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Abstract--This paper proposes k-means clustering algorithm to 
identify voltage sags patterns and group fault zones with similar 
impact in high and medium voltage electric. The proposed 
methodology comprises three stages. First, network modeling 
and faults simulation were performed in order to get information 
about voltage sags caused by faults in the transmission system. 
Voltage sags patterns were identified at the second stage by 
means of a k-means clustering algorithm, allowing the 
determination of fault zones. Using the power quality 
measurements data base of the major electricity utility of Bogotá, 
voltage sags were classified according to the previously 
determined voltage sags patterns. At the third stage of the 
methodology a comparison between simulated and measured 
sags is performed, allowing the identification of sags caused by 
faults. 
 

Keywords: Sags classification, patterns voltage sags, K-means 
algorithm. 
 

Resumen-- En este artículo se propone el uso del algoritmo K-means 
para identificar patrones de hundimientos en tensión y agrupar zonas de 
falla con impacto similar en redes de alta y media tensión. La metodología 
propuesta comprende tres etapas. Primero, se realiza un modelo de la red 
de transmisión y distribución y se simula un barrido de todo tipo de 
fallas, obteniendo información sobre los hundimientos en tensión. En 
segundo lugar, se identifican patrones de hundimientos en tensión usando 
el algoritmo k-means y se determinan diferentes zonas de falla para cada 
uno de los patrones. Finalmente, se usan los patrones encontrados para 
clasificar información real de hundimientos en tensión registrados en 
Bogotá y se establecen las zonas de falla para grupos de hundimientos en 
tensión. 
 

Palabras Clave: Clasificación de hundimientos en tensión, patrones 
de hundimientos en tensión, algoritmo k-means. 

1. INTRODUCTION 

Power quality (PQ) assessment is really important for  utilities 
and users for identifying some critical areas in their systems 
and apply corrective actions to improve the  PQ conditions 
(Bollen,2003). The identification of transitory disturbances 
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such as voltage sags and swells requires continuous 
measurement of PQ and techniques for analysis of large 
amount of information. According to above, some 
methodologies for detection and classification of disturbances 
are proposed on   (Biswal et al, 2009; Mokhlis et al, 2009; 
Romero et al, 2010). 
 

On the other hand, power quality measurement and 
assessment has taken relevance since the publication of the 
CREG Resolution 024 in 2005 in Colombia (CREG 024, 2005). 
The resolution demands the realization of power quality 
measurements on bus bars with voltage levels greater than 
1kV have to be performed.  In Bogotá city 290 power quality 
measuring devices were installed on the above mentioned bus 
bars of the distribution system, which record disturbances like 
voltage sags, swells, unbalance and flicker, among others 
according to standard IEC 61000-4-30 (IEC 61000-4-30, 
2009). That information is sent to a control center, processed 
and subsequently reported to the regulatory body CREG 
(PAAS-UN, 2009). This institution will establish the limits for 
voltage sags from these reports in the near future. The 
network operators are interested on assessing voltage sags to 
determine their cause, with the aim of exploring suitable 
solutions and establish responsibilities between customers and 
network operators (Cajamarca et al, 2006). 

 
According to above, this paper proposes a methodology that 

consists of four stages: 
 
1. Network modeling. Network distribution system in 

115kV and 220kV of the all Colombian system is 
modeled using symmetrical components. This model is 
made in order to simulate all possible faults. On this 
model, any possible localization of faults is simulated as 
well. 

2. Fault simulation. Different types of faults on several 
locations are performed. Information of voltage sags in 
the whole electric system of Bogotá is obtained for every 
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3. simulated fault. 
4. Identification of voltage sags patterns. Voltage sags 

information is analyzed by means of principal 
components analysis, afterwards patterns of voltage sags 
are identified using the k-means algorithm. The results 
are clusters of voltage sags with a respective occurrence 
zone. 

5. Classification of real voltage sags. Real voltage sags 
recorded in Bogotá from 2008 to 2010 are classified 
resorting to the previously determined clusters. Finally, 
zones where real faults occur and cause voltage sags in 
Bogotá are determined. 

2. NETWORK MODELING 

In order to simulate faults on the distribution system and 
find the relationship between voltage sags and faults, a 
symmetrical components model is developed. Network 
distribution system in 115kV and 220kV of the entire 
Colombian system (756 bus bars) is modeled in symmetrical 
components in order to get all possible localization of faults in 
the Bogotá’s electric network (Romero, 2010). This model 
consists of positive, negative and zero sequence matrix. 

 
The interested zone is defined like the zone in the 

Colombian distribution system where voltage sags occurred 
by faults are evaluated. In this case, interested zone consist on 
the bus bars of the distribution system on Bogotá city closed 
on gray contour in Fig. 1. 
 

Not all faults in the Colombian distribution system cause 
voltage sags in Bogotá, therefore a disturbing zone is 

identified like the zone where the occurring faults can cause 
voltage sags on the bus bars of a specific zone. In order to 
identify the disturbing zone, a new matrix Voltage sags matrix 
is calculated from the symmetrical components matrices. This 
matrix has information about voltage of all bus bars when 
fault occurs on every bus, as described in (Goswami et al, 
2008). 

 
To calculate the matrix of sags caused by three-phase faults, 

the equation for theoretical faults in (Anderson, 1973) is used: 
 

                              
kk

ik
i Z

Z
V −= 1                   (1) 

Where: 
- V i: Voltage on bus bar i when fault occurs on bus bar 

k. 
- Zik: Mutual impedance between i and k bus bars. 
- Zkk: Self impedance in k bus bar. 

 
From (1), the matrix of sags is calculated as follow: 

 
1][]1[ −−= DiagZZVsags                      (2) 

Where: 
- Vsags: Matrix of voltage sags on all buses when faults 

occur on every bus bar. 
- Z:  Positive sequence impedance matrix. 

 
The term [DiagZ] of the equation is a matrix calculated 

from the diagonal of the positive sequence impedance matrix 

 
Fig. 1. Disturbing and interest zone in the Colombian distribution system. 
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Z. For unsymmetrical faults (single, dual-phase and dual-
phase to ground) a similar procedure is performed, as 
explained in detail in (Romero et al, 2010). 

 
The sags matrix is modified by removing the bus bars in 

which faults occur but do not cause voltage sags, especially at 
the set of bus bars of interest. The result of this procedure 
determines which bus bars of the Colombian system are in the 
disturbing zone. In the case of this paper, the zone of interest 
is Bogotá (gray zone), the disturbing zone are all bus bars in 
Fig. 1, including the bus bars in the gray zone. That shows 
that many voltage sags observed in the Bogotá's system may 
be caused by faults inside the city or by faults located in the 
nearby parts of Colombian system. 

3. FAULT SIMULATION 

To determine the voltage sags profile in every bus inside 
the zone of interest, simulations of faults in all bus bars and 
sections lines of the disturbing zone are performed. For this, in 
every 10% of line different types of faults (single, dual and 
three phase fault) are simulated in the disturbing zone. The 
simulation procedure is described in the following: 
 

1. A vector with information regarding faults occurring 
on lines is generated (L), containing percentage of line 
(%T), type of fault (Tf) and impedance of line (Z). 

2. Symmetrical components matrices are modified by 
removing the failed line between nodes A and B. 

3. Impedance (Z) of faulted line is split into two (Z1$ and 
Z2) according to (%T). 

4. Z1 is added to node A of matrices sequence generating 
a fictitious node C. 

5. Z2 is added between the fictitious node C and node B 
of the sequence matrices. 

6. Depending on the type of fault (Tf) voltages of all 
nodes are calculated when fault occur in fictitious node 
C. 

7. The angles of voltages in symmetrical components are 
modified due transformer connections. 

8. Values of voltage in symmetrical components are 
transformed to values of voltage in phase components. 

 
The location of faults and voltage values obtained in each 

bus in the area of interest can be organized in two arrays: 
cause and effect, as shown in Table 1. 

 
Table 1.Organized information for identifying voltage sags patterns. 

 
Location and type of 

faults 
 Voltage Sags magnitude (pu) 

Line 
% 
of 

line 

Type of 
fault 

 V1a V1v V1c V2a V2b V2c 

17 100 1  0,61 0,82 1,00 0,05 0,79 1,00 

28 30 4  0,83 1,00 1,00 0,82 1,00 1,00 

138 90 3  0,78 0,07 0,00 0,78 0,00 0,00 

In the next section, simulated voltage sags are grouped 
according to the pattern identification. Because of the causal 
relationship between simulated faults and voltage sags, 
different obtained clusters are an indirect classification of 
faults. That is, faults that occur in different parts in the system 
and generate similar profiles of voltage sags are grouped in 
the same cluster. 

4. DETECTION OF VOLTAGE SAGS PATTERNS BY 
MEANS OF K-MEANS ALGORITHM 

With the voltage sags information caused by faults, patterns 
of voltage sags are identified and grouped. Then, the 
relationship between the location of faults and the occurrence 
of such patterns is determined. 

K-means algorithm is a tool to put observations into 
different clusters according to the level of similarity (Queipo, 
2001; Ramos, 2009). Some advantages of k-means algorithm 
for clustering data were identified in previous works (Mora et 
al, 2009); (Camargo et al, 2009). An example of that 
algorithm is shown in Fig. 2, where observations on two 
dimensions (X,Y) are grouped on three different clusters. 

 

 
Fig. 2. Grouping of observations by k-means algorithm 

 
Fig. 2 shows the performance of k-means method, however 

axes units have not a quantitative or physic meaning. 
 
K-means algorithm consists of the follows steps: 
 

1. An initial k value of clusters is defined, 
2. k centroids (+) are located  randomly on the sample 

space, 
3. distances between observations and centroids are 

calculated, 
4. each observation is assigned to the nearest centroid, 
5. the position of centroids is update to the average of 

the observations assigned to each centroid, 
6. Several iterations are performed from step 2 in order 

to minimize the distance between observations and 
centroids. 
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In this case k-means algorithm is implemented to identify 
voltage sags patterns in matrices of Table I. In voltage sags 
matrix (144 x 6355) every row belong to an observation in the 
time of 144 voltage values (3 phases of 48 bus bars). For 
applying k-means algorithm to voltage sags matrix some 
limitations about the algorithm and high dimensionality of the 
matrix are evaluated: 

 
The k-means algorithm has some important limitations: 
 
- Iterative algorithms of classification like k-means are 

deficient for problems on a large scale. 
- K-means algorithm needs a lot of time to optimize the 

clustering process. 
- Because of high dimensionality of the matrix, the 

possible initial locations of centroids increase 
exponentially, so likelihood to stop in a local maximum 
increases correspondingly.  

 
The utilization of the above mentioned algorithm has also 

limitation regarding to the high dimensionality of the voltage 
sags matrix: 

 
- Matrix can have redundant information in the 144 

variables. 
- Matrix can have irrelevant information without 

capacity of discrimination in clusters. 
- Matrix can have segmented information, its means 

useful information can be distributed on several 
variables. 

 
According to these undesired characteristics, reducing 

dimensionality of voltage sags matrix is necessary before 
patterns are identified. For this purpose, principal components 
analysis is implemented in the next section. 

A. Principal Components Analysis 

The utilization of principal components analysis (PCA) is 
proposed to reduce the dimensionality of the voltage sags 
matrix. In this analysis, the information of n observations and 
p dimensions are represented with r<p dimensions. The new 
dimensions are lineal combinations (non correlated) of the 
initial ones (Meléndez et al, 2007). 

 
An example of the principal components analysis (PCA) is 

shown in Fig. 3. In that case, the aim is reduce the 
dimensionality (p=2) of the observations4. 

 
In Fig. 3 the aim is to find a sub-space with dimension 

smaller than p, such that by projecting each observation, this 
retains their structure with the least distortion as possible. 

 
 

 
4 An example of  principal components analysis is illustrated in Fig 3, 

however axes units have not a quantitative or physic meaning 

 
Fig. 3. Principal components analysis for 2 dimensions observations. 

 
The subspace with dimension smaller is represented by a 

line which has the following condition: 
 

The sum of the distances between the original 
observations and their projections onto the line should be 

as short as possible. 
 
To explain the above, the projection of the observation Xi 

on the direction a1 in Fig. 3 is the scalar:  
 

1
1

1 ˆ
ˆ

ˆˆ
az

a

aX
projX i=⋅=            (3) 

 
The vector zia1 represents the projection of Xi onto the line 

and ri represents the distant between Xi and the line. Then the 
purpose is to minimize the square of the sum of the distances 
ri: 

         ∑ ∑
= =

⋅−=
n

i

n
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22           (4) 

In Fig. 3 the projection of each observation onto line forms 
a triangle. By the Pythagorean Theorem, next equations are 
deduced: 

 
222

iii rzx +=                    (5) 

22' iiii rzxx +=⋅               (6) 

 
by the sum of all observations i=1 ... n 
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The first term of Eq. (9) is constant, thus minimize ∑
2

ir is 

equivalent to maximize∑
2
iz , which means maximizing the 

sum of the square of the projections. At the same time, it is 
equivalent to maximize the variance (Peña, 2002). 
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According to the above, the best line to represent the 
observations in a single dimension is one in which maximize 
the variances of the data. This criteria is extended to n-
dimensional space, where n<p. 
In order to find the main components of a voltage sags matrix 
from the covariance matrices, the Matlab function princomp is 
used. The result of this function is a matrix with 144 
uncorrelated variables organized in a way that the first 
variables have the greatest variance. It means that first 
variables have the most information from the initial matrix. 

 
Table 2. Variance percentage of principal components. 

 
Number of 
components 

Variance 
percentage (%) 

1 64,34 
2 79,62 
3 84,66 
4 87,13 
5 89,45 
6 91,29 

 
The Table II shows the percentage of variance according to 

the number of principal components. The first five principal 
components represent the 89.4% of the variance of the 
original data, it means nearly 90% of the total information. 
Finally, these five components are selected, so the initial 
matrix (6355 x 144) is reduced to its main components 
(6355x5) for applying k-means algorithm. 

 

B. Clustering of voltage sags and fault zones for each cluster 

The next step is to determine the optimal number of clusters 
for grouping the observations of voltage sags (Davies and 
Bouldin, 1979). For this purpose, some indexes are calculated 
for each value k of clusters, then the best value of the 
indicator shows the optimal number of clusters to group the 
information. For this case three different indicators are used 
and results are shown below. 

 
1. Index 1. Square of the sum of the distances between 

observations and centroids. (Optimal result k=10).  This 
index shows the variation of the sum of the distances 
between the data from each of the clusters and their 
centroids. 

 
2. Index 2. Silhouette index. (Optimal result k=20, 55 y 

85). In this index a value between -1 and 1 is assigned to 
each observation, which measures the similarity of the data 
in the same cluster and compares it with the similarity of 
data from other clusters. The closer the index to 1, the 
better the data are grouped together. 

 
3. Index 3. Relationship inter-intra cluster distances. 

(Optimal result k=60). This index estimates the proportion 
between the average distance of the data to the respective 
centroids and the minimum distance between centroids. 

 
The results of the proposed indicators obtain different k 

value for an optimal clustering. This implies the observations 
of voltage sags are not naturally grouped, it means there are 
not clearly differentiated clusters. 

 
Given that the results of the indicators were inconclusive, it 

is possible to group the observations in an appropriate number 
k of clusters defined by the goal of the grouping. Therefore 
the goal of grouping is defined as follow: 

 
Clustering of voltage sags represents an indirect faults 
classification (location and type) according to their 

impact (sags profile). 
 
Thus, the number of clusters is related to the size of the 

zones where faults occur and cause similar profiles of voltages 
sags. Therefore, few number of clusters means few very big 
zones and is not possible to discriminate the place of 
occurrence of faults with different impact on bus bars. On the 
other hand, a lot number of clusters means very small zones 
and the classification is inefficient. After trying various 
amounts of clusters, the size of the resulting zones was 
evaluated for different number of clusters, finally 50 clusters 
are selected. With this number of clusters size of zones is 
considered appropriate.  By applying k-means to the principal 
components obtained above, a vector C(6355 x 1) is obtained 
and it indicates which of the 50 clusters are classified each 
observation of matrix voltage sags and matrix faults. 

By grouping the locations of faults by the vector C, zones 
in which faults have similar impact are determined. In  Fig. 4 
the location of faults that generate voltage sags with similar 
impact classified in cluster 48 is identified (gray zone). 

 
Similarly, by grouping the types of simulated faults by the 

vector C types of faults of each cluster are determined. 
 

5. CLASSIFICATION OF REAL VOLTAGE SAGS 
OCCURRED ON BOGOTÁ. 

Clustering of simulated voltage sags is now used as a 
classifier for real voltage sags occurring in the 115kV bus bars 
of Bogotá city. For this, the recorded information of voltage 
sags in each of the bus bars between January 2008 and 
December 2009 is processed in a centralized database.  
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For obtaining a matrix of N observations x 144 variables, 

the voltage sags information is processed taking into account 
the following assumptions:  

 
- Voltage sags that occur within a time window of 1 

minute are caused by the same event5. Several voltage 
sags in the same window in the same bus are caused by 
the same event. 

- If voltage sags are not recorded in a bus in a time 
window, then voltage sags does not occur for the same 
time window. 

 
On the other hand, according to the simulations, faults in 

the 115kV and 220kV transmission system not cause voltage 
sags only in one bus, or voltage sags in bus bars insulated 
from each other, so that information is excluded. 
 

As a result, from 7580 measured voltage sags in all 115kV 
bus bars of Bogotá caused by 1955 events, 3509 voltage sags 
are filtered and they are attributable to 360 faults in the 
transmission and distribution system. It means a real 
information matrix with (360 x 144) dimensions. 

 
The information of voltage sags attributable to faults in the 

transmission and distribution system is classified with the 
centroids of each cluster found in the previous section as 
follows: 

 
1. Distances between the 50 centroids and every real 

 
5 This is because the data records do not have a better resolution to provide 

a smaller time window size. 

observation of 144 dimensions are calculated, 
2. observations are assigned to the nearest centroid. 
 
The final result of the classification is shown in Table III, 

which can be analyzed as follows: 
 
- 360 events attributed to faults are classified into 12 

different clusters, cluster 4 is the one with more events 
(225). 

- For clusters 4, 33, 35 and 48 do not have evidence of 
the type of fault occurs. 

- Faults that produce more voltage sags are grouped into 
clusters 48, 4 and 2 with 986, 848 and 727 voltage sags 
respectively.  

- Faults in clusters 2, 7, 14 and 37 are not three-phase 
faults. 

- Faults in clusters 29 and 47 are two-phase or two-phase 
to ground. 

- Faults in Clusters 7 and 14 occur few times but their 
impact on the bus bars is the highest with 47 and 46 bus 
bars affected by fault respectively. 

- Faults in cluster 4 occur frequently, buy they have the 
least impact with only 4 bus bars affected by fault. 
 

Figs. 5 and 6 display disturbing zones for clusters 4 and 33 
where more number of faults occurred, and caused voltage 
sags in the city of Bogotá. 

 

 
Fig. 4. Disturbing zone for voltage sags grouped in clusters 48. 
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Fig. 5.  Disturbing zone for voltage sags in cluster 4. 
 
 
 
 

 
Fig 6. Disturbing zone for voltage sags in cluster 33. 
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6. CONCLUSIONS 

This paper proposed a methodology for estimating patterns 
of simulated voltage sags by means of k-means algorithm and 
for determining the location of the faults that cause voltage 
sags in distribution bus bars of the system. The Colombian 
system was modeled and fault simulation was performed in all 
sections of the system to generate voltage sags. Subsequently 
simulated voltage sags were clustered using principal 
components analysis and k-means algorithm, allowing the 
identification of zones of faults occurrence for each cluster. 
Voltage sags clusters were used to classify real voltage sags 
occurred in the system. The methodology was applied to the 
115kV and 220kV system of Bogotá and real areas where 
faults occur and caused voltage sags in Bogotá were 
identified. 
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Table 3. Clustering of voltage sags occurred on 115kV bus bars of Bogotá 
 

Cluster 
number 

Number of faults Percentage of faults Type of faults Total number of 
sags 

Bus bars 
affected/fault 

2 21 5,83% 1,2,4 727 35 
4 225 62,50% 1,2,3,4 848 4 
7 1 0,28% 1,2,4 47 47 
13 3 0,83% 3 108 36 
14 1 0,28% 1,2,4 46 46 
25 1 0,28% 1 37 37 
29 1 0,28% 2,4 29 29 
33 65 18,06% 1,2,3,4 543 8 
35 4 1,11% 1,2,3,4 82 21 
37 1 0,28% 1,2,4 27 27 
47 1 0,28% 2,4 32 32 
48 36 10,00% 1,2,3,4 983 27 

 
 




