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The impact of liquid drops on purple cabbage leaves  

(Brassica oleracea l. Var. Capitata) 
 

Comportamiento al impacto de gotas sobre hojas de repollo morado 

(Brassica oleracea l. Var. Capitata) 
 

R. D. Andrade1, O. Skurtys2, F. Osorio3 

ABSTRACT  
Liquid drop impact on solid surfaces has been well studied due to its wide industrial application; however, there are very few studies 

of liquid drop impact on vegetable surfaces. The present work determined the drop impact pattern on purple cabbage leaves’ 

surface and evaluated the influence of water drop viscosity and surface tension. The pattern of fluid impact on cabbage surface 

was evaluated by using a high-speed camera (1250 frames/s) at different impact heights for Weber numbers ranging from 100-800. 

The results showed that greater maximum spread factor was achieved with higher impact speed and lower surface tension drops. 

Viscosity had great influence on maximum spread factor and on dynamic impact. Maximum scaled spread factor ξmax was We1/4 for 

low viscosity water drops (water and Tween20-water). Fluid viscosity could be increased or surface tension decreased to prevent 

droplet rebound and keep them on purple cabbage surface by spraying them with an edible coating. 
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RESUMEN 

Debido a su importancia en varias aplicaciones industriales, el impacto de gotas sobre superficies sólidas ha sido bastante estudia-

do. Sin embargo, las investigaciones en impactos de gotas sobre superficies de vegetales son muy escasas. En este trabajo se de-

termina el comportamiento del impacto de gotas en superficies de repollo morado y se evalúa la influencia de la viscosidad y la 

tensión superficial. El comportamiento frente al impacto de los fluidos evaluados sobre la superficie de repollo morado fue medido 

utilizando una cámara de alta velocidad (1250 fotos/s) a diversas alturas de impacto, para un rango de número de Weber de 100 a 

800. Los resultados muestran que el factor de extensibilidad máxima incrementa con el aumento de la velocidad de impacto y 

menor tensión superficial de gotas. La viscosidad tiene una gran influencia sobre el factor de extensibilidad máxima y la dinámica 

del impacto. Además, para líquidos de baja viscosidad (agua y Tween20-agua), el factor de extensibilidad máxima (ξmax) es pro-

porcional a We1/4. Finalmente, para lograr que la gota no rebote y se mantenga en la superficie del repollo morado, en la aplica-

ción de recubrimientos comestibles por aspersión se puede aumentar la viscosidad o disminuir la tensión superficial del líquido 

Palabras clave: impacto de gota, factor de extensibilidad, número de Weber, aspersión. 
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Introduction1 2 
Purple cabbage (Brassica oleracea L. var. capitata) is a native crop 

from Europe’s Mediterranean region which now grows all over 

the world as a fresh vegetable for market. Purple cabbage is 

usually consumed in fresh-cut salad mixtures; it is a functional 

food and has become popular due to its high anthocyanin con-

tent levels and has particularly been reported as providing pro-

tection against human tumour development (Yuan et al., 2009). 
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When purple cabbage is used in fresh-cut salad its aspect may 

become modified; its surface may lose water and turn brownish. 

The use of an edible coating could extend purple cabbage shelf 

life. Purple cabbage crops may be affected by pests such as the 

mealy cabbage aphid (Brevicoryne brassicae L.), the white butter-

fly (Pieris brassicae L.), the cabbage moth (Mamestra brassicae L.) 

and flea beetles (Phyllotreta spp.) (Hasan and Ansari, 2011; 
Weinberger and Srinivasan, 2009). Synthetic fungicides or natural 

extracts are commonly used for controlling insect pests. 

Spray systems are usually used for applying edible coatings and 

fungicides to vegetables (Andrade et al., 2012). The impact of 

aqueous drops on plants has been reported to involve splashing 

or bouncing, even for low kinetic energy drops since the upper-

most layers of the cuticle (the epicuticular waxes) act as a sub-

stantial barrier against wetting (Zhang et al., 2006). Rebounding 

or splashing may reduce the protective treatment of purple 

cabbages; indeed denser waxes always show more hydrophobic 

ability which can render spray applications ineffective. Two ways 

of preventing drops rebounding and keeping them on the surface 

have been proposed by Bergeron (2003): decreasing surface 
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tension (adding surfactants) and increasing fluid viscosity (adding 

polymers and colloids). 

The impact of liquid drops on solids is a very complex problem. 

It depends on drop and solid surface geometry as well as their 

physic-chemical properties. When a water drop makes an impact 

on a solid this can be divided into spreading, receding, splashing 

and bouncing. The relevant dimensionless parameters governing 

a drop’s impact on a smooth solid are Reynolds number (Re = 

ρU0D0 /μ), Weber number (We=ρD0U02/) and Ohnesorge 

number (Oh=μ/√(ρ  D0), where U0 is impact speed, D0 is initial 

drop diameter, ρ is fluid density,  is surface tension for a fluid-

air interface and μ is dynamic viscosity (Clanet et al., 2004; Yarin, 
2006). Impact (spreading and receding) has been characterised by 

a normalised “spread factor”, ξ(t), which is the ratio of drop 

spread diameter, D(t), on a solid surface to initial drop diameter, 

D0, prior to impact, ξ(t)=D(t)/D0. Plotting spread factor regard-

ing time yields a key value of interest to researchers: the maxi-

mum spread factor, ξmax=Dmax/D0 (Aytouna et al., 2010). 

This work was aimed at investigating and describing the fluid 

dynamics that occur during the impact of a water drop on a 

purple cabbage leaf. The influence of viscosity and surface tension 

were determined by varying fluid properties: water, glycerol-

water (50%v/v) and Tween 20-water (0.1%w/v). 

Materials and Methods 

Plant material 

Purple cabbages (Brassica oleracea var. capitata) were purchased 

from a local supermarket in Santiago (Chile); the vegetables were 

left at room temperature (20ºC) for several hours before meas-

urements were taken. Some lacking any visual signs of physical 

damage were then carefully selected. 

Physical properties of liquids 

Three liquid solutions were used: water, glycerol-water (50% v/v) 

and Tween 20-water (0.1% w/v) mixtures. Glycerol and Tween 

20 were purchased from Sigma (Sigma-Aldrich, Chile). The solu-

tions’ physical properties were measured (Table 1). Viscosity 

varied from 1 to 7.1 mPa and surface tension from 45.5 to 72.2 

mJ/m2. Surface tension measurements were carried out by the 

pendant drop method as reported in Skurtys and Aguilera 

(2008). Contact angle was measured by the sessile drop method, 

using ImageJ software (National Institutes of Health, USA) with 

the plugin Drop Shape Analysis (Drop-analysis, 2010). 

Table 1. The physical properties of liquids tested at 20ºC, showing 

initial drop diameter (D0) and contact angle (θ) 

Liquid θ D0 mm ρ kgm3 µ mPa 
γ  

mJ/m2 

Water 93 3.65 998 1.01 72.2 

Glycerol-water 

(50% v/v) 
95 3.47 1,120 7.13 64.9 

Tween 20-

water (0.1% 

w/v) 

86 3.00 998 1.01 45.5 

Drop impact apparatus 

Figure 1 gives a sketch of the apparatus for drop impact on vege-

table surfaces. It consisted of a drop production system and an 

image acquisition system. Water drops were generated by a 

1.194 mm internal diameter precision flat-tipped syringe needle 

(16 gauge) (Sigma-Aldrich, USA, St. Louis) connected to a digital-

ly-controlled syringe pump (Model 1000, New Era Pump System 

Inc., Farmingdale, NY, USA). Liquid flow rate was sufficiently low 

to obtain a nil initial drop speed (0.05 ml.min-1). The drop subse-

quently fell a predetermined vertical height onto a purple cab-

bage leaf. Drops were assumed to maintain their spherical shape 

throughout their free-fall since their radii were lower than capil-

lary length, κ=√(γ/g) (Landau and Lifshitz, 1959). 

Drop impact experiments were conducted for six different val-

ues of U0 in a 1.4 - 3.4 m.s-1 range. Drop impact kinetic energy, 

EK, varied from 1.4 × 10-5 J to 1.5 × 10-4 J. the speed of an im-

pacting drop, U0, was estimated from √(2gh). The image acquisi-

tion system consisted of a high-speed camera (Pulnix, Inc., San 

Jose, USA) positioned with an angle fixed at 10º from the verti-

cal. The camera’s acquisition rate was adjusted to 1,250 frames 

per second (fps) and shutter speed to 1/4,000s for accurate 

capture of drop t dynamics after collision. The pixel resolution at 

this speed was 224 x 160. 

 

Figure 1. A sketch of the drop impact apparatus: (a) programmable 

syringe pump, (b) syringe, (c) needle, (d) light, (e) high-speed cam-

era, (f) computer + ImageJ, (g) purple cabbage leaf, (h) impact height 

Drop impact measurements 

Drop diameter measurements (initial, D0; maximum, Dmax and 

final, Dend) were made using ImageJ software for all video data. 

The temporal evolution of the spread factor (ξ(t)) and maximum 

spread factor (ξmax) were determined from these measurements. 

Results and Discussion 

A qualitative description of the dynamics of drop 

spreading  

 The drop’s kinetic energy on impact was sufficiently high to 

spread (We ≥ 100) but sufficient low as not to splash (We ≤ 
800) for all the tests. Indeed, fingers were observed at the end of 

spreading but water drop cohesion was preserved for the highest 

Weber numbers. Figure 2 presents typical time sequences illus-

trating drop behaviour after impact (We ≈ 100) on a purple 

cabbage leaf for each liquid (water, glycerol-water and Tween 20-

water mixtures). The time sequence for each liquid can be divid-

ed into four stages: kinematic, spreading, retraction and relaxa-

tion. Each stage’s time scale depended on water drop impact 

speed and physical properties. A large portion of the drop re-

mained nearly hemispherical during the kinematic phase (t <1ms), 

then spread out radially on impact and reached maximum 

spreading diameter (Dmax). A thin film (lamella) bounded by a rim 

was observed during the spreading stage. When Dmax was  

Table 1: Physical propert ies of tested liquids at 20◦ C, init ial drop diameter (D0) and contact angle

(θ)

Liquid θ,◦ D0, mm ρ, kg.m− 3 µ, mPa.s γ, mJ.m− 2

Water 93 3.65 998 1.01 72.2

Glycerol-Water (50 % v/ v) 95 3.47 1120 7.13 64.9

Tween 20-Water (0.1 % w/ v) 86 3.00 998 1.01 45.5

to 1250 frames per second (fps) and the shut ter

speed to 1/ 4000s. The pixel resolut ion at this

speed was 224 × 160.

Figure 1: A sketch of drop impact apparatus.

(a) Programmable syringe pump, (b) syringe, (c)

needle, (d) light , (e) high-speed camera, (f ) com-

puter, (g) purple cabbage leaf, (h) impact height .

2.4 D rop impact measurement s

For all video data, drop diameter (init ial, D0 and

maximum, Dmax ) measurements were made us-

ing ImageJ software. From these measurements

the temporal evolut ion of the spread factor (ξ(t))

and maximum spread factor (ξmax ) were deter-

mined.

3 Result s and discussion

3.1 D ynamics of drop spreading: a
quali t at ive descr ipt ion

For all tests, the drop’s kinet ic energy at impact

is sufficient high to spread (We≥ 100) but suffi-

cient low to not splash (We ≤ 800). Indeed, for

highest Weber numbers, fingers were observed at

the end of spreading but the cohesion of the liq-

uid drop was preserved. In Figure 2, for each

liquid (water, glycerol-water and Tween 20-water

mixtures), typical t ime sequences illust rat ing the

drop behaviour after impact (We ≈ 100) on a

purple cabbage leaf is presented. For each liq-

uid, the t ime sequence can be divided in four

different stages: kinemat ic, spreading, ret ract ion

and relaxat ion. The t ime scale of each stage de-

pends on the impact velocity and physical prop-

ert ies of the liquid drop. In the kinemat ic phase

(t < 1ms), a large port ion of the drop remained

nearly hemispherical. Then, the impact ing liquid

drop spreads in the radial direct ion and reached

maximum spreading diameter (Dmax ). During

spreading stage, a thin film (lamella) bounded by

a rim was observed. When Dmax is achieved, the

surface tension forces became sufficient ly impor-

tant to retract the lamella. Thus, drop diameter

decreased cont inuously up to recede towards the

impact point (t ≈ 8ms). During the relaxat ion

stage, three different phenomena were observed

depending on the liquid drop propert ies: no re-

bound (glycerol-water mixture), rebound (water)

and part ial rebound (Tween 20-water mixture).

Finally, the liquid drop reached an equilibrium

shape at the end of the impact process (Dend).

3.2 Temporal var iat ion of t he spread
fact or

In order to describe with more details and ac-

curacy the impact phenomenon, temporal evolu-

t ions of the spread factor (ξ(t∗) =
D (t∗ )

D 0
) on the

leaves of purple cabbage are presented on Figure

3. Two drop impact velocit ies were tested: low

U0 = 1.4m.s− 1 (filled symbols) and high 3.4m.s− 1

(open symbols). Thus, We varied from 100 to

3
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achieved, surface tension forces became sufficiently important to 

retract the lamella. Thus, drop diameter decreased continuously, 

receding towards the impact point (t ≈ 8ms). Three phenomena 

were observed during the relaxation stage, depending on water 

drop properties: no rebound (glycerol-water mixture), rebound 

(water) and partial rebound (Tween 20-water mixture). A water 

drop reached an equilibrium shape at the end of the impact p 

(Dend). 

Spread factor temporal variation  

Figure 3 describes the impact on purple cabbage leaves in more 

detail and accuracy by showing spread factor temporal evolution 

(ξ(t*)=D(t*)/D0). Two drop impact speeds were tested: low 

U0=1.4m.s-1 (filled symbols) and high 3.4m.s-1 (open symbols); 

We thus varied from 100 to 800. Unusually for inertia-governed 

impacts, time t was made non-dimensional (t*) using impact 

speed U0 and initial spherical drop diameter D0 (Sikalo et al., 

2002). Figure 3 shows that for t* < 5 (or dξ/dt* > 0) that ξ(t*) 
depended on water drop impact speed and physical properties. 

Clearly, increased impact speed for a fixed water drop would 

modify the impact pattern since there would be an increase in 

the maximum spread factor value (ξmax) with the kinetic energy. 

Furthermore, for a fixed impact speed, ξmax increased when 
liquid viscosity or surface tension decreased since: 

ξmax(glycerol−water)<ξmax(water) or ξmax(water) < 

ξmax(Tween20−water). 

 

Figure 3: Spread factor temporal variation during post-impact 

spreading on a purple cabbage leaf: U0 = 1.4 m/s (filled symbols) and 

U0 = 3.4 m/s (open symbols) 

 

Indeed, glycerol-water viscosity was six or-

ders of magnitude greater than that of water 

whereas water and Tween 20-water had 

similar viscosity values even though Tween 

20-water surface tension was about a third 

that of water. For t*>5, the receding and 

relaxation stages also depended on water 

drop properties (i.e. viscosity and surface 

tension). A water drop at low impact speed 

showed pronounced oscillations, slowly dying 

out due to viscous damping, whilst a glycerol-

water drop showed no oscillations after 

receding since viscosity was higher. Kinetic 

energy was quickly dissipated by viscous 

forces. A Tween 20-water drop showed 

intermediate behaviour, undergoing half an 

oscillation. At high impact speed, ξmax was 

greater than the latter; receding energy was 

thus progressively damped and oscillation 

disappeared. However, even if the behaviour of water drop 

impacts was distinct, the drop tended towards a final drop diam-

eter Dend of around 1.5D0. 

Maximum spread factor 

Figure 4 shows the maximum spread factor (ξmax) on a purple 

cabbage leaf or a large range of Weber numbers (100-800) and 

the three liquids considered here.  ξmax values increased with 
We for all liquids due increased drop impact speed (or kinetic 

energy). This result confirmed previous observations stating that 

inertia controls spreading (Bolleddula et al., 2010; Sikalo et al., 

2002). Clearly, viscosity had an effect on ξmax. values; indeed, 

ξmax increased by 55% for water and Tween 20-water drops but 

only 35% for a glycerol-water drop when We became increased 

from 100 (U0 = 1.4m.s-1) to 800 (U0 = 3.4m.s-1). Higher viscosity 

liquid, such as water-glycerol, produced higher viscous dissipa-

tion of the kinetic energy on impact since ξmax(water) or 

ξmax(Tween 20−water) were greater than ξmax(glycerol−water), the differ-

ence being greater than 20%. Moreover, the data revealed ξmax 

∝ We0.25±0.02 for lower viscosity, whereas this was ξmax ∝ 

We0.16±0.02 for higher viscosity. The lower viscosity exponent 

obtained in this work had good agreement with that reported by 

Clanet et al., (2004) for drop impact on a super-hydrophobic 

surface: ξmax ∝ We1/4. The Dmax relationship must contain D0 
water drop surface tension and viscosity properties for explain-

ing the difference between both exponents. It should be noted 

that Rein (1993) reported ξmax ∝ Re1/5 for highly viscous fluids. 

 

 

Figure 4: Maximum spread factor regarding Weber number) 

 

Figure 2. Typical time sequences illustrating the impact of water drops on a purple cabbage 

leaf 
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Conclusions 
Water drop impact on a purple cabbage leaf was studied in detail 

in this work; in particular, no rebound, partially rebound or 

rebounds were observed during the relaxation stage. Significant 

differences regarding spread factor pattern were reported when 

water drop physical properties (viscosity and surface tension) of 

the varied. It was shown that lower water drop surface tension 

promoted greater spreading and damped oscillations during the 

relaxation stage whilst higher viscosity damped both spreading 
and receding stages. Moreover, this work verified that maximum 

spread factor ξmax scaled with We1/4 for low viscosity water 

drops (water and Tween 20-water mixture). Fluid viscosity can 

be increased or surface tension decreased to prevent droplet 

rebound and keep them on purple cabbage surface by spraying 

them with edible coatings. It was also shown that water drop 

impact on purple cabbage leaves is a very complex phenomenon 

meriting further investigation regarding how to control it. 
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