrast, uncertainty is considered to be a property of 

the measurement process and can be minimized, for example, by 

obtaining more data or higher quality data (Dabbberdt and Miller, 

2000).  

Baumann-Stanzer and Stenzel (2011) quantify the effects of mete-

orological uncertainties over hazard distances using different mod-

els for scenarios with chlorine, ammoniac and butane. Hanna et al. 

(2007) analyze the effects of emissions, meteorological and disper-

sion model parameter uncertainties over the annually averaged 

concentrations of benzene and 1,3-butadiene estimated with ISC3 

and AERMOD models with the Monte Carlo method. Yegnan, et 

al. (2002) calculate the uncertainty in ground-level concentrations 

of ISCST calculations using first- and second-order Taylor series. 
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Garcia-Diaz and Gozalvez-Zafrilla (2012) applied uncertainty and 

sensitivity analysis methods over the ISC3 model to analyze the 

influences of wind speed, wind direction, and pollutant emission 

rate to predict the ground-level concentration of sulfur dioxide 

emitted by a power plant. 

The aim of this work was to evaluate the uncertainty in the esti-

mation of the PM10 concentration (particulate matter ≤ 10 mi-

crons), which contributes to the ambient value, associated with a 

point source located 2 km south of Malagueño City (Province of 

Córdoba, Argentina). Here, only one source of uncertainty was 

considered: the dispersion model input data. This type of uncer-

tainty includes systematic errors or biases in the data collection 

process, imprecision in analytical measurements, inference due to 

limited data or an unrepresentative variable, as well as the extrap-

olation or use of surrogate data for the parameters of interest. 

The variables analyzed were meteorological variables (wind speed 

and direction, atmospheric stability and temperature) and emis-

sions variables (exhaust temperature, emission rate, and exhaust 

velocity). The meteorological variables were obtained from the 

National Meteorological Service, and the emission variables were 

estimated by evaluating the specific factors of industrial processes. 

To address this problem, the ISC (Industrial Source Complex) 

(EPA, 1995) dispersion model was used in conjunction with the 

Monte Carlo simulation (MC). 

Materials and Methods 

Dispersion Model 

From the wide variety of mathematical tools available for disper-

sion modeling (lagrangian, Eulerian, grid models, etc.), a Gaussian 

model application, the ISC3 computational model (EPA, 1995a), 

was chosen due to its simplicity and low computational costs. ISC3 

is a steady-state Gaussian Plume Model that was created by the 

U.S. Environmental Protection Agency (EPA) for regulatory pur-

poses. It was the preferred EPA model before being superseded 

by AERMOD (EPA, 2005) in 2006. Thereafter, ISC has been 

known as an "alternative model", despite its current use as a reg-

ulatory model in many parts of the world, as a result of its robust-

ness, adaptability to different situations, availability of required 

data and relative ease-of-use compared to more advanced models. 

Uncertainty propagation: Monte Carlo Simulation 

The steps usually followed in the MC simulation are (i) identify the 

mathematical model that best represents the system under study, 

(ii) describe the probability distributions of the variables of the 

model, (iii) take random samples from different distributions that 

characterize the input data, and (iv) obtain the output value set by 

the mathematical model for each sample. Finally, statistical analysis 

is performed on the output values to support decision making 

(Glasserman, 2003). The minimum number of iterations in a MC 

simulation depends on the quantity of input parameters (and 

whether they are correlated or not) and the confidence required 

in the output probability distribution (Graettinger and Dowding, 

2001). Although other methods exist, the most direct route for 

generating a random sample from a given distribution is the inverse 

method (Raychaudhuri, 2008). This scheme uses the inverse of the 

cumulative distribution function by converting a random number 
between 0 and 1 to another random value of the input distribution. 

As a rule of thumb, the model must be run a sufficient number of 

times to achieve numerical stability in the distribution tail. 

 

Emission source characterization 

The emission source used as the application case belongs to a ce-

ment plant located in Malagueño (Province of Cordoba). Cur-

rently, in this town, there are several activities related to lime min-

ing and its industrialization. These operations emit particulate mat-

ter that can affect human health, primarily the respiratory system 

(WHO, 2005). The particulate source analyzed uses a so-called 

"dry process" for the production of cement. Prior to emission in 

the atmosphere, the combustion gases are filtered using a 

baghouse filter.  

Emission rates are normally determined by continuous or periodic 

emission monitoring using material balances or through emission 

factors derived from similar sources. In our case, there were no 

monitoring data and no access to the process material balance; 
emission factors for PM10 were estimated using the AP-42 guid-

ance (EPA, 1995b). According to Schvarzer and Petelski (2005), 

the production of this plant (its activity rate) in 2005 was 1.5 x 106 

tons of cement, which resulted in an emission rate of 4.75 g/s. 

Although the current production is unknown, it was reported that, 

in 2005, the consumption of cement in Argentina was 9 x 106 tons 

(Farfaro Ruiz, 2010); 11.5 x 106 tons were sold by late 2012. As-

suming a linear relationship exists in recent years between the 

consumption and the production of cement in Argentina (Farfaro 

Ruiz, 2010), it was estimated that the Malagueño plant could be 

producing 1.9 x 106 tons, resulting in an emission rate of 6.02 g/s 

of PM10 in 2012. 

Because knowledge of the behavior of the emission variables was 
limited, probability distributions of a minimum complexity were 

used. Based on this, the values utilized were the upper and lower 

limits with the mean value considered to be the most likely value 

of a triangular distribution. The exhaust velocity and temperature 

of the gases were taken from the description of similar processes 

(Schneider et al. 1996; EQM 2008; EC, 2000; NEPA, 2004), which 

employed ranges to describe these variables. The following table 

summarizes the values used:  

Table1. Parameters used for characterizing emission uncertainties 

Emission 
Variables 

Minimum Average Maximum Uncertainty 

PM10 Emission 

Rate [g/s] 
4.8 5.4 6.0 Triangular 

Exhaust Veloc-

ity [m/s] 
12 17 22 Uniform 

Temperature 

[K] 
380 420 460 Uniform 

Characterization of meteorology 

Meteorological data are the cause of more than half of the uncer-
tainty in predicting hourly concentrations with dispersion models 

(Rao, 2005). In addition to the natural variability of the atmos-

phere, the use of meteorological data taken at non-representative 

locations, the use of inappropriate instruments or non-systematic 

recording and data storage are some of the most influential factors 

affecting a dispersion model’s uncertainty. 

For the present study, 5 years of consecutive data (2007-2011) 

were provided by the National Weather Service (NWS) and meas-

ured at Ambrosio Taravella International Airport (approximately 

20 km from the application zone). These data correspond to wind 

speed, wind direction, ambient temperature and atmospheric sta-

bility. 
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Two of the variables provided by the NWS (i.e., wind speed and 

direction) are characterized by discrete jumps. These discontinui-

ties may be caused by the sensitivity of the measuring instruments, 

the methodology used for the processing of measurements and 

how the data are "packaged" for distribution. This characteristic 

generates uncertainty of the "true" distribution of both variables 

because they are continuous variables. Therefore, the measure-

ment and recording of these variables generated an intra-range 

uncertainty, and consequently, both wind direction and wind 

speed were first characterized as continuous variables and then as 

discrete variables to assess the impact on the estimated PM10 con-

centration. The distributions for wind speed and direction are 

shown in Figures 1 to 4. Additionally, the effect of the interannual 

variation of the meteorology was also taken into account by using 

each of the five years independently to obtain more robust confi-

dence intervals. 

 
Figure 1. Frequency distributions of wind direction, characterized as 
a continuous variable (2007-2011) 

 

 
Figure 2. Frequency distributions of wind direction, characterized as 
a discrete variable (2007-2011) 

 

 
Figure 3. Frequency distributions of wind speed, characterized as a 
continuous variable (2007-2011) 

 

 
Figure 4. Frequency distributions of wind speed, characterized as a 
discrete variable (2007-2011) 

Results 

Variability and uncertainty 

The variability and uncertainty analysis was performed over the 

maximum exposed receptor (MER). To determine the MER, EPA’s 

ISC model was run. The urban area of Malagueño was represented 

by a 36 km2 grid (with the origin at the point source) and a total 

of 931 nodes every 200 meters. Furthermore, the study area was 

considered rural because less than 50% of the area of influence 

(determined by a circle with a 3 km radius that was centered on 

the point source) is industrial, commercial or residential (EPA, 

2005).  

Then, the Monte Carlo method was applied. Two runs per year 

(for a total of 10 runs) were performed: the first run with wind 

speed and wind direction as "continuous" and the second run with 

wind speed and wind direction as "discrete" while maintaining the 

rest of the atmospheric variables (temperature and stability) under 

the same characterizations. Each simulation for the MER was per-

formed with 1x105 iterations. The simulations for each of the 10 

scenarios were constructed using the uncertainty bands shown in 

Figure 5. Specifically, for each scenario, a distribution of concen-

trations (response distribution) was calculated. With these 10 re-

sponse distributions, the confidence limits were estimated. The "y" 

axis is the cumulative frequency, now named the "variability per-

centile”. This naming convention helps to distinguish the empirical 

frequency distributions of the input variables and the output (con-

centration) percentiles estimated with the Monte Carlo method. 

Second, it emphasizes the fact that this axis shows the temporal 

variability on the MER. 

 
Figure 5. Uncertainty bands of PM10 hourly concentrations. The "y" 
axis shows the cumulative frequency bands of the PM10 concentra-
tion ("x" axis). These bands indicate the lower and upper limits (con-
fidence interval 90%) of the speculated "actual" variability 
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As can be observed in fig. 5, the uncertainty bands are wider be-
tween the 30th and 90th percentiles, whereas the bands became 

closer in the lower and higher percentiles. 

 
Figure 6. 90th and 95th percentile box plot of PM10 concentrations. 
Here, the confidence intervals (uncertainty) for the EPA’s suggested 
percentiles are highlighted. Note that this graph has the same axes 
as Figure 5 (and nearly the same information), but it emphasizes 
the percentiles of interest 

According to the EPA (USEPA, 2002), decisions regarding the 
management of health risks should be based on the worst case 

scenario. If sufficient information exists (e.g., to build probability 

distributions), decisions may be based on the tail of the distribu-

tion (e.g., 90th or 95th percentiles). Following EPA suggestions, 

Figure 6 shows the confidence intervals (uncertainty) at the 90th 

and 95th percentiles of concentration’s variability.  

From this figure, it can be argued with 90% confidence (width of 

the confidence interval) that 90% (i.e., 90th percentile) of the PM10 

hourly average concentration did not exceed 3.62 g/m3; 2.97 

mg/m3 is the most likely value for this percentile. In addition, the 

95th percentile of the PM10 average hourly concentration (90% 

confidence) did not exceed the value of 3.94 g/m3, with a median 

value of 3.39 g/m3. 

Sensitivity  

Sensitivity analysis evaluates how the change in a model’s output 

variables can be attributed, qualitatively or quantitatively, to differ-

ent sources of variation in the input data (Saltelli et al., 2008). In 

Figure 7, the Spearman correlation coefficient is shown; it takes 

into account the behavior of the 50th and 95th concentration per-

centiles. The emission variables (PM10 emission rate, exhaust ve-

locity and temperature) are grouped under one label due to their 

joint effect on sensitivity. 

 
Figure 7. Spearman correlation coefficient of the 50th percentile 

The variables with the greatest impact on the median (50th per-

centile) were the meteorological variables, primarily wind speed 

and wind direction, followed by the ambient temperature and sta-

bility. The set of emission variables (emission rate, speed and gas 

temperature) had the lowest impact. 

 
Figure 8. Spearman correlation coefficient of the 95th percentile 

Given the implications for decision making, what is observed in the 
95th percentile (distribution tail) is very important. In this percen-

tile, the wind direction was the variable with the greatest impact. 

In contrast with the 50th percentile, the second most influential 

variable was the uncertainty introduced by the emissions and was, 

to an extent, similar to the wind speed, atmospheric stability and 

ambient temperature with the lowest impacts. 

Conclusions 

The concentration of PM10 (and any other air pollutant concen-

tration) is a random variable that cannot be predicted accurately, 

but it can be described using a probability distribution, which pro-

vides a better understanding of the concentration. A deterministic 

estimate does not provide complete information of the scenario 

because the concentration’s uncertainty is not considered. For 

that reason, ISC3 (and other regulatory models) should be modi-

fied to accept uncertainties as input data and to report estimated 

concentrations along with its uncertainties. This could be used to 

allow decision makers to evaluate the validity of these estimates 

in actual applications. For example, if the lower confidence limit 

value (5th percentile) was above a regulatory standard, then cor-

rective/preventive actions will most likely be needed. If the upper 

confidence limit (95th percentile) was below the standard, then 

corrective/preventive measures will most likely not be required. 

Thus, dispersion modeling supported by an uncertainty analysis 

could provide an important tool for decision making. 

Modeling the dispersion of air pollutants requires a large number 

of inputs, some of which are subjected to large uncertainties. Ad-

ditionally, assumptions often have to be made that tend to over-

estimate the actual concentrations. 

In this work, the variability and uncertainty in PM10 concentration 

modeling was estimated using a point source located in Cordoba 

Province as a case study. Two main sources of uncertainty were 

considered: meteorology and emissions. 

The meteorology data used presented discrete jumps in wind 

speed and wind direction, even though both variables are contin-

uous. Therefore, the propagation of this source of uncertainty was 

analyzed considering (i) continuous probability functions and (ii) 

discrete probability functions.  
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The AP-42 method was used for the estimation of the emission 

factors, which also introduced uncertainties into the calculations; 

however, these uncertainties were not considered here because, 

according to our criteria (uncertainty is a property of the analyst), 

this uncertainty is overlapped by the uncertainty in the activity rate 

given that there are not recent, available data. 

Five years of meteorological data were fitted to several distribu-

tions, and 10 runs (two runs per year) were performed (1x105 

iterations each) with the support of the ISC3 model combined 

with Monte Carlo. Ten PM10 concentration distributions were 

obtained for the maximum exposure receptor. 

By defining wind speed and direction with discrete distributions, it 

was observed that higher concentrations were produced with re-

spect to their counterparts, resulting in very large uncertainty 

bands between the 30th and 90th percentiles. With a 90% confi-

dence, the 90th and 95th percentiles were 3.62 ug/m3 and 3.94 

ug/m3, respectively. 

Through sensitivity analysis, it was determined that the direction 

and emission variables were the most important factors affecting 

the uncertainty in the distribution tail. With these findings, it can 

be concluded that by obtaining higher quality data (wind speed, 

wind direction and emission variables), the uncertainty bands will 

decrease dramatically and thus improve the quality of the estima-

tions made with the ISC3 dispersion model. 

Finally, it is important to note that although there are other me-

teorological and emission variables subject to uncertainties (e.g., 

roughness length, mixing height, precipitation, cloud cover, ceiling 

height, and emission factor), they were not considered here. Oth-

erwise, it would be important to study the implications of these 

factors’ uncertainties in the dispersion modeling. 
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