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Abstract: I resolve an apparently unresolved 
dispute about how probable uniform expe­
rience makes an extrapolation from it, and 
draw some general lessons about such 
enumerative induction. Uniform experience 
does not necessarily confer a high probabil­
ity on an extrapolation of or generalization 
from that experience. Rational extrapolation 
or generalization typically involves a lot of 
specific background information, though not 
necessarily a general assumption that nature 
is uniform or that the future will resemble 
the past. And new evidence which is highly 
likely on one hypothesis but highly unlikely 
on any of its competitors does not necessar­
ily make the former hypothesis highly prob­
able. 

Resume: Je resous une controverse 
apparamment irresolue concernant la 
probabilite des extrapolations fondees sur 
I 'uniformite de I' experience, et je tire 
quelques conclusions generales sur 
I'induction enumerative. L'uniformite des 
evenements n'accorde pas necessairement 
une haute probabilite Ii une extrapolation 
ou Ii une generalisation basee sur cette 
uniformite. Une extrapolation ou une 
generalisation rationnelle s'etaye 
typiquement sur beaucoup d'information 
specifique de fond, mais ne s'appuie pas 
necessairement sur une suppostion que la 
nature est uniforme ou que l'avenir 
ressemblera au passe. Et lorsqu'une 
hypothese rend tres probables des nouvelles 
preuves et que des hypotheses qui lui font 
concurrence rendent peu probable ces 
memes preuves, celle-Ia n'est pas 
necessairement tres probable. 
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Consider balls drawn from an urn at random. Suppose there are fifty 
balls in the urn, and that the first forty-nine, drawn at random, all have 
been blue. ... If one calculates the probability that the remaining ball is 
blue given that the first forty-nine drawn at random have been blue, the 
probability is well in excess of 80%. (Thomas 1984: 32) 

This claim [that the probability is well in excess of 80%] seems plausi­
ble, but in fact there is no way to calculate such a probability from the 
information Thomas gives. '" if we do not know the number of blue 
balls in the urn initially and we make only the assumptions that Thomas 
gives, then no calculation will yield the probability that the remaining ball 
is blue. We can, without violating any mathematical law, assign that 
proposition any probability we like. (Nolt 1985: 56) 

© Informal Logic Vol. 19, Nos. 2&3 (1999): pp.201-212. 



202 David Hitchcock 

This dispute apparently remains unresolved: Thomas in the latest edition of 
his textbook (1997: 131) continues to claim a high conditional probability for a 
similar case. Though the example is artificial, it raises a fundamental question 
about the legitimacy of all extrapolation and generalization from uniform experi­
ence. I propose therefore to resolve the dispute, and to draw from this resolution 
some general lessons about inductive reasoning. 

1. Analysis of the example 

We can set out the example in the form of an argument: 

There were fifty balls in the urn. 
The first forty-nine, drawn at random, all have been blue. 
Therefore, probably, the remaining ball is blue. 

The dispute concerns how probable the premisses ofthis argument make its con­
clusion. 

The probability in question cannot be construed, at least in any obvious way, as 
any sort of relative frequency, either actual or hypothetical, since it does not con­
cern the probability that an arbitrarily chosen member of a class will have a certain 
property. It rather concerns the probability, relative to specified information, that a 
definite proposition is true, that the remaining ball in the urn is blue. This is an 
epistemic probability, the degree of confidence that it is reasonable to attach to a 
proposition given certain information. An initial approximation to understanding 
this kind of probability is to think of it in terms of the fair betting odds that the 
proposition is true. Given that the first 49 balls selected from the urn are blue, 
what would be fair odds if one person bet another person a dollar that the remain­
ing ball will also be blue? If it is fair to accept such a bet at even odds, then the 
rational degree of confidence, given this information, that the remaining ball is blue 
is .5, or 112. In general, if the fair odds, given background information K, on a bet 
that a proposition is true are x:y, then the rational degree of confidence in the 
proposition is roughly x + (x + y). To make the rational degree of confidence in a 
proposition an exact function of the fair odds in a bet that it is true, however, we 
have to make some patently absurd assumptions: that the fairness of the odds is 
not influenced by the potential bettor's enjoyment of or aversion to gambling, that 
the only thing of value is the currency of the potential bet, that the value of that 
currency increases exactly proportionately with the amount, and so on. The ab­
surdity of such assumptions vitiates the usual Dutch book argument that the de­
grees of confidence it is rational to assign to propositions must conform to the 
axioms of the classical probability calculus. For more sophisticated arguments, 
see Kaplan (1996), Ramsey (1990/1925-29) and Savage (1972/1954). On the ba­
sis of these more sophisticated arguments, I shall assume in what follows that 
rational degree of confidence is a probability function in the sense of the classical 
probability calculus. This assumption is compatible with various theories about 
rational degree of confidence, e.g., that it is a logical probability (Carnap 1962/ 



The Thomas-Nolt Dispute: Some Lessons about Induction 203 

1950), a rationally constrained subjective degree of confidence (Howson and Urbach 
1989, Kaplan 1996), or a mixed physical and epistemic probability (Pollock 1990). 

In form, the argument based on Thomas' example is what we might call an 
inductive extrapolation; it extrapolates a property found in all observed members 
of a class to an unobserved member of that class. Russell (1948: 401) called such 
reasoning "particular induction by simple enumeration". In substance, however, 
since there is only one unobserved member left, the argument is an inductive 
generalization; it amounts to generalizing from the presence of a property in all 
observed members of a class to its presence in all members of the class. Russell 
(1948: 401) called such reasoning "general induction by simple enumeration". 

To prove that the conditional probability at issue is the same regardless of 
whether we express the conclusion as a singular statement or a universal generali­
zation, we can appeal to the definition of conditional probability: the probability 
that a hypothesis H is true given certain evidence E, written "p(HIE)", is the result 
of dividing the probability that both the hypothesis and the evidence are true ("p(H 
& E)") by the probability that the evidence obtains ("p(E)"), provided that this 
latter probability is not 0; if p(E) "" 0, then the conditional probability is undefined. I 
In what follows, I shall assume, since we are given that E actually occurs, that 
p(E)"* O. That is, it was not rational to have absolute confidence in advance that E 
would not occur, given that it actually did occur; a rational thinker would never 
think it fair, I suppose, to accept infinite odds against a proposition which later 
turns out to be true. 

If we let HE" stand for the premisses of our example, then the question is 
whether p(remaining ball is bluelE) = p(a1l50 balls blueIE). Applying the definition 
of conditional probability, this amounts to the question whether p(remaining ball is 
blue & E) + p(E) "" p(all 50 balls blue & E) + p(E). Since p(E)"* 0, our question is 
whether p(remaining ball is blue & E) = p(all 50 balls blue & E). But "remaining 
ball is blue & E" entails "aliSO balls blue & E", and vice versa; the two conjunc­
tions are logically equivalent. Assuming that logically equivalent propositions have 
the same probability, we can conclude that the conditional probability at issue is 
the same regardless of whether we express the conclusion as a singular statement 
or a universal generalization. In what follows I shall take the conclusion to be a 
universal generalization. 

2. Preliminary solution 

Bayes' theorem allows us to calculate the epistemic probability that a hypothesis H 
is true given certain new evidence E, a probability generally referred to as the 
posterior probability, provided we are given three other epistemic probabilities, 
each construed as a rational degree of confidence in a proposition. First, we need 
the prior probability ofthe hypothesis, that is, the probability that the hypothesis is 
true, given our background information independently of the new evidence. (I 
shall call this "p(HIK)", where p is the probability function, H is the hypothesis and 
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K is our background information apart from the new evidence. The posterior 
probability we are looking for is thus given by "p(HIE & K)", where E is the new 
evidence.) Second, we need the posterior likelihood, the likelihood of the evidence 
on the assumption that the hypothesis is true, again assuming the same back­
ground information which we have independently of the new evidence. (I shall call 
this "p(EIH & K)", where E is the new evidence.) Third, we need the prior likeli­
hood of the evidence, the likelihood that the evidence is true on the assumption of 
our background information, without assuming the truth of the hypothesis under 
investigation. (I shall call this "p(EIK)".) Bayes' theorem tells us that, if the prior 
likelihood is not zero, the posterior probability of a hypothesis on new evidence is 
its prior probability multiplied by the ratio of the posterior likelihood of the evi­
dence to its prior likelihood: 

p(HIE & K) = p(HIK) x p(EIH & K) + p(EIK). 

The proof of the theorem rests on the above-mentioned definition of a condi­
tiona� probability p(AIB) as the result of dividing the probability that both A and B 
obtain by the probability that B obtains, provided that this latter probability is not 
zero. If one replaces the conditional probabilities in Bayes' theorem according to 
this definition, one sees that the theorem is correct, provided that the prior likeli­
hood of the evidence [p(EIK)] is not zero. 

Our hypothesis H is that all the balls in the urn are blue. The new evidence E is 
that there were 50 balls in the urn and the first 49 drawn at random from the urn 
are blue. The relevant background information K is difficult to specify completely, 
but it would include knowledge about the general properties of balls (that they 
retain their individuality over time, neither evaporating like mothballs nor merging 
like drops of water; that they do not spontaneously change colour as chameleons 
do; etc.), as well as assumptions about the particular situation which are not ex­
plicit in Thomas' description of it (that the balls drawn from the urn were not put 
back in it, that nobody else put balls in the urn or took them out after the drawing 
of the 49 blue balls began, that nobody came along after the 49 balls were drawn 
and repainted the remaining one, etc.). It is important to realize that such back­
ground information is always present when we extrapolate or generalize from 
instances; philosophical discussions of the problem of justifying induction distort 
the practice when they treat it as if it were just a matter of extrapolating or gener­
alizing from observed instances, without any other information. 

Since the evidence of the first 49 balls drawn being blue is a logical conse­
quence of the hypothesis that all 50 balls are blue (given implicit background 
assumptions such as those mentioned in the preceding paragraph), the posterior 
likelihood of the evidence is 1.2 Hence, in this case the posterior probability of the 
hypothesis will simply be the prior probability of the hypothesis divided by the 
prior likelihood of the evidence. 
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1. p(allSO balls bluelfirst 49 blue & K) = p(allSO balls bluelK) + p(first 49 bluelK) 

Of course, we are not given information which would allow us to assign defi­
nite numbers to this prior probability and prior likelihood. What can we do? 

One strategy is to notice that, once 49 blue balls have been drawn from the 
urn, there is only one alternative hypothesis about the colour of the 50 balls which 
has not been refuted. That is the hypothesis that 49 balls in the urn were blue and 
the other one was not blue. The posterior likelihood of the evidence, given this 
hypothesis and background information, is 1150. For, given the fact that the 49 
balls were drawn at random, and assuming that exactly 49 of the 50 balls originally 
in the urn were blue, there was a probability of 49/50 that the first ball drawn 
would be blue, of 48/49 that the second ball would be blue given that the first one 
was blue, and so on, up to a probability of 2 that the 49th ball would be blue given 
that the first 48 drawn were blue. These 49 probabilities are probabilities of inde­
pendent events: that the first ball drawn is blue is for example independent of the 
event that the second ball drawn is blue given that the first one is blue. Hence, by 
the multiplication rule of the classical probability calCulus for independent events, 
the probability of the first 49 balls being drawn at random being blue is the product 
of these 49 probabilities, or 1150. This is of course a frequency probability, but it 
can be used to justify an epistemic probability of the same magnitude in a step of 
direct inference (Pollock 1990, Bacchus 1990). Hence the posterior probability 
that 49 of the 50 balls are blue, given relevant background information along with 
the evidence that the first 49 balls drawn at random were blue, is 1/50 of the prior 
probability of the hypothesis divided by the prior likelihood ofthe evidence. That 
is, 

2. p(49 balls bluelfirst49 blue & K)= p(49 balls bluelK)+ SOp(first49 bluelK). 

But the evidence, along with the background information, entails that either all 
50 balls in the urn were blue or 49 of them were. Hence, by the reasoning of note 
2, we can conclude that: 

p(allSO balls blue or 49 balls bluelfirst 49 blue & K) = 1. 

The classical probability calculus tells us that the probability of a disjunction of 
two mutually exclusive propositions is the sum of the probabilities of the two 
disjuncts. And the propositions that all 50 balls in the urn are blue and that 49 of 
them are blue are mutually exclusive. Hence: 

3. p(ailSO balls bluelfirst 49 blue & K) + p( 49 balls bluelfirst 49 blue & K) 1. 

Applying some algebraic transformations to the above three equations, we can 
express the posterior probability as a function of the ratio r of the prior probability 
that all 50 balls are blue to the prior probability that 49 balls are blue: 

4. p(allSO balls bluelfirst 49 blue & K) = SOr + (SOr + 1), provided that p( 49 blue 

balls bluelK) '* 0.3 
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Alternatively, by reasoning parallel to that of note 3, we can express the poste­
rior probability of the 50 blue balls hypothesis as a function of the inverse ratio rl 
ofthe prior probability that 49 balls are blue to the prior probability that all 50 balls 
are blue: 

5. p(50 blue ballslfirst 49 balls blue & K) = 50 + (50 + ,...1), provided that p(a1l50 

balls bluelK) '* O. 

3. A logical approach 

Of course, we are not given the ratio of the prior probabilities of our two remain­
ing hypotheses, let alone absolute values of each prior probability. We might try, 
however, to calculate the ratio on the basis of an a priori weighting of the logical 
possibilities. Prior to any inspection of the 50 balls in the urn, the information given 
by Thomas, along with our background information, leaves open all the logical 
possibilities about their colours. Each ball may be any possible colour, or any 
combination of those possible colours. Putting together such a possibility for each 
of the 50 balls gives rise to what Carnap (196211950: 70-72) called a "state de­
scription", which in this case would be a conjunction of 50 singular propositions 
postulating a particular colour or combination of colours for each of the 50 balls. 
(For simplicity, we ignore the other components of a complete state description, 
on the ground that they are irrelevant to the present problem.) Carnap proposed to 
assign logically prior probabilities not to those state descriptions but to structural 
descriptions which each covered all the structurally isomorphic state descriptions; 
for example the structural description "49 balls are blue and one ball is red" covers 
50 state descriptions, each of which makes a different one of the 50 balls the red 
one. The hypothesis that 49 balls are blue and one is non-blue is in fact a conjunc­
tion of structural descriptions, one for each of the colours other than blue. How 
many colours other than blue are there? Since there are many shades of blue, the 
logical parallels to blue are general colours like red, yellow, orange, green, purple, 
brown, black, grey, white, transparent. Let us take this list as the complete list of 
alternatives to blue, while recognizing some arbitrariness in where the lines are 
drawn between one colour and another and how many colours to put on the list. 
This leaves 10 structural descriptions in which 49 balls are blue and the other is a 
single colour other than blue. But notice that our background information does not 
exclude the possibility that a ball in the urn is multi-coloured; any ball may have 
two, three, four, up to 11 colours. Adding in these possibilities gives us 2,036 
additional structural descriptions in which 49 balls are blue and the other is not 
blue, for a total of 2,046.4 If we assign an equal prior probability to all the struc­
tural descriptions not ruled out by the first 49 drawings, we find that the ratio r is 
1/2,046. Putting this ratio into our formula for the posterior probability of the 50 
blue balls hypothesis, we get a value of 50/2,046 .;- 2,09612,046, i.e., 5012,096, or 
.024. On this calculation the premisses of the argument make it highly probable 
(.976) that the 50th ball is not blue. 
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Of course, we are not obliged to give each structural description the same 
logically prior probability as any other one. Carnap' s attempt (196211950) to base 
an "inductive logic" on this sort of probability foundered on the inability to single 
out a unique measure function which would assign absolute prior probabilities to 
each set of structurally isomorphic state descriptions (Carnap and Jeffrey 1971, 
Jeffrey 1980). We might, for some reason, suppose that the absolute prior prob­
ability of an n-coloured ball decreases as n increases. Thus the logical approach 
does not give us a definite answer to our problem. 

4. Some hypothetical answers 

We can however use equations 4 and 5 above to draw some hypothetical conclu­
sions about the posterior probability of the 50 blue balls hypothesis. 

First, the assertion by Stephen Thomas that this probability is "well in excess 
of 80%" is logically equivalent to the claim that the ratio r is well in excess of .08.5 

In other words, his claim assumes that, before any balls are drawn from the urn, 
the hypothesis that all 50 are blue is at least one-tenth as probable as the hypothesis 
that 49 are blue and one is non-blue.6 This seems like a rather conservative as­
sumption, but nothing in the information Thomas provides entitles him to make it. 

Second, Noll's claim that "we can, without violating any mathematical law, 
assign that proposition [sc. the 50 blue balls hypothesis-DH] any probability we 
like" assumes that no mathematical law prevents us from assuming any ratio we 
like of the prior probabilities, or in the limiting cases setting one or the other of 
them at O. Ifwe assign the 50 blue balls hypothesis a posterior probability of 0, we 
are assuming that our background information rules out that hypothesis from the 
very beginning, even before any balls are drawn from the urn; in other words, r = 
O. For example, we may know in advance that the "balls" are a set of Moslem 
prayer beads, which (I am told) always have one bead of a different colour than 
the others, symbolizing that nothing on earth is perfect. 7 If at the opposite extreme 
we assign the 50 blue balls hypothesis a posterior probability of 1, we are assum­
ing that our background information rules out the 49 blue balls hypothesis from 
the very beginning; in other words rl = O. For example, we may know in advance 
that the balls are all of the same colour, a specific version of a "uniformity of 
nature" assumption. Notice, however, that we can calculate a value for the poste­
rior probability without making any general assumption that nature is uniform, 
contrary to the claims of some philosophers unduly influenced by Hume. To as­
sign some intermediate value for the posterior probability of the 50 blue balls 
hypothesis, we simply calculate the required assumed ratio ofthe prior probabili­
ties; a posterior probability of.5, for example, requires a ratio of the prior prob­
abilities of .02; in other words, in advance of drawing any balls from the urn, the 
prior probability that 49 are blue is 50 times the prior probability that all 50 are blue. 
We might suppose, for example, that the "balls" are a set of Moslem prayer beads 
dawn at random from the assembly line of a factory which by mistake produces a 
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set of 50 beads of the same colour once for every 50 times it correctly produces 
a set with 49 beads of one colour and the 50th of a different colour. By varying the 
defect rate in this imaginary factory, we can produce any posterior probability we 
like. None of these scenarios appears to involve any violation of a mathematical 
law. Thus, as far as one can see, Nolt's claim is correct. 

In the absence of specific information and in default of a well-grounded induc­
tive logic, we can at best make qualitative judgements about the prior degree of 
confidence it is rational to place in each of the subsequently unrefuted hypotheses. 
It is not rational to be absolutely certain in advance that all 50 balls are blue, or 
absolutely certain in advance that not all 50 balls are blue; the background informa­
tion and new evidence are consistent both with this hypothesis and with its nega­
tion, and it is not rational to place absolute confidence in a proposition which later 
turns out to be false, as either of these might. For the same reason, it is not rational 
to be absolutely certain in advance that 49 balls are blue, or that the number of blue 
balls is not 49. That is, it would not be rational, given the information supplied and 
the background information available to us, to assume that either relevant prior 
probability was I, or to assume that either relevant prior probability was O. Beyond 
that, it seems difficult to go. How do we express the fact that our background 
information, before drawing any balls from the urn, neither makes it absolutely 
certain that 50 balls are blue, nor makes it absolutely certain that not all 50 balls are 
blue? Such vague qualitative judgements can be expressed by indicating that the 
rational degree of confidence lies in a range. If we letj be p(50 blue ballsIK), the 
prior rational degree of confidence in the 50 blue balls hypothesis, then we can say 
that 0 <j < I. Similarly, if we let m be p (49 blue ballsIK), the prior rational degree 
of confidence in the 49 blue balls hypothesis, then we can say that 0 < m < I. 
Since r = j -7 m, and the posterior probability p(50 blue ballslfirst 49 drawn are blue 
& K) = 50r -7 (50r + I), we can conclude only that 0 < p(50 blue ballslfirst 49 
drawn are blue & K) < 1.8 

5. An invalid argument schema 

A tempting approach to our example is to note that the evidence is much more 
likely to occur on the hypothesis that all 50 balls are blue than on the hypothesis 
that 49 balls are blue and one is not blue; the likelihoods are respectively I and .02, 
as indicated in section 2 above. And the evidence rules out all other competing 
hypotheses. Since the result we observed was inevitable on the first hypothesis 
but highly unlikely on the only alternative hypothesis consistent with our evidence, 
does this result not make it highly probable that the first hypothesis is true, and 
thus that the last ball in the urn is blue? 

The considerations advanced above show that this method of reasoning is 
invalid; that is, its premisses do not necessarily confer a high probability on the 
conclusion of the argument. A Bayesian explanation of why it is invalid is that it 
does not take into account the prior probability of the two hypotheses. If our 
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background information gives the 50 blue balls hypothesis a very much lower 
prior probability than the 49 blue balls hypothesis, the fact that the evidence is 
exactly what we would expect on the basis of the 50 blue balls hypothesis, but 
highly unlikely given the 49 blue balls hypothesis, is not enough to make the 49 
blue balls hypothesis highly propable.9 Thus, the following argument schema, though 
plausible, must be rejected as invalid: 

The observed results rule out all but n mutually exclusive hypotheses. 
On one of these hypotheses, the observed results were bound to occur. 
On any of the others, the observed results were highly unlikely. 
Therefore, probably the first hypothesis is correct. 

6. Conclusion: general lessons about induction 

In the dispute which occasioned this article, Nolt was right and Thomas was 
wrong. From the resolution of the dispute, we can draw the following general 
lessons about induction: 

1. Uniform experience does not necessarily confer a high epistemic probability 
on an extrapolation or generalization from that experience. We must always 
keep in mind Russell's chicken, whose experience of getting its daily ration of 
grain from its keeper gradually increased its confidence that it would get the 
grain the next day, until one day the keeper cut its head off. (Russell 1959! 
1912, 63) Analogues of Russell's chicken can be found in the daily newspa­
per making theoretically ungrounded extrapolations from the past perform­
ance of stock markets and other trading forums. 

2. Rational extrapolation or generalization from uniform experience typically 
involves a great deal of background information. 

3. Rational extrapolation or generalization from uniform experience does not 
require a general assumption that nature is uniform or that the future will 
resemble the past. 

4. In many situations it is rational to make only a vague qualitative judgement 
about the probability of a hypothesis given our background information. Such 
a vague qualitative judgement can be interpreted quantitatively in terms of a 
range of values. 

5. The fact that new evidence at our disposal is just what we would expect on 
one hypotheses, but highly unlikely on the basis of any of its unrefuted 
competitors, does not necessarily confer high probability on the former 
hypothesis. The posterior probability of the unrefuted hypotheses depends 
also on their epistemic probabilities prior to learning of the new evidence. 10 

Notes 

lThis definition is standard; see for example Hymans (1967: 51-52) and Mosteller, Rourke and 
Thomas (1961: 88-89). It is more easily understood in terms of probabilities which are frequen­
cies; think for example of the probability that a card in a deck is a queen, given that it is a face 
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card. The idea behind interpreting conditional rational degrees of confidence in the same way is 
that the rational degree of confidence in a hypothesis given new evidence is the rational degree of 
confidence, given background information (other than the new evidence) that the hypothesis and 
the evidence are true, divided by the rational degree of confidence, given the same information, 
that the evidence obtains. This idea seems intuitively plausible. 

2 If(H & K) entails E, then (E & H & K) is logically equivalent to (H & K), so that p(E & H & K) 
= p(H & K): logically equivalent propositions have the same probability. Hence, since p(EJH & 
K) p(E & H & K) + P (H & K), p (EIH & K) I. In general, the rational degree of confidence 
in a proposition, given certain other information from which that proposition follows necessar­
ily, is 1. Roughly speaking, this amounts to saying that it would be fair to give as high odds as 
you like on a bet that the other information entails the proposition in question. 

3 The algebraic calculation goes as follows. Let x = p(all SO balls bluelfirst 49 blue & K), y p( 49 
balls blueJfirst 49 blue & K), j = p{aliSO balls blueJK), m = p( 49 balls blue/K), and n = p(first 49 
blueJK). Then the three numbered equations above become: 

Lx =j/n 
2. y = mlSOn 
3.x+y=1. 

From 2, assuming that m *' 0 and thus y *' 0, we get n = mlSOy. By substitution of this value for 
"n" in I, we get x = SOjy/m. Now r, as defined above, is jim. Hence x = SOry. By substitution of 
this value for "x" in 3, we get SOry + y 1, i.e., y{SOr + 1) I. Since SOr + 1 *' 0, we can divide 
both sides of this equation by SOr + 1, to get y = lI(SOr + 1). By substitution of this value for 
"y" in 3, we get x + I/(SOr + I) = I. Subtracting lI(SOr + 1) from both sides, we get x = 1 II(SOr 
+ I). Simplifying the right-hand side, we get x SOrl(SOr + I). 

4 The number of ways that a ball can have n of the II possible colours is 11 !In!(11 n)! For 
example, the number of ways that a ball can have 6 ofthe II possible colours is Il!I6! S!, or (II 
x lOx 9 x 8 x 7)/(S x 4 x 3 x 2), or 462. Adding the number of combinations for two-coloured, 
three-coloured, and so on up to 10-coloured balls gives a total of2,036 combinations, In taking 
all these combinations to be part of a structure description in which 49 balls are blue and one is 
not blue, I assume that a ball which is partly blue and partly one or more other colours is not 
blue. The opposite assumption would reduce the number of combinations to 1,012 ways that a 
ball can have from two to 10 of the 10 colours other than blue. 

l Since the posterior probability x = SOrl( SOr + I), the claim that x is well in excess of 80% is the 
claim that SOr/( SOr + I) » .8. That is, SOr » .8( SOr + I). That is, SOr» 40r + .8. Hence SOr 
- 40r» .8. That is, lOr» .8. Hence r» .08. 

6 I assume here that a ratio well in excess of .08 is at least .1. 

7 Francisca Snoeck Henkemans suggested this example. 

S A posterior probability of 0 is ruled out by the fact thatj *' 0, which implies that r *' 0, which 
implies that SOr + (SOr + 1) *' O. A posterior probability of 1 is ruled out by the fact that m *' 
O. Any intermediate value of the posterior probability can be accounted for by solving for r in 
the equation for the posterior probability, setting the larger of the two prior probabilities at 
some arbitrarily chosen number between 0 and I, then solving for the other prior probability. 
For example, if the posterior probability is .000S9, then SOr + (SOr + 1) = .000S9, and r "" 
.000012, Since j < m, we first set m at some arbitrarily chosen positive number less than I, say 
.004S. Thenj = r x m"" .000012 x .004S = .00000S4. 

9 One may appreciate this fact more readily if one expands the prior likelihood p(EIK) in Bayes' 
theorem, using the probability calculus, to get: [p(EIH & K) x p(HIK)] + [p(EI-H & K) x (I 
p(HIK»]. Suppose the evidence E is highly likely if the hypothesis is true but highly unlikely if 
the hypothesis is false. For example, let p(EIH & K) = I and p(EI-H & K) .0008. Now 
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suppose that the prior probability of the hypothesis is very low; for example, let p(HIK) = 

.0001. Then p(HIE& K) p(HIK) x p(EIH& K). {[P(EIH & K) x p(HIK)] + [P(EI-H & K) x 
(1 p(HIK))]} = .0001 x 1 + {(l x .0001] + [.0008 x (1- .0001)] .0001 + {.OOOI + [.0008 
x .9999)} .0001 {.000l + .0008} = .0001 + .0009= 1/9 = .1111. So, even though theevideRce 
is bound to occur if the hypothesis is true and highly unlikely if the hypothesis is false, the 
posterior probability of the hypothesis, given the evidence, is only .1111. 

]0 Ancestors of this paper were read at the Ontario Society for the Study of Argumentation=s 
conference on argumentation and rhetoric in May 1997, at the University of Windsor in March 
1998, and at the 4th International Conference on Argumentation in June 1998. The present 
paper is substantially different, and I hope better, than those ancestors. I would like to thank 
those who commented on previous versions, including especially Roderic Girle, Robert C. 
Pinto, Robert H. Ennis, Sally Jackson, and two anonymous referees for the Canadian Philo­
sophical Association. They are of course not responsible for any faults in the present paper, 
with which indeed some of them would vehemently disagree. 
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