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An optimal algorithm for estimating angular speed using 

incremental encoders 
 

Un algoritmo óptimo para la aproximación de la velocidad angular  

utilizando encoders 
 

J. D. Rairán Antolines1  

 

ABSTRACT  

This paper proposes a new algorithm using signals from an incremental encoder for estimating a rotating shaft’s speed. This algorithm 

eliminated the oscillations appearing in classical fixed-time and fixed-space algorithms, even w hen speed w as constant.  A fixed-

time algorithm measures angular displacement at fixed-time intervals, w hile a fixed-space algorithm measures time every fixed-

angular displacement. Time and displacement measurements were used to generate estimations for spee d. The new  algorithm 

generated a unique value for estimating speed due to synchronising encoder pulses and a signal formed by impulses every time 

increase (delta). A first modification of the proposed algorithm was defined, resulting in the harmonic mean b etw een these tw o 

proposed alternatives having the smallest relative error possible. This error was always smaller than half the error w ith fix ed-time and 

fixed-space algorithms. Experimental setup and algorithms are show n, as w ell as Simulink results using  signals acquired from an in-

cremental encoder. 
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RESUMEN 

En este artículo se propone un algoritmo nuevo, el cual utiliza las señales provenientes de un encoder incremental para aprox imar 

la velocidad de giro de un eje. Este algoritmo elimina las oscilaciones que aparecen en los algoritmos clásicos, conocidos co mo a 

espacio fijo y a tiempo fijo, las que son visibles incluso a velocidad constante. Un algoritmo a tiempo fijo mide desplazamiento angu-

lar a intervalos de tiempo fijo, mientras que un algoritmo a espacio fijo mide tiempo a intervalos de espacio fijo. Las  medidas de 

tiempo y desplazamiento se utilizan para estimar la velocidad. El algoritmo nuevo genera una aproximación sin saltos a velocidad 

constante, dada la sincronización entre los pulsos del encoder y la señal formada a partir de impulsos cada delta d e tiempo. Se 

propone una primera modificación del algoritmo, y el resultado es que el promedio armónico entre las dos propuestas de algori tmo 

tiene el menor error relativo posible. Ese error siempre es menor que la mitad del error que se produciría con los  algoritmos a tiempo 

fijo o a espacio fijo. Finalmente, se presenta un arreglo experimental para probar los algoritmos, y se muestran los resultad os de la 

ejecución en Simulink, usando señales adquiridas de un encoder incremental.  
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Introduction1 2 

Estimating speed represents an interesting problem, especially 

regarding control involving the dynamics of a system based on 

signals given by sensors; i.e. based on an estimations of what 

actually happens. The algorithm proposed in this paper was 

aimed at obtaining maximum information from an incremental 

encoder, thus establishing a fast and stable measurement of a 

shaft’s angular speed. An incremental encoder is an electrome-

chanical instrument. The mechanical part is an evenly spaced 

slotted disc, whereas the electric part includes a light beam and 

detector. A high light level (one) is recorded when the light 
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passes through the slit and reaches the detector, and zero oth-
erwise. 

Measuring speed has one physical limitation; estimating speed 

requires measuring two instants in time and the result necessari-

ly neglects one of them. An estimation of speed has at least two 

sources of error because it requires two measurements: position 

and time. Since m is /t, error regarding estimation m lies in 

the nature of such deltas (i.e. discrete and digital values). Digital 

measurement involves an inevitable truncation error. Thus,  is 

an integer multiple of the pulses emitted by the encoder (pul), 
and dt is likewise an integer multiple of clock resolution (ts). 

The speed at which the time between two consecutive pulses 

from the encoder lasts exactly dt defines the so-called speed limit 

given in revolutions per second (l im = (1/pul)/dt). Speed values 

less than  l im are low, whereas greater or equal than this are 

high. A similar concept (Tsuji et al., 2009) has defined what au-
thors call speed resolution.  
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Two classical algorithms estimate speed (fixed-time and fixed-

space algorithms); other algorithms usually come from these 

two. If an estimation involved using the fixed-time approach, 

which means updating the counting of pulses (Nep) each dt, then 

the algorithm generates an estimation m = Nep l im. On the 

other hand, the fixed-space approach updates dt counts (called 

Ndt) between every two consecutive pulses, so m = (1/Ndt) l im. 

The fixed-space algorithm is recommended for low speeds, 

whereas the fixed-time algorithm is useful for high speeds. The 

truncation error makes m oscillate regardless of the approach 

adopted. The effect of these oscillations requires using low-pass 

filters to smooth the value of the estimation, thereby implying 
delay.  

Current solutions for avoiding the effect of truncation can be 

classified mainly into two groups: highly accurate measurements 

of time and synchronising position and time signal (a third group 

is also referenced, including other options). Solutions from the 

first group use the power of computing electronic circuits for 

high resolution measurement of time, for instance microcontrol-

lers (Petrella and Tursini, 2008), DSP (Boggarpu and Kavanagh, 

2010) and FPGAs. A more elaborate solution (Merry, Molengraft 

and Steinbuch, 2007) detects rising edges from the encoder to 

make a polynomial fitting, thereby smoothing the estimation. 

Other work (Lygouras et al., 2008) has gone so far as to claim 

that the truncation error effect disappears when clock resolution 

reaches 50 ns. The oscillations within the estimation, though 

small, still remain in this first solution group. On the other hand, 

the second group looks for synchronising position and time 

measurementents. An algorithm named the S method (Tsuji et 

al., 2009) has been proposed based on this synchronisation con-

cept, mainly being helpful for high speed. Another proposal (Se-

Han, Lasky and Velinsky, 2004) for optimising encoders with few 

slits uses synchronisation for high speeds, whereas for low 

speeds it switches the algorithms for another based on its model 

of the system. The third group of solutions is not exactly focused 

on the truncation problem, but nonetheless the problem is well 

referenced and is taken into account in the solution. Some work 

(Su et al., 2005) has focused on very low speeds, estimation being 

made by absolute position measurement while the average speed 

of every rotation (Hachiya and Ohmae, 2007) has been used for 

developing a simple and effective method for eliminating fluctua-

tions, as well as mitigating the effect of some mechanical errors. 

Another solution consists of using filters and switching from 

fixed-time to fixed-space methods or vice versa to ensure ob-

taining the smallest relative error possible (D'arco, Piegari and 

Rivo, 2003). It has been suggested that some steps can be traced 
backwards to control the highest relative error (Liu, 2002). 

Describing the new algorithm 

The new algorithm presented in this section eliminated oscilla-

tions in estimating speed when they came from discrete and 

digital measurements, as in an incremental encoder. The core of 

the proposal consisted of synchronizing position and time pulses. 

Since there was no control over the time at which the encoder 

pulse appeared, the algorithm simply started to count dt when a 

position pulse appeared. As a result, such estimation would have 

been constant for constant speeds, without the use of state 

observers or system models as required in other work (Se-Han, 

Lasky and Velinsky, 2004).  

Guaranteeing the mathematical results in this section involved 

the following assumptions: the encoder did not lose pulses dur-

ing counting, measuring time was exact and in multiples of clock 

time (ts) and the mechanical distance between pulses remained 

constant. These assumptions idealised an incremental encoder’s 

true performance, although they were necessary for ensuring 
error bounds on the estimations. 

The first step in transforming the encoder signal detected the 

rising edge from each pulse. This detection generated a pulse 

train (Iep) as shown in Figure 1. The next step counted these 

pulses and led to a stair-type signal named (Cep). If counting Cep 

went to zero, for instance because the time reached dt, then a 

register saved the last value in the counter into a variable Nep1. 

The scheme in the lower part of Figure 1 illustrates an additional 

series of blocks. These blocks counted dts. A pulse dt resulted 

when the accumulation of ts reached the value of dt. This event 

reset and started the counting of ts over again. The counter 

block held dt counting in a variable Cdt. If an Iep pulse reset that 
counter, then a register held the last value of Cdt into Ndt1. 

 

Figure 1. Algorithm scheme and definition of Nep1 and Ndt1 

Speed was estimated as m1 = n1 l im, where n1 was Nep1/Ndt1. 

Counting required that Nep1 should be a whole number (0, 1, 

2,…), while Ndt1 had to be a natural number. There were more 

Iep pulses in the count than dt pulses for speeds higher than  l im, 

so Ndt1 stayed fixed at one. On the contrary, there were more 

dt pulses than Iep pulses for speeds lower than  l im, so Nep1 

remained fixed at one. Possible values for n1, for high speeds 
were 1, 2, 3, and so on, and ½, ⅓, ¼, and so on for low speeds.  

Table 1. Pseudocode for the proposed speed estimation algorithm 
 Input: ts, dt, Iep impulses 

 Output: Ndt1, Nep1 

1 Begin 

2 

Cep  0, Cdt  0, Nep1  0, Ndt1  1 

clock  0 

3 Repeat 

4 clock  clock + ts 

5 if Iep = 1 & Cdt  0 then 

6 Ndt1  Cdt 

7 clock  0 

8 if clock = dt & Cep  0 then 

9 Nep1  Cep 

10 if Iep = 1 then 

11 Cep  Cep + 1, Cdt  0 

12 if clock = dt then 

13 Cdt  Cdt + 1, Cep  0 

14 clock  0 

15 return(Ndt1,Nep1) 

16 until stop 

17 End 

Table 1 shows the algorithm’s pseudocode. This algorithm gen-

erated a new estimation m1 every ts by computing Ndt1 and 

Nep1. The core of the algorithm synchronised time and space 

pulses in line 6 where the clock went to zero. However, this 
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synchronisation did not mean that Ndt1 and Nep1 updated their 

values synchronously: Ndt1 updated its value in line 6 (synchro-

nised with Iep pulses) and Nep1 updated its value in line 9 (syn-
chronised with dt pulses). 

Plots a) and b) in Figure 2 illustrate algorithm operation for low and 
high speeds, respectively. Event a started the programme in both 
examples, and subsequent letters defined other events. For instance, 

events d and g updated Nep1 in both examples. Estimation m1 re-
mained constant for events later than f in plot a. On the other hand, 
estimation after any event later than d in plot b remained constant. 

 

 
Figure 2. Examples of algorithm use: a)  ≈ 0.25lim, b)  ≈ 1.5lim 

Solid points in Figure 2 depicted the time when the algorithm 

updated Nep1 or Ndt1. The time between updates for low speeds 

was dta = ( l im/) dt, and for high speeds dta (see Eq. 1). The 

maximum value of dta in Equation 1 was twice dt as speed ap-

proached l im, and delay decreased as  grew, with dt as its limit: 
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(1) 

The value of Nep1 represented the ceiling for the number of 

pulses Iep, as can be seen in Figure 2; Ndt1 was the floor for 

counting dts, so estimation n1, defined as Nep1/Ndt1, was always 

greater than the actual speed, as shown in Figure 3, where the X 

and Y axes had been scaled by  l im. 

 

Figure 3. Speed estimation, m1, and relative error for the proposed 
algorithm 

The first measurement of quality for estimating speed correlated 

relative error and speed, as shown in the lower part of Figure 3. 

A second measurement of quality (maximum relative error per 

interval) took into account that the value of  actually was un-

known. An interval covered the whole range of speeds having 

the same estimation. For instance, all speeds estimated as n1 = 3 

as estimation defined an interval. This second measurement of 

quality depended entirely on algorithm output. Even so, Equation 

2 showed the definition of relative error for the second meas-

urement of quality to come up with an equation for this indica-
tor: 
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Relative error er1 maximised its value at the left of each interval 

when ratio  l im/ was maximum. For high speeds (when n1 ex-

ceeded 1), ratio  l im/ was the inverse of n1 – 1, as can be seen 

by analysing the upper part of Figure 3. For instance, if n1 = 3, 

maximum ratio would have been  l im/ = 1/2, so maximum 

relative error reached 50%. For low speeds the ratio was  l im/ 

= (1/n1) + 1. For instance, if n1 = 1/2, then  l im/ = 3, so maxi-

mum relative error reached 50% again. Previous analysis of ratio 

l im/ produced the expression for the maximum relative error 

shown in Equation 4: 
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The relative error in Equation 4 matched the maximum relative 

error for the traditional fixed-time algorithm if    l im and dt = 

ts. Er1Max matched the maximum relative error for the traditional 

fixed-space algorithm, when  <  l im and dt = ts. The proposed 
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algorithm equated its measurement of quality with relative error 
from traditional algorithms. 

Optimising maximum relative error 

The algorithm’s optimum minimised error ErMax, such minimisa-

tion coming from an observation about where maximum error 

happened; according to the result shown in Figure 3, such maxi-

mum error took place at the left end from each interval. If the 

estimations shifted down one place, for example from n1 equal to 

3 to a new n2 equal to 2, or from n1 = ½ to n2 = ⅓, then relative 

error decreased. This decrease occured due to the maximum 

difference between  and the new m2 taking place at the right 

of each interval, instead of at the left.  

The new estimation (m2 = n2 l im) requires n2 as given in Eq. 5. 
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Nep1 and Ndt1 provide an alternate means for calculating n2, as 
shown in Equation 6: 
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The relative error for estimation m2 is shown in Equation 7: 
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According to Equation 7, and for high speeds, every integer ratio 

/ l im = n2 + 1 maximised relative error. For instance if n2 equal 

to 2, then l im/ was 1/3, so the maximum relative error reached 

33.3%. For low speeds, integer ratio /l im was the inverse of 

(1/n2) + 1. So, for instance, if n2 = ½, fraction  l im/ = 3. As a 

result, maximum error reached 33.3% again. Error in terms of n2 

is shown in Equation 8. This equation defined a supremum and 

not a maximum, because the right end of each interval was open, 
as shown in Figure 3: 
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Computing estimation m1 and m2 required the actual value of 

 to classify a speed as low or high (Eq. 5 and 6). The value of 

the speed was unknown, although there were two approaches 

for determining whether speed passed speed limit,  l im. Both 

approaches used an indirect measurement. In the first approach, 

whereas low speeds had the time between consecutive Iep’s 

exceeding dt, that time did not exceed dt for high speeds. The 

second approach counted n1. Whereas that number exceeded n1 

 2 for high speeds, for low speeds it did not. 

Estimation m2 reduced maximum error by up to 50% with 

estimation m1, mainly for speeds close to  l im. On the other 

hand, Er1Max and Er2Sup became closer and closer as speed went 

farther from  l im, or, in other words, when n1 and n2 went either 

to zero or infinity.  

Any estimation greater than m1 generated errors larger than 

Er1Max; any estimation under m2 resulted in errors over Er2Sup. 

So if there was a way to reduce maximum error per interval, the 

resultant estimation would have fallen between m1 and m2. See, 

for instance that estimation m3 equalled n3 l im in Figure 4. The 

work then involved finding a value for n3 that minimised error in 

region m2  m3  m1: 
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The minimum relative error for m3 could have been on the 

right or left side at each interval. If estimation m3 decreased, 

relative error on the left also decreased. As a result, relative 

error on the right increased. Thus, errors on the left opposed 

errors on the right and optimal value levelled the error on both 
sides, as shown by Equations 9, 10 and 11: 

 

Figure 4. Finding the best estimation, n3 

Error erL reached zero when n3 = n2 in Equation 9, and according 

to the representation in Figure 4 the maximum occurred when 

n3 equalled n1. Equation 10 showed that erR reached zero when 

n3 equalled n1, and the maximum occurred when n3 = n2. Since 

erR and erL were linear, then the minimum from combining erR 

and erL occurred when erL equalled erR, as shown in Equation 11. 

The value of n3 in Equation 11 defined optimal estimation for 

m3: the harmonic mean between m1 and m2. No other value 

of ni produced a smaller error: 
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Error Er3Max was defined in terms of n3 in Eq. 12, and in terms of 
n1 in Eq. 13: 
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(12) 

If n1 = 1 or 2 in Equation 13 then Er3Max equalled one third of the 

error given by Equation 4. On the other hand, when n1   or 

n1  1/ then error Er3Max went below half Er1Max. Therefore, 

this third estimation m3 in fact optimised error by setting the 

smallest possible bound for the relative error at each interval. 
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The bounds for relative error were calculated for constant speed 

and also applied to variable speeds, if acceleration did not go 

beyond a given bound. The method for finding the maximum 

acceleration began by supposing constant acceleration and high 

speeds. Under these assumptions, and according to the result in 

Equation 1, any estimation mi updated its value at most every 

2dt, so maximum acceleration had an increase in speed equal to 

 l im in an interval of time equal to 2dt. The same analysis could 

be made for speeds under  l im, as shown in Equation 14: 
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The solid lines in Figure 5 illustrate estimations mi, and the 

dashed line represents the actual speed. Estimation m1 was 

always greater than m3, and m3 was always greater than m2. 

The simulation parameters in Figure 5 were dt = 1 ms, pul = 

10,000 and ts = 0.1 s. These values made  l im = 0.1 rev/s, so 

maximum acceleration was amax = 50 rev/s2. The ramp with 

positive acceleration had 8.33 rev/s2 constant acceleration 
whereas negative acceleration was -12.5 rev/s2. 

 
Figure 5. Estimation mi for variable speed 

The estimation technique tested in this section was also used as 

an incremental encoder, so the results appeared to be limited to 

measuring angular speed, even though this technique can be 

equally applied for estimating any variable’s rate of change. There 

was only a single restriction on the data: sampling rate had to be 

constant. This restriction, along with the discrete nature of the 

measurements, generated oscillations on traditional estimation 

algorithms, even when the rate of change remained constant; 

however, those oscillations disappeared when using the pro-
posed algorithm. 

Experimental results 

In this section, the algorithm generated estimations using real 

signals coming from an encoder. The scheme in Figure 6 illus-

trates an encoder coupled to a shaft, where the system aimed at 

estimating the shaft’s angular speed. The encoder’s output fluctu-

ated from zero to five volts for low and high levels, respectively. 

A data acquisition card captured this voltage signal, and a com-

puter recorded its values for later use. Data acquisition card PCI-

6024E had 100 s ts sampling time. The 160-slot encoder  and 

the DC motor (Minertia 6GFMED) are shown in the lower part 
of Figure 8. 

 

Figure 6. Experimental setup and signal processing scheme 

The algorithm’s verification required an actual value of  to 

compute relative error. Instead of using a highly accurate sensor 

for obtaining the aforementioned value, the proposed algorithm 

found estimations using the best parameters for the smallest 

feasible error. For instance, ideal parameters were pul = 160 and 

dt = 2 s. These parameters guaranteed a boundary for relative 

error = 0.07%, when  = 2 rev/s, as shown in Equation 12. This 

error decreased to 0.0065%, if  equalled 24 rev/s.  

The first experiment had the next parameters: pul = 160 and 1 

ms for dt, dt thus overcoming ts by a factor of ten. In order to 

capture the data, the motor ran at constant voltage; a computer 

then saved data for ten seconds starting only when the motor 

entered its stationary stage. The algorithm obtained estimations 

using the recorded data as input. The same steps were repeated 
every 0.5 V for constant voltages from 3 to 24 V. 

The solid line in Figure 7 represents the bound for relative error 

per interval, as indicated in Equations 4, 8 and 13. The dots 

represent the experimental values for relative errors: er1 for m1, 

er2 for m2 and er3 for m3. Results in Figure 7 agreed with the 

analysis given in the previous section. Relative errors always fell 

within bounds, and estimation m3 consistently had minimum 

relative error. 

Other experiments have used dt equal to 2, 5, 10, 20, 50 and 100 

ms. If dt increased  l im decreased. For instance if dt were greater 

than 5 ms,  l im went below experimental shaft speed. The great-

er the dt, the larger the ni and, as a result, relative error de-

creased, but updating time increased. So the relationship be-

tween dt and relative error became a trade-off problem, the 
solution of which depended on its application. 

Relative error also decreased by making  l im higher than any 

experimental speed; this change in  l im value required the use of 

an encoder having a lower number of slots, or the definition of a 

smaller dt. Thus, instead of changing the encoder to run this 

experiment, only one of every k pulses of the encoder was rec-

orded. The experiment used k = 40 and dt = 1 ms. So  l im = 250 

rev/s, and since all speeds fell under 30 rev/s, maximum relative 
error fell under 10%, as was experimentally proven. 

The algorithm was tested on-line using an embedded system for 

testing the algorithm’s application in an electronical device (i.e. 

dsPIC33FJ128MC802). dsPIC output was estimated as ωm3, 

closing a control loop in Simulink, as shown in the upper part of 

Figure 8, where u was the actuating signal. The filter made the 
system slow enough to have ts = 1 ms and dt = 40 ms. 
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Figure 7. Relative error for pul = 160, dt = 1 ms, and ts = 100 s 

 

 

 
Figure 8. On-line test. Control scheme in Simulink shown in the upper 
part and experimental setup in the lower part 

 
Figure 9. Identification result. 

 

Identification involved using the filtered reference as input and 

ωm3 as ouput. The identification result is shown in Figure 9. The 

model for the output–input ratio, H(S), was H(S) = 

1/((1+1.512S)(1+1.506S)). The model fit 94.41% of the data after 

20 iterations, thereby showing the quality of the data and control 
loop. 

Conclusions 

A new algorithm for estimating speed has been proposed proven 

and experimentally tested (using incremental encoders). One of 

the the algorithm’s advantages was that it had constant output 

when the speed was constant, contrary to fixed-time and fixed-
space algorithms producing two values. 

Relative error for the stationary case was computed and com-

pared to fixed-time and fixed-space algorithms, showing that 

maximum relative error per interval was the same, where an 

interval was defined as the range of speeds havin the same value 

as estimation. A modification of the algorithm has been pro-

posed, aimed at reducing maximum relative error by interval. It 

was proved that the optimal value was the harmonic mean be-

tween estimation m1 and m2. The maximum relative error was 

always smaller than half of that produced by fixed-time and fixed-
space algorithms. 

Even when the mathematical proof was made for constant speed, 

it was shown that the estimation remained valid for acceleration 

smaller than a given maximum, depending exclusively on pul and 
dt for high speed and pul, dt and Ndt for lower speed. 

Observing experimental data showed the effect of changing 

parameters dt and pul in the encoder; such parameter changes 

reduced the relative error of the estimation, and could be done 

using three approaches: increasing pul and dt at their highest 
possible values, reducing pul and dt and decreasing ts. 

Some problems of interest remain. For example, it appears that 

an adaptive algorithm for dynamically changing the value of dt, ts 

and k could boost algorithm performance, because making  l im 

greater or smaller than current speed would reduce error in the 

estimation. Implementing the algorithm in an embedded system, 

faster than dsPIC, including additional aspects such as rotation 

sense (also called sign) would make the algorithm ideal for use in 
industrial applications. 
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