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A new algorithm for solving linear programming problems 
 

Un nuevo algoritmo para la solución de problemas de programación  

lineal 

A. L. Ramírez1, O. Buitrago2, R. A. Britto3, A. Fedossova4 

 
ABSTRACT  
Linear programming (LP) is one of the most widely-applied techniques in operations research. Many methods have been developed 

and several others are being proposed for solving LP problems, including the famous simplex method and interior point algorithms. 

This study was aimed at introducing a new method for solving LP problems. The proposed algorithm starts from an interior point and 

then carries out orthogonal projections using parametric straight lines to move between the interior and polyhedron frontier defining 

the feasible region until reaching the extreme optimal point. 
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RESUMEN 
La programación lineal (PL) es una de las herramientas de mayor aplicación en la investigación de operaciones. Se han desarrolla-

do y se siguen proponiendo varios métodos para la resolución de problemas de este tipo, desde el famoso simplex hasta los algo-

ritmos de punto interior. Este trabajo tiene como propósito principal presentar la propuesta de un nuevo procedimiento para la 

solución de problemas PL que, partiendo de un punto interior, realiza proyecciones ortogonales mediante rectas paramétricas y se 

mueve iterativamente entre el interior y la frontera del poliedro que define la región factible hasta llegar al punto extremo óptimo. 

Palabras clave: programación lineal, optimización, proyecciones ortogonales, ecuaciones paramétricas. 
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Introduction1 2 
Linear programming (LP) dates from 1939 when Leonid Kan-

tarovich first expressed a problem in economics in linear form 

(Bazaraa et al., 1998). However, LP as an area of study has been 

attributed to George Dantzig who also developed the simplex 

method in 1947 (Cottle, 2006). LP has been widely studied in 

engineering programmes, management, mathematics and other 

fields due to its applicability. 

Since its publication, the simplex method (and its variants) was 

the main tool for solving linear problems until 1980 when Kha-

chiyan proposed an ellipsoidal algorithm (Khachiyan, 1982).  

Although its practical implementation was not very efficient, 

nevertheless it served as the basis for designing Karmarkar’s 

interior point algorithm (IPA), which is computationally efficient 

for solving large-sized problems (Karmarkar, 1984) and computa-

tionally less complex than the simplex method (Powell, 1993); 
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many additional contributions have been made since then, for 

example, a primal-dual simplex algorithm (Norman and Curet, 

1993) which uses less basis than the original simplex primal-dual, 

another solves the primal-dual starting from an infeasible interior 

point (Mizuno, 1994), a projective simplex algorithm using LU 

decomposition (Pan, 2000), an extension of Karmarkar's IPA 

having higher convergence speed (Naseri and Valinejad, 2007) 

and an adaptive primal-dual IPA (Kim, Lee and Cho, 2009). More 

recently, a proposed IPA based on a new search direction (Zhang 

and Xu, 2011) and another method based on a new barrier 

function (Cho, 2011) have been developed.  

Considering the large number of areas where LP can be applied 

and the importance of having efficient algorithms for solving LP 

problems, any contribution made to LP is very relevant. Conse-

quently, a new method for solving LP problems is presented in 

this paper. 

Formulating the problem 

An LP problem’s general structure is well-known:  

z=
 

      1 1 2 2 3 3 1 1... ...j j j j n nd x d x d x d x d x d x  
is maximized (mini-

mised) subject to: 
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dj being the coefficients of the objective function, xj decision 

variables, aij the coefficient of the j-th variable in the i-th constraint 

and bi the right side of the i-th constraint.  

An LP problem can also be written in a compact form as follows: 

 
(1) 

where d denotes the objective function coefficients’ vector, A 

the matrix of constraint coefficients, x a variable vector, b the 

vector of variables and 0 a vector made up only of zeros. 

A maximisation problem will be used from now on as the basis; 

non-negative constraints have not included since the algorithm 

did not require them (if required they could have been added as 

additional constraints). If fj were to represent the j-th row of 

matrix A in (1), the LP problem could have been rewritten as: 

and hyperplane fjx = 

bj would have been symbolised as 
j  

Describing the proposed algorithm  

The proposed algorithm had two components: an initialisation 

stage (non-iterative) and the main cycle (iterative). 

Initialisation stage  

n-1 orthogonal vectors to objective function gradient (z = d  ) 

were defined. n-1 parametric straight lines from any interior 

point were also defined during this stage (see Winston, 2005, pp 
597-604, explaining how to obtain an interior point with Kar-

markar's algorithm). The 2(n-1) intersections of these straight 

lines were found with faces of a polyhedron defined by the prob-

lem’s feasible region. The respective centroid C0 was calculated, 

from which gradient d was projected. This projection’s intersec-

tion with one of the faces of the polyhedron ended the algo-

rithm’s initialisation. The steps involved in this stage were. 

1. An interior point   1 2, ,..., n

ny y y R0P  
, was found, so 

that 
0AP b  

2. n-1 orthogonal vectors 
1 2 l n-1Ο ,Ο ,...,Ο ,...,Ο  to d (z ) 

3. n-1 parametric straight lines     , , 1 1t t R i n0 iP O    

were defined. 

 

(2) 

4. n-1 parametric straight lines’ intersection with hyperplanes 

 j
  1 j m  was found. For each i-th straight line there were 

no more than m intersections with hyperplanes 
j , defined 

by the vector of parameters   1 2
, ,...,

i i im
t t t . This was calcu-

lated by substituting values of xi according to (2) in each hy-

perplane equation: 

    1

1 1( ) ... ( )n

i i in n i ia y O t a y O t b  

 from where the value of t for straight line i intersection 

with hyperplane  j could be cleared: 

 




j j

ij

j i

b
t

0f P

f O
 

5. The least positive value of t and the least absolute value for 

the negative values of t were selected for the i-th straight 

line:   

 
(3) 

6. Points of intersection 
pos neg

i i i it t   1 2and0 i 0 iQ P O Q P O  were calculated us-

ing the values of t in (3) for each straight line with the face 

of the polyhedron. Total 2(n-1) points were 

1 2 11 1 2, , ..., ,Q Q Q Qi i n n 
 

7. These points’ centroid was: 

 
   




1 2 11 12

0

...

2( 1)

i i n n

n

Q Q Q Q
C  

to construct straight line: 

 

(4) 

and intersections with m hyperplanes were found  . Substi-

tuting the values of obtained from (4) in the respective hy-

perplane equations, led to: 

    1 1 1( ) ... ( )i in n n ja C d t a C d t b  
 

 




0j j

j

j

b
t

f C

f d
 

8.  


min
0

min
j

j
t

t t was defined. The non-existence of at least 

one positive value of t indicated that the problem was not 

bounded, thereby finishing the algorithm and reporting this 

condition. 

9. Point F1 coordinates were calculated on the k-th face of the 

polyhedron: 

  1 0 min ktF C d
 

Main cycle (iterative) 

n-1 orthogonal vectors to objective function gradient ( ) were 

defined. n-1 parametric straight lines from any interior point 

were also defined during this stage 

   

 

Once an algorithm has been initialised, iterative calculations must 

be made to find an optimal solution. Orthogonal projections 

were performed from F1, and both its intersections on the faces 

of the polyhedron and the centroid of these intersections were 

obtained. From the centroid, the gradient of the objective func-

tion was projected and the intersection on one of the faces of 

the polyhedron was calculated. Repeating this procedure led to 
coming close to an optimal solution for the required level of 

precision. The steps in the iterative cycle were: 

1. Finding n-1 orthogonal vectors 
1 2 l n-1Ο ,Ο ,...,Ο ,...,Ο  to d so 

that:  

sign 

1( )i i kFC f = sign ( )l kO f or zero 

where k was the index of the face on which the last projection 

was done.   

 z   max (min) , subject to : , (1)dx Ax b x 0

 jb j j   max z , subject to :  1, 2,...,mjdx f x

   


 


 

1

1 1

: (2)

i

n

n n i

x y O t

t

x y O t

0 iP O

      
ij ij

pos neg

i ij i ij
t t

t t i t t i   
> 0 < 0
min and min     3

 

n n n

x C d t

t

x C d t

 


 
  

1 1 1

0 : (4)C d
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2. Finding the intersections of each straight line  ,i l t t RF O  

with every m hyperplane (note that plane 
k  could have been 

excluded): 

  


 


 

1

1 1

:

l

i l

n

n n l

x F O t

t

x F O t

F O
 

substituting and clearing led to: 
 




j j i

lj

j l

b
t

f F

f O
     

3. Choosing minimum positive value of t for each straight line: 

  


 min
0

min
lj

l lj
t

t t l  

4. Calculating each straight line’s (each minimum value of t) 

points of intersection with the faces of the polyhedron using: 

  mini i l ltQ F O
    

 

5. Calculating the value of new centroid: 
 




1 1...

1

n
i

n

Q Q
C      

6. Constructing straight line i tC d
 
and finding its intersec-

tion with m hyperplanes j  

 

(5) 

substituting values of xi (5) in the in the respective hyperplane 

equations, led to:  

    1 1 1( ) ... ( )i in n n ia C d t a C d t b 
 




j j i

j

j

b
t

f C

f d
 

7. Defining  


min
0

min
j

j
t

t t . If the solution was unbounded, this 

condition was not necessarily detectable in the initialisation 

stage. This condition was still indicated by the non-existence of 

at least one positive value of t, in which case the algorithm had 

terminated.  

8. Calculating the coordinates for point 
iF  on the k-th face of the 

polyhedron:  



  1 mini i ktF C d  

9. Comparing the coordinates for Fi+1 with Fi. This was finished if 

the established precision criterion was satisfied, otherwise one 

had to return to step 1 and perform another iteration.  

Application example 

A problem in R2 is presented to illustrate each step in the algo-

rithm and graphically visualise it. 

The following problem was considered: 

 

     

 

1 2

1 2 1 2 1 2

1 2

3

1 3 5
: 7; 12; 21

2 2 4

0; 0

Max z x x

s t x x x x x x

x x

  

    

 

 

Figure 1 shows the feasible region, the objective function gradi-

ent and the optimal solution (x1 = 12    x2 = 6). 

 

Figure 1. Polyhedron, gradient and optimal point   

Initialisation  

 Interior point (1 1)  was used as 0P
 so that 

 0P Ax b
 

 Gradient vector d was    3 1   and n-1 orthogonal vec-

tors   to d had to be defined.   1 1 3O was chosen in 

this case. 

 n-1 parametric straight lines were defined. The equation for 

the straight line was:  

0 1tP O
= t

   
   

   

1 1

1 3
, this was 

 
 

 

1

1

2

1 1
:

1 3

x t
t

x t
0P O  

 The n-1 parametric straight lines’ intersection with hyper-

planes .j was found corresponding values of

 




j j

ij

j i

b
t

0f P

f O
 were calculated: 

 

 

 
   
 

 
 
   
 

11

1
7 1 1 1

132

1 7
1 1 3

2

t  
 

 

 
   
 

  
 

   
 

12

3
12 1 11

232

3 9
1 1 3

2

t
 

 

 

 
  
 

 
 

  
 

13

5
21 1 1 1

754

5 7
1 1 3

4

t

 

   
   

 
 

 
14

0 1 0 1 1
1

1 0 1 3
t   

   
   

 
  

 
15

0 0 1 1 1 1

0 1 1 3 3
t  

 Values of t were chosen as follows: 

 
 

   
 1

1 1

13 75
min min , ,1 1

7 7j

pos

i
t

t t
>0

  and 

 


 
      

 1
1

0

23 1 1
min min ,

9 3 3j

neg

i j
t

t t  

 The coordinates of the intersections with the hyperplanes 

of the polyhedron were: 


  


  

1

4

2

1 1*1 0
:

1 3 *1 4

x

x
; 

 

i

n n n

x C d t

t

x C d t

 


 
  

1 1 1

: (5)C d
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


   


    


1

5

2

1 4
1 1*

3 3
:

1
1 3 * 0

3

x

x

 

 The centroid was calculated as:  

 
   

    
  

  

0

4
0

4 0 23 2
2 2 3

C ; its location is shown in 

Figure 2. 

 

 

Figure 2. Centroid C0 

 Straight line 


 
 

  

1

0

2

2
3

: 3

2 1

x t
t

x t

C d  was constructed 

and the intersection with the five hyperplanes t  j was found by 

calculating: 
 

 


0j j

j

j

b
t j

f C

f d
 led to: 

 

 

   
     
   

  
 
  
 

1

1 2
7 1 2

322 3

1 3
1 3 1

2

t

 
 

   
     
   

 
 

  
 

2

3 2
12 1 2

262 3

3 7
1 3 1

2

t  

 

   
    
   

 
 

 
 

3

5 2
21 1 2

2184 3

5 57
1 3 1

4

t

  

 

   

 
   

 
  


4

2
0 1 0 2

3
2

1 0 3 1
t   

 

   

 
   

 
  


5

2
0 0 1 2

3
2

0 1 3 1
t  

  min min
j

j
t

t t
>0

was found. In this case 

 
 

  
 

min

26 218 26
min

7 57 7jt
t

>0
 

Coordinates 
1F  of the straight line with 

mint  on the k-th of the 

polyhedron were calculated: 

  
   

       
   

1 0 min

2 26 248 40
2 3 1

3 7 21 7
tF C d

 

As seen in Figure 3, point F1 was located on one of the faces of 

polyhedron and it came close to the optimal point; the main 

cycle (iterative) then began. 

 

Figure 3. Gradient projection 

Main cycle 

A problem in R2 is presented to illustrate each step in the algo-

rithm and graphically visualise Point F1 was located on face 

  2 1 2

3
: 12

2
x x  resulting in  

  
 

2

3
1

2
f .  The first step 

was to find n-1 vectors 
1 2 n-1Ο ,Ο ,...Ο  so that: 

They were orthogonal to the gradient of objective function d 

The sign 0 2( )FC f = sign 1 2( )O f  or zero.  

          Selecting vector   1 1 3O , led to: 

 
   
 

1 0

234 26

21 7
FC 

   
          

   
1 0 2

234 26 3
1 13

21 7 2
FC f  

 
 

       
 

1 2

3 9
1 3 1

2 2
O f , thus the second condition was 

satisfied. 

The intersection of each straight line F Oi i t  with each hyper-

plane was found (excluding the plane  2
).  

 The t values indicated that the intersections of straight line 


 

 
  


1

1 1

2

248

21
:

40
3

7

x t

t

x t

F O  

where: 

 

   
     
   

 
 
   
 

11

1 248 40
7 1

3022 21 7

1 147
1 1 3

2

t

 

   
    
   

 
 

  
 

13

5 248 40
21 1

444 21 7

5 147
1 1 3

4

t
  

 

   

 
   

 
  

 
14

248 40
0 1 0

24821 7

1 0 1 3 21
t    
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 

   

 
   

 
 

 
15

248 40
0 0 1

4021 7

0 1 1 3 21
t  

 The minimum positive value for t was chosen:  

 
  

 
1min

> 0

302 44 40 44
min
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 Corresponding coordinates of intersection 

 1 1 1mini tQ F O  were calculated using 
1mint

,  
as seen in Figure 4:  
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Figure 4. Orthogonal projection (Q1) 

The new centroid value was calculated:


 1 1
1

2

Q F
C  (Figure 5). 
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 The straight line 
 
was constructed 
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and its intersection with the five hyperplanes was found 

from 
 


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b
t

f C

f d
 by calculating: 
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Figure 5. New centroid C1    

 Defining  
    

 
min 2 3 3

66 22 22
min( , ) min

343 399 399
t t t t   

 Calculating the coordinates of point 
2F  (shown in Figure 6) 

on the k-th face of the polyhedron:  

  2 1 min 3tF C d  

   
 

     
 

2 1 min

83986 44394 22
3 1 11.8253 6.2184

7203 7203 399
tF C d

 

 Comparing the coordinates of Fi-1 with Fi.  

 11.8095 5.7143
 
cf  11.8253 6.2184   

 

Figure 6. Projection of the gradient from C1 to F2 

The Euclidean distance of points F1 and F2 to the optimal solu-

tion were 0.3063 and 0.2797, respectively. This iterative proce-

dure was repeated until the established precision criterion be-

came satisfied.   

Conclusions and future research 
A new algorithm for solving linear programming problems which 

does not require slack or excess variables, inverting matrices and 

the non-negativity of the variables has been presented. The 

algorithm’s complexity and comparison with other methods are 

important topics for future research currently being investigated 

by the authors, as well as variations in the algorithm, such as 

transformation of variables and alternative ways of projection to 

increase convergence speed. 
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