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ABSTRACT  

Due to the recent increase in the fracturing of low permeability formations, mathematical wellbore data interpretation has become 

important to generate mathematical models to study their pressure behavior and formulate interpretation methodologies for a more 

accurate characterization of tight hydrocarbon-bearing formations. This paper presents an analytical methodology of interpretation 

using the pseudopressure and pseudopressure derivative log-log plot for the characterization of hydraulically fractured (partially or 

fully penetrating) vertical wells completed in bi-zonal gas reservoirs. The methodology provided uses characteristic points and lines 

found on the pseudopressure and pseudopressure derivative plot so that new analytical expressions and correlations are developed 

to estimate half-fracture length, fracture penetration ratio, mobility and storativity ratios, radial permeability, size of the inner zone, well 

drainage area, vertical permeability and skin factor. The new expressions were successfully verified and tested with synthetic examples. 
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RESUMEN 

Dada la creciente demanda en el fracturamiento de formación de baja permeabilidad, la interpretación matemática de datos de 

pozos se ha tornado importante para la generación de modelos matemáticos que estudien el comportamiento de la presión y se 

formulen metodologías para una caracterización más exacta de formaciones apretadas que contienen hidrocarburos. Por ende, en 

este artículo se presenta una metodología para interpretar pruebas de presión en yacimientos gasíferos bi-zonales drenados por un 

pozo vertical hidráulicamente fracturado (penetración parcial o complete) que utiliza el gráfico log-log de pseudopresión y derivada 

de pseudopresión. La metodología dada usa líneas y puntos característicos hallados en dicho gráfico de modo que se desarrollaron 

nuevas expresiones y correlaciones para longitud media de fractura, relación de penetración de la fractura, relaciones de movilidad 

y almacenaje, permeabilidad radial, tamaño de la zona interior, área de drenaje, permeabilidad vertical y factores de daño. Las 

expresiones nuevas se verificaron exitosamente mediante ejemplos sintéticos. 

Palabras clave: Derivada de presión, pozos fracturados, relación de movilidad, relación de almacenaje. 
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Introduction1 2  3 

Hydraulic fracturing has been used extensively over the past 50 

years to stimulate low permeability hydrocarbon wells. Currently, 

fracturing is very active for horizontal wells in gas shale formations. 

The study of the pressure behavior of fractured wells is of great 

importance to the petroleum industry. 

 

Transient tests in wells in low-permeability gas formations were 

conducted by Lee and Holditch (1981) using both conventional 

analysis and type-curve matching. They also presented several field 

examples. The importance of fracturing low permeability gas res-

ervoirs on the recovery factor of gas systems was addressed by 

Lemon, Patel and Dempsey (1974).   
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Raghavan, Uraiet and Thomas (1976) presented an analytical solu-

tion to study the pressure behavior of vertical fractured wells in-

side of an infinite-size reservoir when the well does not penetrate 

the entire pay zone. They provided type curves for the interpre-

tation of pressure tests in such systems for cases on uniform-flux 

and infinite-conductivity fractures. Holditch, Lee and Gist (1983) 

used a conventional analysis for estimating reservoir and fracture 

parameters from pressure buildup tests using conventional tech-

niques by introducing an iterative technique. Rodriguez, Horne, 

and Cinco-Ley (1984) introduced a semi-analytical solution to 

study the transient flow behavior of a partially penetrating finite-

conductivity vertical fracture. For such systems during the early-

time period, the flow behavior is equivalent to a fully penetrating 
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fracture. In this period, either bilinear or linear flow periods are 

observed, depending upon fracture conductivity. 

 

Tiab (1994) and Tiab et al. (1999) presented interpretation tech-

niques for infinite- and finite-conductivity fractures in oil wells 

based on the pressure and pressure derivative plot without using 

type-curve matching. An extension of the former work to gas 

wells was performed by Nunez-Garcia, Tiab and Escobar (2003). 

 

For fractured wells in a composite reservoir, Chu and Shank 

(1993) presented a mathematical model for both finite-conductiv-

ity or uniform-flux vertically fractured wells within a composite 

reservoir. Chen and Raghavan (1995) developed a model for a 

fractured well producing in a composite reservoir. They also ad-

dressed some computational issues during the computation of the 

products In(x)∙Kn(x). Feng et al (2009) proposed a seepage flow 

model for a fractured heterogeneous composite reservoir using 

the equivalent flowing resistance method. However, few of these 

authors considered the effect of wellbore storage and skin factors 

in their models. They also excluded the partial penetration effect 

of the hydraulic fracture.   

 

Zhao et al. (2013) presented novel analytical solutions for both 

partially or fully penetrating vertical fractured wells in a composite 

(bi-zonal) gas reservoir, as depicted in Figure 1. Their formulation 

used the continuous point source functions in an anisotropic res-

ervoir on the basis of source function theory along with the La-

place transformation method and the Duhamel’s principle. The an-

alytical solutions were obtained using the constructing function 

and the continuous point source functions for wells in bi-zonal gas 

reservoirs with upper and lower boundaries closed.  
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Figure 1. Sketch of a bi-zonal gas reservoir 

The present work uses the solutions presented by Zhao et al. 

(2013) to understand pseudopressure and pseudopressure deriv-
ative behaviors so several unique features on this plot are used to 

generate several expressions for characterizing the reservoir. The 

expressions that we developed were tested successfully with syn-

thetic examples. 

Mathematical model 

Zhao et al. (2013) presented an analytical solution for the pressure 

response of a fully penetrating hydraulically fractured gas well in a 

bi-zonal reservoir, 
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For the case of a partially penetrating fracture well, Zhao et al. 

(2013) also presented the following solution: 
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Pseudopressure and Pseudopressure  
Derivative behaviors 

Although Zhao et al. (2013) explain the pressure behavior of the 

systems under consideration, it is important to establish the main 

flow regimes that can be presented in fractured wells within bi-

zonal reservoirs. The dimensionless pseudopressure and pseudo-

pressure derivative plot is shown in Figure 2. The dashed lines 

correspond to a fracture that penetrates half of the reservoir 

thickness, while the solid line is for a fully penetrating fracture. 

These curves allow the clear observation of wellbore storage ef-

fects at a very early time. Then, the formation linear flow regime 

to the hydraulic fracture is observed, characterized by a slope of 

one-half on the pseudopressure derivative curve. The bi-radial 

flow regime may also be presented in fractured wells having infinite 
conductivity, as shown in Figure 2, observed once linear flow van-

ishes. For the plot provided, bi-radial flow occurs during a dimen-

sionless pseudotime between 0.01 and 1 and is recognized by a 

slope of 0.36 on the derivative curve. For the case of a fully pene-

trating fracture, radial flow follows once the fracture effects are 

no longer felt in the test. However, as observed in the dashed 

curves of Figure 2 corresponding to a partially penetrating frac-

ture, spherical flow takes place. The spherical flow possesses a 

negative one-half slope on the derivative curve. In both cases, ra-

dial flow in zone 1 develops at a dimensionless pseudotime of ap-

proximately 10, followed by a horizontal pattern of the derivative 

known as a radial flow regime in zone 1 (see Figure 3). At the end 
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of the test (tDa_xf > ~20000), a second plateau is observed corre-

sponding to the radial flow regime in zone 2. As Figure 3 shows, 

depending on the value of M, the second plateau will be above or 

below the level of the radial flow regime during zone 1. For values 

of M > 1, the second plateau is higher than the first plateau and 

vice versa. 
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Figure 2. Dimensionless pseudopressure and pseudopressure de-
rivative vs. dimensionless pseudotime log-log plot displaying the 
typical behavior of both a fully and partially penetrating fractured 
well in a bi-zonal reservoir 
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Figure 3. Effect of mobility ratio on the dimensionless pseudopres-
sure and pseudopressure derivative behavior for a fully penetrat-
ing fractured well in a bi-zonal reservoir 
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Figure 4. Effect of storativity ratio on the dimensionless pseudopres-
sure and pseudopressure derivative behavior for a fully penetrat-
ing fractured well in a bi-zonal reservoir 

Another remarkable feature is provided in Figure 4. If the stora-
tivity ratio is smaller than unity, the derivative displays a minimum, 

then continues to the second plateau. For storativity ratios greater 

than one, the derivative displays a maximum point before forming 

the second plateau. As the values are farther than one, both the 

maximum and minimum values are more pronounced. 

Notice that the differences of the dimensionless wellbore storage 

coefficient values and dimensionless radii in Figures 2 to 4 do not 

represent any effect on the governing equations for the generation 

of the TDS Technique. 

Dimensionless Parameters 

The dimensionless quantities are defined as: 
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with k as the effective permeability of the bi-zonal reservoir, 
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For compressible fluids, the pseudopressure, m(P), introduced by 

Agarwal (1949) is given by: 

0
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Agarwal (1949) also introduced the pseudotime function to ac-

count for the time dependence of gas viscosity and total system 

compressibility: 
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Pseudotime is better defined as a function of pressure as a new 

function given in hr psi/cp: 
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Pseudotime instead of rigorous/normal time is used in this work 

because Escobar et al. (2012) demonstrated that the hydraulic 

fracture parameters are better estimated using pseudotime than 

rigorous time. 

The system under consideration is assumed to possess a partially 

penetrating hydraulic fracture in a vertical well that has a half-

length, xf, width, wf, and permeability, kf. The dimensionless 

pseudotime, pseudopressure and pseudopressure derivative are 

defined as: 
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Infinite-conductivity fractures – Linear flow regime 

The interpretation methodology follows the philosophy of the 

Tiab’s Direct Synthesis technique introduced by Tiab (1993). Rodri-

guez et al. (1984) presented an analytical solution for the well pres-

sure behavior of a partially penetrating fracture that is adapted 

here as: 
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And the pseudopressure derivative is 
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After replacing the dimensionless quantities given by Equations 23 
to 25 into Equations 26 and 27, the results shown below are ob-

tained. 
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Solving for xf  from Equations 28 and 29 yields; 

1

40.944 ( )

[ ( ) ]

sc a L
f

L

q T t P
x

h m P k 




 
(31) 

 

1

20.472 ( )

[ * ( ')]

sc a L
f

L

q T t P
x

h t m P k 




 
(32) 

Equations 31 and 32 allow the estimation of the half-fracture 

length using either the value of differential pseudopressure or 

pseudopressure derivative read at any arbitrary pseudotime point 

during the linear flow regime. Extrapolation of the pseudopressure 

derivative at the pseudotime value of 1 hr psi/cp is recommended. 

Read the pseudopressure derivative at a pseudotime value of 1 hr 

psi/cp. Under these conditions, Equation 31 becomes: 
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It is preferred to leave the term  in Equations 31 to 32 so that it 

takes the value of one for fully penetrating hydraulic fractures. 

The solution of the diffusivity equation during the radial flow re-

gime of the internal zone, zone 1, is: 
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From such an equation, Escobar, Lopez and Cantillo (2007) devel-
oped the equations for permeability and skin factor, including 

pseudotime: 
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Figure 3 shows that the solution of the diffusivity equation during 

the radial flow regime of zone 2 related to the radial flow regime 

of zone 1 is: 
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From which the permeability of zone 2 is found as: 
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Although the pseudosteady state regime is not shown in the plots 
given, the governing equation during the late pseudosteady-state 

regime as used by Escobar et al. (2007) is given by: 
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An expression from Equation 39 obtains the reservoir drainage 

area from an arbitrary pressure derivative point during the pseu-

dosteady state: 
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Again, it is better to extrapolate the pseudopressure derivative at 

a pseudotime of 1 hr psi/cp. 

The reservoir drainage area can also be determined from the in-

tercept of Equation 39 with Equations 34 and 37: 
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The half-fracture length can also be verified or re-estimated from 
the intercept point between the linear and the two radial lines, v.g. 

Equations 29, 34 and 37: 
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It is necessary to change k2 by k1 when M<1. Additionally, the ver-
ification of the half-fracture length from the intercept point be-

tween the linear and pseudosteady-state lines, v.g. Equations 29 

and 39: 

18.6858
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Infinite-conductivity fractures – Bi-radial flow regime 

The governing dimensionless pressure and pressure derivative 
equations presented by Tiab (1994) during bi-radial flow applied 

to gas systems were rearranged by Escobar et al. (2012) for gas 

flow: 
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Once the dimensionless quantities given by Equations 21, 24 and 
25 are replaced into Equations 46 and 47 and then solved for the 

half-fracture length, the following equations are obtained: 
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Being: 
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Equation 47 is set equal to 0.5 and 0.5 M during the radial flow 
regimes of zones 1 and 2, respectively, corresponding to the in-

tersection point of the radials and bi-radial lines. Then, the follo-

wing equations are derived: 
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The intersection point of the bi-radial and late pseudosteady-state 
lines, Equations 47 and 39, leads to another expression to find the 

reservoir permeability: 
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It is also necessary to change k2 by k1 when M<1. The intersection 

between the linear and bi-radial lines, Equations 27 and 47, pro-

duces the following expression: 
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Spherical flow regime 

The analytical solution presented by Joseph (1984) and extended 

to gas flow with the pseudotime function condition is given below: 
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Which pseudopressure derivative is: 
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Moncada et al. (2004), using the solution presented by Joseph 
(1984), provided an interpretation technique using the pressure 

derivative curve for spherical and hemispherical flow of oil and gas 

reservoirs. Their solution for gas using rigorous time is extended 

here for pseudotime, so the spherical permeability and the skin 

factor caused by spherical flow can be estimated using any arbi-

trary pseudotime point during spherical flow on which values of 

pseudopressure and pseudopressure derivative curves are read to 

be used in the following expressions: 
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In wich; 
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The intersection of the radial flows and the spherical flow lines, 

i.e., Equations 34, 37 and 56, obtain: 

1

2 2

1

3
( ) 301.77a spr i

sp

k h
t P

k




 
(61) 

 

1

2 2

1

3
( ) 301.77a spr i

sp

k h
t P

k




 
(62) 

It is also found in this work that the intersection point formed by 

the linear and the spherical flow lines, Equations 27 and 56, pro-

vide a new expression to estimate the half-fracture length: 
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The point of interception between Equations 47 and 56, bi-radial 

and spherical flow lines, allows obtaining another expression for 

the estimation of the half-fracture length: 
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Tiab (2003) developed the following equation to relate the half-
fracture length, formation permeability, fracture conductivity and 

post-fracture skin factor: 
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1.92123
f f s

w f

k
k w

e

r x





 

(65) 

The determination of the skin facture requires running two flow 

tests at different gas flow rates. A single test provides the pseudo-

skin factor as given by Equation 36. 

Wellbore Storage Effects 

If wellbore storage effects are presented, the solution of the early-

time diffusivity equation (Tiab (1993)) reduces to: 
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For which the dimensionless wellbore storage is given by: 
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Expressions to estimate the wellbore storage coefficient are found 
by replacing the respective dimensionless quantities into the above 

equations so that: 
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The intersection of the early unit-slope line, Equation 68, with the 

radial horizontal straight line, Equation 34, gives: 
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From this expression, an equation to estimate either permeability 
or wellbore storage is obtained once the dimensionless parame-

ters are replaced: 
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Furthermore, another expression is obtained from the intersec-
tion point of the unit-slope line, Equation 68, with the radial flow 

of zone 2, Equation 37, to give: 
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Mobility ratio, Inner radius and Storativity 

Figure 3 shows that there exists a relationship between the mo-

bility ratio and the pressure derivative in the second plateau. This 

empirical relationship with a correlation coefficient (R2) of 1 is 

given by: 
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Forming the radial flow of zone 2 requires almost two log cycles 
that involve many testing times. There may be cases in which the 

second plateau formed by the radial flow in zone 2 may not be 

observed or is too noisy. In such cases, it is useful to use the in-

flection point formed between the two radial flow lines. This in-

flection point is normally difficult to see. A better option is to take 

the second derivative and relate this second derivative to the value 

of the pressure derivative of the radial flow in zone 1. This value 

will be used in a correlation with a correlation coefficient (R2) of 

0.9982 to determine the value of M so 

13.2815 0.8866, 1M DR M    (75) 

Another correlation with a correlation coefficient (R2) of 0.9998 

is found below. 

2

1 11.2421 2.3347 1.0714, 1M DR DR M     (76) 

Figure 5 allows the observation of the duration of the radial flow 

of zone 1 as a function of the radius of zone 1. The radius can be 

estimated with the following correlation that possesses a correla-

tion coefficient (R2) of 0.99943 and uses the ending time of the 

radial flow regime in zone 1. 
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(77) 

Finally, with observations from Figure 4, it is possible to establish 
a relationship (using more curves than the curves given in the plot) 

between either the maximum or minimum, the mobility ratio, M, 

and the storativity ratio, as follows. 

2*(1 )bW a DR   (78) 

Where constants a and b are expressed as: 

1.090930830.03416318*0.19753597 * , 0.5Ma M M   (79) 

 

0.494381576.1306208*1.14394856 * , 0.5Mb M M   (80) 

 

4.0401* 0.005, 0.5a M M    (81) 

 

1.5842* 0.302, 0.5b M M    (82) 

An average correlation coefficient of 0.9989 is found for the set of 

empirical Equations 78 through 82. 
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Figure 5. Effect of the size of the radius of zone 1 on the dimension-
less pseudopressure and pseudopressure derivative behavior for a 
fully penetrating fractured well in a bi-zonal reservoir 

Figure 6 allows the observation of another important feature. As 

the penetration ratio, hf/h, referred to here as , reduces its value, 

the derivative displays a “hunch” before the radial flow regime 
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starts. The maximum value of the pseudopressure derivative was 

correlated against , giving the expression below that possesses a 

correlation coefficient (R2) of 0.9998: 
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Figure 6. Effect of the fracture penetration on the dimensionless 
pseudopressure derivative behavior for a partially penetrating 
fractured well in a bi-zonal reservoir 
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Figure 7. Pseudopressure, pseudopressure derivative and second 
pseudopressure derivative vs. pseudotime for example 1 

Synthetic Examples 

Table 1. Parameters of examples 

 Value 

Parameter Example 1 Example 2 

k1, md 5 12 

, % 4 7 

h, ft 50 200 

qsc, Mscf/D 1200 7500 

T, R 600 710 

xf, ft 5 50 

 0.4 1 

rw, ft 0.3 0.35 

rm, ft 250 1000 

M 2 0.5 

W 1 0.125 

Example 1 

The data provided in the second column of Table 1 were used to 

simulate a pressure test where pseudopressure, pseudopressure 

derivative and second pseudopressure derivative against pseudo-

time are given in Figure 7. Determine the reservoir permeability, 

mobility ratio, pseudoskin factors, fracture length and the radius 

of zone 1. 

Solution. Several flow regimes are observed in this test. In 

chronological order, these flow regimes are linear, bi-radial, a 

maximum caused by the partial penetration effect of the fracture, 

radial flow in zone 1, a transition period and a final radial flow 

regime in zone 2. The following information was read from Figure 

7, and units are not reported for space-saving purposes: 

ta(P)r1= 38012 hr*psi/cp    

∆m(P) r1  = 21680570 psi2 /cp 

ta(P)*∆m(P)’ r1 = 2048000 psi2/cp  

ta(P)*∆m(P)’ r2 = 4085000 psi2/cp 

[ta(P)*∆m(P)’]’inf= 671290 psi2/cp 

ta(P)*∆m(P)’max = 3592000 psi2/cp 

ta(P)L= 0.0955 hr*psi/cp 

∆m(P)L= 196650 psi2/cp 

ta(P)*∆m(P)’L = 102400 psi2/cp 

ta(P)r1Li = 38 hr*psi/cp   

ta(P)r2Li =  90 hr*psi/cp 
ta(P)spr1Li = 3400 hr*psi/cp 

ta(P)spr2Li = 1600 hr*psi/cp 

ta(P)sp = 1905.2  hr*psi/cp    

∆m(P)sp= 196650 psi2/cp 

ta(P)*∆m(P)’ sp = 102400 psi2/cp 

ta(P)spLi = 410  hr*psi/cp 

ta(P)spBRi = 410  hr*psi/cp 

ta(P)re = 48000 hr*psi/cp 

ta(P)r1BRi =  75 hr*psi/cp 

ta(P)r2BRi =  320 hr*psi/cp 

Table 2. Results for Example 1 

Parameter Value Equation No. 

k1, md 5 35 

k2, md 9.98 38 

M 1.9947 74 

DR1 0.3278  

M 1.9622 75 

ksp, md 5.72 57 

ksp, md 6.05 61 

ksp, md 7.78 62 

s’ 0.11 36 

ssp -0.44 58 

rsw, ft 2.4 60 

xf, ft 4.97 31 

xf, ft 5.18 32 

xf, ft 4.96 43 

xf, ft 5.35 44 

xf, ft 5.05 51 

xf, ft 5.63 52 

xf, ft 5.15 63 

xf, ft 5.03 64 

xf, ft 5.06 54 

rm, ft 240 75 

Using the pseudopressure derivative value during radial flow of 

zone 1 in Equations 35 and 38, values of k1 = 5 and k2 = 9.98 md 

were found. Then, the maximum point found after the bi-radial 

flow regime divided by the pseudopressure derivative value read 

during the radial flow regime of zone 1 allows for the estimation 

of a pseudopressure derivative ratio, DR3, of 1.7539. This ratio 

leads to a calculation of a value of 0.4036 by means of Equation 77. 

The ratio between the two values of the radial flow regimes pro-

vides a value of M of 1.9947 with Equation 74. The arbitrary values 

of pseudotime, pseudopressure and pseudopressure derivative 

during the linear flow regime are used to calculate a half-fracture 

length, xf, of 4.97 and 5.18 ft using Equations 31 and 32. The esti-

mation of other parameters along with the equations used is given 

in Table 2. 
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Example 2 

Figure 8 presents pseudopressure and pseudopressure derivative 

versus pseudotime simulated with the data provided in the third 

column of Table 1. The estimation of reservoir permeability, pseu-

doskin factor, half-fracture length, storativity and the radius of 

zone 1 is required. 

Table 3. Results for Example 2 

Parameter Value Equation No. 

k1, md 12.05 35 

k2, md 6.05 38 

M 0.5022 74 

s’ -4.22 36 

xf, ft 49.78 31 

xf, ft 51.89 32 

xf, ft 50.28 43 

xf, ft 48.63 44 

xf, ft 49.29 51 

xf, ft 48.56 52 

xf, ft 51.35 54 

rm, ft 900 75 

DR2 0.3014  

W 0.082 76 

Solution. Figure 8 shows that the following flow regimes take 
place: linear, radial, radial flow in zone 1, then a minimum flow 

caused by the storativity ratio followed by the radial flow in the 

second zone. The following parameters, which are useful for the 

calculations, are obtained from Figure 8. 

ta(P)r1= 928420 hr*psi/cp    

∆m(P) r1  = 7960000 psi2/cp 

ta(P)*∆m(P)’ r1 = 1571000 psi2/cp  

ta(P)*∆m(P)’ r2 = 789050 psi2/cp 

ta(P)*∆m(P)’max_min = 473432 psi2/cp 

ta(P)L= 95.56 hr*psi/cp 

∆m(P)L= 224051 psi2/cp 

ta(P)*∆m(P)’L = 116780 psi2/cp 

ta(P)r1Li = 17800 hr*psi/cp   

ta(P)r2Li =  4200 hr*psi/cp 
ta(P)re = 500000 hr*psi/cp 

ta(P)r1BRi =  65000 hr*psi/cp 

ta(P)r2BRi =  9300 hr*psi/cp 
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Figure 8. Pseudopressure, pseudopressure derivative and second 
pseudopressure derivative vs. pseudotime for example 2 

As shown in example 1, the first parameters to be calculated are 
the permeabilities in both zones by using Equations 35 and 37. 

Then, an estimation of the mobility ratio with Equation 74 is re-

quired. The results of these calculations are reported in Table 3 

along with some other values. 

Analysis of Results 

Very close agreement was found in the estimation of the half-frac-

ture length, permeability, and mobility ratio of the given examples 

if compared with the actual values. By simple inspection, small dif-

ferences are obtained. Although the estimation of the storativity 

ratio is not exact because of its sensitivity, the authors agree that 

the values provided by the empirical expressions are acceptable. 

Conclusion 

Several new expressions were obtained for characterizing pres-

sure tests run in a bi-zonal gas reservoir drained by a hydraulically 

fractured well considering either full or partial penetration. The 

estimated parameters were satisfactory compared to actual values 

determined by working synthetic pressure tests. The interpreta-

tion technique provided allows for the the verification of some 

parameters. At minimum, ten different expressions for estimating 

half-fractured length were provided. Permeability and mobility can 

also be verified. 
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Nomenclature 

A       Reservoir drainage area, ft2 
C  Wellbore storage coefficient, Mscf/psi 
DR1  [ta(P)*∆m(P)’]’inf/[ ta(P)*∆m(P)’]r1 

DR2  [ta(P)*∆m(P)’]max_min/[ ta(P)*∆m(P)’]r1 
DR3  [ta(P)*∆m(P)’]max/[ ta(P)*∆m(P)’]r1 
c  Compressibility, 1/psi 

h   Formation thickness, ft 
hf  Fracture height, ft 
hfzm  Distance from the fracture middle point to the res-

ervoir’s bottom boundary, ft 
k1, kr1  Radial/horizontal permeability of zone 1, md 
k2, kr2  Radial/horizontal permeability of zone 2, md 

kfwf  Fracture conductivity, md-ft 
kh  Horizontal permeability of zone 1, (kxky)0.5 md 
ksp  Spherical permeability of zone 1, md 

kx  x-direction permeability, md 
ky  y-direction permeability, md 
kv, kz  Vertical permeability of zone 1, md 
Lre  Reservoir length, ft 

M  Mobility ratio, kr1/kr2 
m(P)  Pseudopressure function, psi2/cp 

m(𝑃)  Pseudopressure in Laplace domain 

P  Pressure, psi 
qsc       Gas flow rate, Mscf/D 
rm  Distance from well to the end of zone 1, ft 

rw  Well radius, ft 
rsw  Spherical flow radius, ft 
s  Skin factor 

ssp  Peudoskin factor in the spherical flow 
s’  Pseudoskin factor  
T  Temperature, °R 

t  Time, hr 
ta(P)  Pseudotime function, psi hr/cp 

[ta(P)*∆m(P)’] Pseudopressure derivative function, psi2/cp 

[ta(P)*∆m(P)’]’ Second pseudopressure derivative function, ppsi2/cp 
[ta(P)*∆m(P)’]max_min Maximum or minimum pseudopressure 
w  derivative function after radial flow of zone 1, psi2/cp 
[ta(P)*∆m(P)’]max Maximum pseudopressure derivative function be-

fore radial flow of zone 1, psi2/cp 
tDa_r  Dimensionless pseudotime with respect to rw 
tDa_A  Dimensionless pseudotime with respect to A 

tDa_xf  Dimensionless pseudotime with respect to xf 
xe  Reservoir half length, ft 
xf  Half-fracture length, ft 

DR1  [ta(P)*∆m(P)’]’inf/[ta(P)*∆m(P)’]r1 
DR2  [ta(P)*∆m(P)’]max_min[ta(P)*∆m(P)’]r1 
DR3  [ta(P)*∆m(P)’]max/[ta(P)*∆m(P)’]r1 

x  Reservoir length in x-direction 
xe  Half-reservoir length 
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y  Reservoir length in y-direction 

z  Reservoir length in z-direction 
Z  Gas deviation factor 
 

Greek 
  Fracture penetration ratio, hf/h  

  Change, drop 

   Porosity, fraction 

   Viscosity, cp 

r1   Diffusivity constant of zone 1 
 

Suffixes 
1  Zone 1 
2  Zone 2 

BR  Bi-radial  

BR1  Bi-radial at pseudotime of 1 psi*hr/cp 
BRpi  Intersect of bi-radial and pseudosteady-state lines 
BRLi  Intersect of bi-radial and linear lines 

BRspi  Intersect of bi-radial and spherical lines 
D  Dimensionless 
e  External 

g  Gas 
i  Intersection or initial conditions  
inf  Inflection point 

L  Linear 
L1  Linear flow at pseudotime of 1 psi*hr/cp 
Lpi  Intersect of linear and pseudosteady-state lines 

min  Minimum 
N  A point on the early unit-slope line 
o  Reference value 

p, pss  Pseudosteady state 
r  radial flow 
r1  Radial flow in zone 1 

r2  Radial flow in zone 2 

r1us  Intersection of radial flow in zone 1 with early unit-
slope line 

r2us  Intersection of radial flow in zone 2 with early unit-

slope line 
rBRi  Intersection of radial and bi-radial flow regimes 
re  End of radial flow regime in zone 1 

rLi  Intersection of radial and linear flow regimes 
rpi  Intersection of radial and pseudosteady-state lines 
sc  Standard conditions 

sp  Spherical flow 
spr1i  Intersection of spherical and radial in zone 1 lines 
spr2i  Intersection of spherical and radial in zone 2 lines 

t  Total 
us  Early unit-slope during wellbore storage effects 
w  Well 


