## Una Nueva Fórmula para la Dureza Brinell

En este artículo se presenta una fórmula sencilla para determinar la dureza BRINELL.

ING. LUIS E. CEPEDA Profesor Asistente U.N.

En Ingeniería, la dureza de un metal se determina por métodos basados en la resistencia a la penetración de un indentador de mayor dureza que la del metal que se prueba.

El método Brinell ideado por el ingeniero sueco J.A. Brinell en 1.900, utiliza como penetrador una esfera endurecida de acero de 10 mm. de diámetro, y una carga de 3000 Kg para materiales ferrosos con espesor superior a 6 mm. Para metales y aleaciones blandas la fuerza y el diametro del penetrador son diferentes.

El número de dureza Brinell se determina con la fórmula:

$$DB = \frac{P}{\frac{\pi D (D - \sqrt{D^2 - d^2})}{2}}$$
 (1)

donde

P = Fuerza aplicada en Kg.

D = Diámetro del indentador en

d = Diámetro de la huella en mm. >

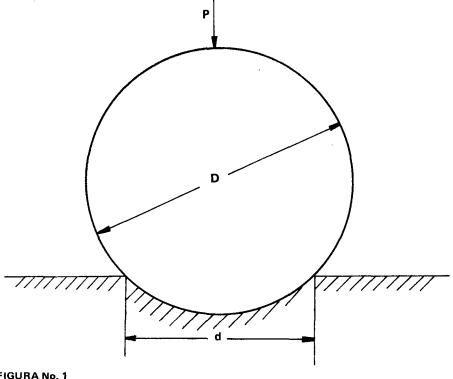



FIGURA No. 1

En 1.908, el técnico alemán E. Zeit Meyer definio la dureza como la carga unitaria referida al área proyectada de la huella; por lo tanto la dureza Meyer será:

$$DM = \frac{P}{\pi d^2/4}$$
 (2)

La ecuación (2) no depende del diá-

metro del penetrador, y es bien sabido que el diámetro de la huella d, depende del diámetro del indentador D. Por lo tanto los números de dureza Meyer no son comparables con distintos penetradores.

En años recientes el ingeniero Vicente Nacher (Profesor Facultad de Ingenieria UNAM) propuso una fórmula que corrige a la de Meyer y que tiene en cuenta las condiciones del ensayo, esto es, P y D.

La fórmula Nacher está dada por:

$$DN = \frac{4P}{\pi d^2} = \frac{P}{\pi D^2} = \frac{4P}{\pi d^2} = K$$

Esta fórmula es mucho más sencilla que la propuesta por Brinell y más fácil de aplicar. La constante K para el ensayo en materiales ferrosos es 9.55.

A continuación se da una tabla de los valores obtenidos con la fórmula Brinell y la fórmula propuesta por Nacher.

| Dureza Brinell<br>usada en la<br>práctica | Diámetro de<br>penetración<br>en mm | Dureza determinada por<br>la fórmula Brinell,<br>en kg/mm² | Dureza determinada por<br>la fórmula Nacher,<br>en kg/mm² |           |
|-------------------------------------------|-------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------|
|                                           |                                     | $\frac{P}{\pi \frac{D}{2} (D - \sqrt{D^2 - d^2})}$         | 4P                                                        | P         |
|                                           |                                     |                                                            | $\pi$ d <sup>2</sup>                                      | $\pi D^2$ |
| 745                                       | 2.25                                | 744.8373                                                   | 744.9606                                                  |           |
| 712                                       | 2.30                                | 712.3833                                                   | 712.5123                                                  |           |
| 682                                       | 2.35                                | 681.9783                                                   | 682.1131                                                  |           |
| 653                                       | 2.40                                | 653.4532                                                   | 653.5940                                                  |           |
| 627                                       | 2.45                                | 626.6561                                                   | 626.8031                                                  |           |
| 601                                       | 2.50                                | 601.4502                                                   | 601.6036                                                  |           |
| 578                                       | 2.55                                | 577.7119                                                   | 577.8717                                                  |           |
| 555                                       | 2.60                                | 555.3295                                                   | 5!                                                        | 55.4958   |
| 534                                       | 2.65                                | 534.2014                                                   | 534.3745                                                  |           |
| 514                                       | 2.70                                | 514.2357                                                   | 514.4157                                                  |           |
| 495                                       | 2.75                                | 495.3486                                                   | 49                                                        | 95.5356   |
| 477                                       | 2.80                                | 477.4637                                                   | 47                                                        | 77.6579   |
| 461                                       | 2.85                                | 460.5113                                                   | 46                                                        | 60.7128   |
| 444                                       | 2.90                                | 444.4277                                                   | 44                                                        | 14.6366   |
| 429                                       | 2.95                                | 429.1544                                                   | 42                                                        | 29.3710   |
| 415                                       | 3.00                                | 414.6378                                                   | 41                                                        | 4.8622    |
| 401                                       | 3.05                                | 400.8288                                                   | 40                                                        | 1.0611    |
| 388                                       | 3.10                                | 387.6820                                                   | 38                                                        | 37.9224   |
| 375                                       | 3.15                                | 375.1557                                                   | 375.4044                                                  |           |
| 363                                       | 3.20                                | 363.2114                                                   | 36                                                        | 3.4685    |
| 352                                       | 3.25                                | 351.8136                                                   | 35                                                        | 52.0793   |
| 341                                       | 3.30                                | 340.9294                                                   | 341.2039                                                  |           |
| 331                                       | 3.35                                | 330.5284                                                   | 330.8117                                                  |           |
| 321                                       | 3.40                                | 320.5823                                                   | 320.8747                                                  |           |
| 311                                       | 3.45                                | 311.0649                                                   | 31                                                        | 1.3666    |

| 302 | 3.50 | 301.9519 | 302.2630 |
|-----|------|----------|----------|
| 293 | 3.55 | 293.2207 | 293.5414 |
| 285 | 3.60 | 284.8502 | 285.1807 |
| 277 | 3.65 | 276.8207 | 277.1612 |
| 269 | 3.70 | 269.1140 | 269.4646 |
| 262 | 3.75 | 261.7129 | 262.0738 |
| 255 | 3.80 | 254.6014 | 254.9728 |
| 248 | 3.85 | 247.7647 | 248.1467 |
| 241 | 3.90 | 241.1885 | 241.5815 |
| 235 | 3.95 | 234.8600 | 235.2640 |
| 229 | 4.00 | 228.7666 | 229.1819 |
| 223 | 4.05 | 222.8969 | 223.3236 |
| 217 | 4.10 | 217.2401 | 217.6784 |
| 212 | 4.15 | 211.7858 | 212.2360 |
| 207 | 4.20 | 206.5246 | 206.9868 |
| 201 | 4.25 | 201.4474 | 201.9218 |
| 197 | 4.30 | 196.5455 | 197.0325 |
| 192 | 4.35 | 191.8111 | 192.3107 |
| 187 | 4.40 | 187.2366 | 187.7491 |
| 183 | 4.45 | 182.8147 | 183.3403 |
| 179 | 4.50 | 178.5388 | 179.0776 |